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Equilibrium state of planar arrays of magnetic dipoles in the presence of exchange interaction
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This article investigates the equilibrium states of square-planar arrays of magnetic dipoles. It has been
demonstrated that in the presence of an exchange interaction the main equilibrium states are the configurations of
dipoles oriented along the system diagonal, along its side, as well as configurations with vortex structures, which
may differ by location of the vortex center and, respectively, by magnitude and direction of the magnetic moment
of the system. Also the conditions for transitions in the equilibrium configurations, when influenced by a plane
field affecting the whole array, or by a normal local field affecting a part of the system dipoles, were considered.
The possibility to control magnetic moment of the dipoles system through transitions between different vortex
configurations, including a configuration with zero total magnetic moment, has been shown.
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I. INTRODUCTION

Magnetic systems and their states are easy to manipulate
and, therefore, they make a good subject for the analysis
of self-organization processes, as well as for the study
of collective effects and phase transitions. Interest in the
ensembles of nanoparticles has acquired special significance
due to the advances in the area of information technology.
In addition, stationary structures formed by a small number
of elements became of special importance as well, given the
need to record information using various magnetic mediums.
In recent years there has been a systematic study and
practical application of dipole superstructures of a magnetic
type created by nanotechnology [1]. Among such structures,
two-dimensional structures in the form of square arrays of
nanoparticles of a near circular [2] shape present a particular
interest. Specifically, dipole magnetic-ordering lattices can
be formed by nanolithography from the nanoparticles of the
atoms of the ferromagnetic metals [3]. Such nanoparticles may
consist of up to 100 atoms, which ensures their spherical
form of about 10 nm and a magnetic moment of several
Bohr magnetons [4]. Modern technologies allow producing an
ensemble of nanoparticles in which the variation in size does
not exceed 5% [5]. The main contribution to the interaction
of the magnetic moments in these systems is made by the
exchange and dipole-dipole interactions [3,6]. There is a
lot of research dedicated to the investigation of spin vortex
structures in magnetically ordered media [7–11]. In particular,
the vortex state in the nanoparticles [12], as well as the
spectrum of spin-wave modes under the influence of exchange
and dipole interactions, are also well researched [13–15].
The vortex states of cylindrical magnetic samples of different
sizes with a complex structure of the vortex core based on
the exchange and dipole-dipole interactions and the magnetic
field at an arbitrary ratio of the coupling constants were
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considered [16]. Searching for the systems with vortices of
an extremely small size is both of fundamental and theoretical
interest. However, these states appear only at a sufficiently
large dipole-dipole interaction. For crystalline magnets with
rare earth ions the energy ratio of dipole-dipole and exchange
interactions is about 0.1–0.3 [17,18]. For composite materials,
it may reach 1 [16]. These magnetic objects differ significantly
from the low-dimensional systems, which include the lattice
of nanoparticles. Particularities of the lattice properties of
nanostructures are due to their discrete and finite features.
Practical use of such structures is due to the possibility to
widely change parameters of a single nanoparticle, and it is
also possible to change the type and energy of the interaction
between nanoparticles. This allows, in turn, to control the
equilibrium configurations of the magnetic moments of the
lattices and to form different vortex configurations using an
external field. In particular, storage devices made on the basis
of an array of magnetic dipoles are among the most promising
types of memory devices. Therefore, the research of an impact
of external homogeneous and local static magnetic fields
on the dipole array states has practical importance. In [19]
orientational transitions in lattices of nanoparticles having a
magnetic moment and the associated dipole-dipole interaction
were considered. In this paper we investigate the basic
equilibrium configuration of the magnetic moments, which
are installed in a plane square lattice at the presence of not just
the dipole-type but also the exchange-type interaction between
the array elements. In the arrays of magnetic nanoparticles the
exchange interaction is not as strong as in magnetic crystals,
where the distance between the atoms is equal to the parameter
of the crystal lattice, and, therefore, the exchange energy is
much higher than the energy of the dipole interaction [20,21].
However, this interaction can have a significant influence on
the behavior of the magnetic subsystem in nanostructured
objects, in particular, in the arrays of magnetic nanoparticles.
Moreover, in such systems the exchange and dipole-dipole
interaction can be compared, resulting in the realization of
new states and properties of lattices. This paper identifies the
conditions of transitions between the lattices equilibrium states
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under external homogeneous fields and local fields affecting
only a part of the magnetic dipoles of the system. Much
attention is paid to the vortex orientation configurations that
due to the vortex center motion under the influence of an
external magnetic field allows the control over magnitude
and direction of the systems magnetic moment. Transitions
between different vortex configurations, characterized by a
certain total magnetic moment, including central-oriented
configurations in which the magnetic moment of the array
vanishes, have been considered. It allows an easy transition
of the system from a state with zero magnetic moment to a
configuration with other various values.

II. BASIC EQUATIONS

When analyzing the behavior of a planar square lattice
of nanoparticles we assume that the value of their magnetic
moments is the same and they are connected by dipole-dipole
and exchange interactions. The position of the nanoparticles’
mass centers in the system is considered a constant, the
nanoparticles themselves as uniform and spherical [22], and
the objects material as a magnetically hard material. Each of
the nanoparticles can be rotated around its center of mass.
Dynamic equations for the system of magnetic dipoles can be
represented as follows [23–25]:

Ji

dωi

dt
+ αiωi = pi × Hi ,

dpi

dt
= ωi × pi , (1)

where pi and ωi = dϕi/dt—magnetic dipole moment and
angular velocity of the ith dipole (ϕi,j —angle of dipole
rotation around the axis j = x,y,z), Ji—moment of inertia,
and αi—dissipation parameter. Effective field generated at the
position of the ith dipole by other dipoles and by the external
magnetic field h is determined by the expression

Hi = h +
∑
n�=i

[
3(pnrin)rin − pnr

2
in

r5
in

+�pn exp(−σrin)

]
, (2)

where rin and rin are the radius vector and distance between the
centers of the ith and nth dipoles, and � and σ−1 the constant
and the characteristic length of the exchange interaction. The
energy of the interparticle interaction is defined by

Win = (pipn)r2
in − 3(pirin)(pnrin)

r5
in

− �(pipn) exp (−σrin).

(3)

On the basis of this expression, we can obtain a criterion
for the strong and weak exchange interaction. To do this,
we introduce a relation of dipole and exchange energies of
magnetic moments of neighboring nanoparticles

η = W exch

W dip
= a2�1

2
,

where a is the lattice parameter (distance between the centers
of the neighboring dipoles), and �1 = � exp (−σa). Thus,
at η > 1, there is the exchange interaction, and at η < 1 the
dipole interaction dominates the system.

Next, we assume that the magnetic dipoles in the lattice
are identical: |pi | = p, Ji = J , and αi = α. Then we move on
to the following dimensionless parameters [23]: ein = rin/rin,

lin = rin/a, κ = σa, ρ j = pj /p, β = α/(νJ ), �i = dϕi/dτ ,
τ = νt , and ν =

√
p2/Ja3. External field in this case is

converted to the form f = ha3/p (for p ≈ 3μB , a ≈ 5 nm,
and h ≈ 0.1f Oe) and the exchange interaction constant
is converted to λ = a3�. In dimensionless parameters the
equations (1) can be written as

d�i

dτ
= −β�i + ρi ×

(
f +

∑
n�=i

[
3ein(ρnein) − ρn

l3
in

+ λρn exp(−κlin)

])
,

dρi

dτ
= �i × ρi . (4)

III. EQUILIBRIUM CONFIGURATION
OF DIPOLES ARRAY

Let’s consider the equilibrium configurations of square-
planar arrays of dipoles with different values of the exchange
interaction of the ferromagnetic connection type, i.e., for
(λ > 0). Figure 1 and Fig. 2 show the diagrams of dependence
of the total magnetic moment with value C = ∑

ci of dipole
lattices 2 × 2−7 × 7 [(a)–(c)] on the exchange parameter λ

in the case of equilibrium configuration and in the absence
of an external magnetic field. The branches of the diagram
correspond to various equilibrium states of the systems.
Namely, two branches exist for the systems 2 × 2, one of
which corresponds to a configuration with zero total magnetic
moment, and the second one is with P ≈ N , where N is
the number of dipoles in the system. In the case of arrays
3 × 3 there are three types of equilibrium configurations,
which correspond to three branches on the diagram. For such
systems, the orientation of the magnetic moments of individual
dipoles is shown in the insets in Figs. 1(a) and 1(b) (the
equilibrium configurations type for the array 4 × 4 is given
in Sec. V C, where a detailed discussion of these systems is
provided). Typical equilibrium configurations of arrays 5 × 5
and 6 × 6, which can be realized with λ = 0.3 and λ = 1, are
given, respectively, in Fig. 3 and Fig. 4 [numbering of the
configurations on these figures corresponds to the numbering
of branches in Figs. 2(a) and 2(c) ]. Calculations made for other
arrays, up to systems 14 × 14, indicate that their equilibrium
configurations are similar to those shown.

Numerical analysis was performed by a program built
using the Runge-Kutta method of fourth order, that allows
one to take into account all system elements connections to
each other. Arbitrary initial states of the system were set to
find the equilibrium configurations, after which the system
would come to a static state according to the equations of
motion considered above (in the absence of external fields).
To obtain reliable results, only large time intervals sufficient
to establish equilibrium (i.e., when the extension of the time
period did not lead to a change in the system within the range of
given numerical calculations) were considered. Also the initial
conditions from which the system would come to the same
equilibrium configurations differed. To identify stable states,
we used an additive represented by a noise signal disturbing
the system and used in some cases in the calculations. In the
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FIG. 1. Dependence of the total magnetic moment P of arrays
2 × 2−4 × 4 [(a)–(c), respectively] on the exchange parameter λ in
the equilibrium configurations (different branches of the diagram
correspond to different equilibrium states); κ = 1. In the inset:
the equilibrium configurations of arrays corresponding to different
branches of the diagram.

case of a stable configuration the addition of this disturbance
does not lead to a change in the system.

FIG. 2. Dependence P(λ) for arrays 5 × 5−7 × 7 [(a)–(c), re-
spectively] in the equilibrium configurations.

The dependencies and configurations considered above
show that a weak exchange interaction (λ � 0.5) contributes
to the establishment of equilibrium states with a “saddle”
reciprocal orientation of the magnetic moments of separate
dipoles (configurations 1 and 3 in Fig. 3), as well as with an area
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FIG. 3. Equilibrium configurations of arrays 5 × 5 and 6 × 6
at λ = 0.3 (1–3); configurations numbering corresponds to the
numbering of branches in Figs. 2(a) and 2(b).

of oppositely oriented dipoles in adjacent rows (configuration
2 in Fig. 3). In the structures 2 × 2, a configuration with a
zero total magnetic moment is an equilibrium one [see the
bottom inset in Fig. 1(a)], and in the structures 3 × 3 there are
two equilibrium configurations—with alternating directions
of the magnetic moments in adjacent rows and a “circular”
orientation of eight dipoles [see insets in Fig. 1(b)]. We will
not consider these configurations further since they are similar
to the configurations of the systems with the absence of an
exchange interaction [26].

In the case of a strong exchange interaction (λ � 2 ÷ 6—
depending on the system), only one equilibrium configuration
is established with dipoles oriented along one of the diagonals
of the square array (configuration 6 in Fig. 4), and for smaller
systems 2 × 2 and 3 × 3 they orient along the sides of the
arrays. The total magnetic moment is P ≈ N . In addition to
the configuration above, an equilibrium state with a minimal
total magnetic moment is also established at a smaller value
of the exchange parameter. For an array with an even number
of dipoles P = 0 in this configuration and the dipole moments
are oriented as vortices (configurations 4 in Fig. 4). In addition
to these two equilibrium configurations, at a weaker exchange
interaction there is also a configuration with dipoles oriented
primarily along the side of the array (configurations 5 in
Fig. 4). In Fig. 2, the relevant branch is located near the
branch corresponding to the dipoles’ orientation along the
diagonal of the arrays, as in this case the value P is also
close to N . In this area of parameter λ, as can be seen in
Fig. 2, there are also the equilibrium states with an intermediate

FIG. 4. Equilibrium configurations of arrays 5 × 5 and 6 × 6 at
λ = 1 (4–6); configurations numbering corresponds to the numbering
of branches in Figs. 2(a) and 2(b).

value (respective to the minimum and the maximum values) of
the total magnetic moment of the array. The relevant mutual
orientation of individual dipole moments of the systems in
these cases is of a “vortex type” (similar to the configurations
4 in Fig. 4), but with a different offset of the vortex center from
the center of the dipoles’ arrays. Some of these configurations
will be considered below. In the next paragraph we take a closer
look at this area of the exchange parameter λ and consider
magnetization reversal of dipole systems and transitions within
equilibrium configurations.

These curves are plotted at κ = 1. Modification of the
normalized length of the exchange interaction leads to the
same equilibrium configurations. Figure 5 shows the diagram
of dependence of the total dipole moment on κ at the exchange
parameter λ = 5 for the lattice 6 × 6. It can be seen that by
increasing the return length of the exchange interaction κ ,
the diagram of equilibrium states is similar to the diagram
corresponding to the reduction of λ (see Fig. 2). In this
figure the branches corresponding to diagonal (branch 4) and
vortex configurations with zero and nonzero values of the total
magnetic moment (branches 1 and 2) are clearly seen, as well
as configurations with the dipoles’ orientation along the sides
of the lattice (branch 3).

IV. TRANSITIONS BETWEEN THE EQUILIBRIUM STATES

Let’s consider the establishment of different equilibrium
states and remagnetization of the arrays when the values of
exchange parameter are close to λ = 1. Under these conditions
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FIG. 5. Dependence of the total moment P of the exchange
interaction for array 6 × 6 in equilibrium configurations at λ = 5
on the reciprocal length.

the equilibrium configurations are with a vortex orientation
of the dipoles, an orientation primarily along the diagonal
and along the side of the array (see Fig. 4). Implementation
of various equilibrium states in numeric modeling could
be achieved by repeatedly setting as a reference a random
orientation of each of the dipoles of the system, and the
consequent solution of the resulting dynamic equations. In
practice, however, this method cannot be realized, since
the original state is not an arbitrary one, but one of the
equilibrium states. Therefore, possible transitions between
different equilibrium configurations, or remagnetization of the
system without configuration modifications, i.e., the change of
the direction of the total magnetic moment of the array while
maintaining its value, should be investigated.

The analysis will be carried out for the array 6 × 6. For
other arrays, transitions between equilibrium configurations
are similar. Numerical analysis showed that the following
transitions were possible when using the uniform remagne-
tizing field lying in the plane of the array. From a centrally
oriented vortex configuration, the transitions can be made
to the configuration with a displaced vortex center or to the
configuration with the dipoles oriented along the side or along
the diagonal of the array. The only transition that can be made
from the configuration with the dipoles oriented along the side
of the system is to the dipoles oriented along the diagonal.
The system does not get remagnetized in this case, and the
only thing possible is the turn of the total magnetic moment
with transition of the dipoles’ orientation along the diagonal.
In the case of configuration with a diagonal orientation, only
remagnetization of the arrays is possible (preserving diagonal
configuration), but transitions to other configurations (the
vortex ones or the ones oriented along the side of the system)
do not take place. For transitions between equilibrium states,
let’s consider the time dependence of the total normalized
binding energy of the system

W0 =
∑

i

∑
k

a3

2p2
(Win − W

′
in), (5)

FIG. 6. Time dependence of normalized binding energy systems
during transitions between different equilibrium configurations of the
array 6 × 6 under the influence of a planar magnetic field.

where Win is the interaction energy of ith and nth dipoles (3),
and W

′
in is the interaction energy in the initial state of

the array. Figure 6(a) shows the dependence W0(τ ) for the
transition from a vortex configuration with P = 0 to the
vortex configuration with a displaced center and, respectively,
with P �= 0 (curve 1), to the configuration with the dipoles’
orientation predominantly along the side of the array (curve 2)
and to a diagonal configuration (curve 3). In all cases, up to
the point of time τ1 = 5 the whole dipole system experienced
a uniform planar field of the value f = 1,2,3 (curves 1–3),
directed along the side of the array for the first two cases, and
along the array diagonal for the third case; after this point of
time the external field was turned off and the dipoles’ lattice
transited to a new equilibrium state. Figure 6(b) shows the
dependence of W0(τ ) for the transition from the configuration
with orientation along the side of the lattice to the diagonal
configuration (curve 1) and for remagnetization of the diagonal
configuration (to another diagonal configuration) with turning
moment of the whole lattice at angles π/2 and π (curves 2
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and 3). The external planar magnetic field is also attached to
the whole system until the point of time τ1 = 5, its value f = 1
(curves 1 and 2) and f = 3 (curve 3), and the angle between the
field direction and the initial total dipole moment direction of
the system π/4, π/2, and π (curves 1–3). As it can be seen from
these dependencies, application of an external field increases
the binding energy of the system, which indicates the stability
of the equilibrium configurations of the considered systems.
Furthermore, it can be seen that the diagonal configuration has
minimum binding energy, so this equilibrium state is the most
stable. The greatest binding energy belongs to the case of a
vortex configuration; notably, at configuration with P �= 0 the
binding energy is higher than at configuration with P = 0.

When exposed to the whole array of dipoles, the vortex
equilibrium configuration in some cases can be obtained from
the configuration with the orientation of the dipoles along the
side of the array in the direction of the external field normal
to the plane of the dipole system. However, the transition
between the equilibrium configurations in this case is of a
rare and random nature. The vortex equilibrium configuration
with a diagonal configuration baseline or configuration with
a magnetic moment oriented along the side of the array
(as well as the latest from the diagonal configuration) can
be obtained through a normally oriented magnetizing field,
which acts only on the part of the system. Figure 7 shows
transformations between the equilibrium configurations, using
a normal system magnetizing field. The starting point is a
diagonal configuration, below which the configurations before
turning off the field with f = 15 acting during τ = 15 to
the dipoles are shown as points in the figure (since their
magnetic moments are directed perpendicular to the plane
of the array). The following are two finite transformation
configurations (longitudinal configuration—with a magnetic
moment, oriented mainly on the side of the array—and the
vortex one with a shifted center), which are subsequently
converted into a vortex configuration P = 0. The figure shows
that, acting on the 16 dipoles of system 6 × 6, it is possible to
translate the diagonal configuration to the vortex configuration
with shifted center of (transition 1), which can then be
translated into a vortex configuration with P = 0 (transition
3). Impact of the normal field on the half of the diagonal
configuration translates it into a configuration with a magnetic
moment oriented along the side of the array (transition 2).
The last configuration can be transformed into a vortex one
both with P = 0 (transition 4) and with a shifted center,
as shown in Fig. 8. Vortex configuration with a displaced
center can also be translated into configuration with P = 0
under the influence of a field on four central dipoles of the
system. Time dependence of the total dipole moment for
these transformations is shown in Fig. 9 (the curves 1–4
correspond to the respective transformations in Fig. 7; the
curve 5 corresponds to the transformation in Fig. 8). Action
of the field perpendicular to the plane of the lattice does
not lead to an equilibrium state with perpendicular magnetic
moment in these arrays of magnetic moments. In addition to the
above configuration, an equilibrium state with a minimal total
magnetic moment is realized at a smaller value of the exchange
parameter. At the considered parameters of the structure after
we turn the external field off the dipole-dipole interaction puts
the magnetic moments of the array elements in the plane of

FIG. 7. Transformations within the equilibrium configurations
by applying a normal in relation to the system-magnetizing field
acting on the part of the dipole array. From top to bottom: the
initial diagonal configuration → configuration before shutting down
the perpendicular field (f = 15, τ = 15) → the final configuration
of the corresponding transitions (initial for the next transition)
→ configuration before shutting down the field → final vortex
configuration.

the system. The perpendicular field acting on the part of the
array, which is in the vortex configuration, may lead to the
displacement of the vortex center. It is caused by reorientation
of the magnetic moments lying in the plane of the system
under conditions when a part of the magnetic moments of the
array is directed perpendicular to the system by the field. After
switching off the external field the specified reorientation leads
to the fact that after laying all the magnetic moments to the
plane of system, a vortex configuration with another location of

024421-6



EQUILIBRIUM STATE OF PLANAR ARRAYS OF . . . PHYSICAL REVIEW B 91, 024421 (2015)

FIG. 8. Transition from longitudinal to vortex configuration using
perpendicular magnetic field to the system with f = 15, acting during
the τ = 15 for eight elements of the array.

FIG. 9. Time dependence of total dipole moment for the transfor-
mation presented in Fig. 6 (the curves 1–4 correspond to the respective
transformation in Fig. 7; the curve 5 to transformation on Fig. 8).

FIG. 10. Equilibrium state in which the vortex configuration with
P = 0 (1–3) and the configuration with a longitudinal moment (4)
transform under the influence of the field on the dipole moments of
bold arrows (field is oriented along the diagonal of the array).

the vortex center appears, i.e., as a result, a shift of the vortex
center in relation to the initial configuration is observed. In
the case of a vortex configuration and configuration with a
magnetic moment oriented along the side of the array, the
transformation caused by exposure to only one dipole of
system are also carried out. Figure 10 shows a configuration in
which the vortex configuration with P = 0 transforms (cases
1–3) the configuration with a longitudinal magnetic moment of
the system (case 4) under the influence of a field on the dipole
moments of the bold arrows. In all cases the field with f = 15
is valid for τ = 15 and is oriented along the diagonal lattice.
The figure shows that the choice of the dipole, which is made
on the effect of the field, can establish configurations with
different magnitude and direction of the total dipole moment
of the system. Direction of the established total dipole moment
is defined by the orientation of the applied magnetic field. It
is worth noting that at the initial vortex structure and due to
the influence on various dipoles of the array, the center of the
vortex structure can be shifted in different directions, which
leads to remagnetization of the system maintaining the vortex
character of its configuration.

V. CONTROL OF THE MAGNETIC MOMENT OF THE
LATTICE WITH A VORTEX STRUCTURE

A. Displacement of vortex structure center

Equilibrium position of the vortex center in the lattice
dipoles is ensured by the achievement in these configurations
of the minimum binding energy of the systems’ dipoles.
When the center of the vortex is removed from the center
of the array, the magnetic moment of the system increases.
Thus, in the case of a transition between two equilibrium
vortex structures, the remagnetization of the array is carried
out. Displacement of the center of the vortex structure is
carried out both by the aforementioned local action on the
system, and by means of acting on the whole lattice of a
planar field; the direction of displacement is perpendicular
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FIG. 11. Time dependence of the dipole moment of the system
6 × 6 for the initial vortex state with P = 0 at the transition to the
represented equilibrium configuration by the field with f = 1.0,
directed along the diagonal of the array; the curve 1 corresponds
to the continued inclusion of the field; in the case of the curves 2–7
the field was turned off at different times.

to the direction of the applied magnetic field. Let’s consider
remagnetization of an array under the influence of a constant
magnetic planar field affecting the entire system. Figure 11
shows time dependence of the total dipole moment of the
system 6 × 6 at the initial central vortex configuration, i.e.,
with P = 0, in the case of an impact on the system of an
external field of value f = 1.0 and oriented at an angle of

ψ = 3π/4 (ψ is measured from axis x, which coincides with
the horizontal side of a square lattice). Curve 1 corresponds to
the influence of the field during the entire time considered in the
experiment. Otherwise, the field was switched off (at different
points in time), and the system would return to the equilibrium
state, with the corresponding configurations also shown in the
figure. Curve 2 corresponds to the system that was reset to the
initial central vortex configuration, since the time of exposure
to the external field was insufficient to move the lattice to
another equilibrium state. Curves 3–6 correspond to the
remagnetization of the system and its transition into the vortex
configurations with a varying distance between the vortex
center and the center of the system, and thus with a varying
total magnetic moment of the lattice. These transitions are
reversible: when changing the direction of the field, the system
returns to the initial vortex configuration. The latter curve 7
corresponds to a transition to the diagonal configuration, from
which it is impossible to bring the system back into the vortex
configuration by using a planar field influencing the whole
lattice. Let’s consider analogous dependences for arrays with
a large number of dipoles, which result in systems with a
higher value of total magnetic moment. Figure 12 shows the
dependence P(τ ) for a 10 × 10 array at the initial configuration
that corresponds to the vortex structure with a highest magnetic
moment, i.e., at a maximum distance of the vortex center from
the center of the array. The dependence corresponds to the
influence of a planar field where f = 0.5 and orientation
angle ψ = 3π/4. The highlighted curve 1 corresponds to
a continuously operating remagnetizing field. The magnetic
moment in this system is first reduced, which corresponds to
the approximation of the vortex structure center to the center
of the array. Next, when it is removed from the center of the
array and gets closer to its opposite corner, the growth of
the total magnetic moment (with a change of its direction to
the opposite one) takes place. Towards the end of the given
time interval a dramatic increase in total moment P from its
initial value occurs. This corresponds to the disappearance of
the vortex configuration and the establishment of a structure
with moments of nanoparticles oriented primarily along the
diagonal of the array (see inset configuration 8). The other
curves correspond to cases when the remagnetizing field is
turned off at various times. The center of the vortex structure
is shifted to one of its stable positions (which may require a
sufficiently long transition process), and the magnetic moment
of the system becomes one of several possible values. Dotted
and solid curves correspond to the same value of the magnetic
moment but to different yet symmetrical (relative to the center
of an array) equilibrium configurations. For the array of these
specified parameters the value of total magnetic moment can
be either zero (curve 2)—corresponding to the central vortex
structure, or value P ≈ N , where N is the number of dipoles in
the system (line 8)—corresponding to the diagonal (or longitu-
dinal) structure, or one of five intermediate values (excluding
opposite directions of vector P)—corresponding to different
shifts of the center of the vortex structure. For example, curve 7
corresponds to the establishment of a configuration symmetric
to the initial one, i.e., where the magnetic moment of the array
has the same value but an opposite direction. The figure also
shows the equilibrium vortex configuration with minimum and
maximum values of the magnetic moment for this array, the
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FIG. 12. Time dependence of the dipole moment of the system
10 × 10 for the initial vortex configuration (with the highest P = 0)
for permanent planar field with f = 0.5 (bold curve 1) and when it
is turned off at different times. The curve 2 is the transition to the
center of the vortex configuration; the curve 7 is the transition to
configuration symmetrical to the original; the curve 8 is the transition
to a diagonal configuration; the curves 4–6 are the transition to vortex
configurations with different locations of the center of the vortex.

establishment of which corresponds to curves 3 and 7. The
dashed curves 3 and 7 correspond to the establishment of
the configurations symmetric to the provided ones. In case
of configurations corresponding to curves 4–6, the vortex
center is located between its positions in configurations 3
and 7, which can be obtained from the relevant equilibrium
values of the total magnetic moment of the system. During
the transition from one equilibrium vortex configuration to
another, there is at first an increase of the binding energy.

FIG. 13. Time dependence of normalized binding energy systems
in the center of the vortex motion under the influence of external fields
with f = 0.4,0.5,0.6 (curves 1–3).

At approaching another equilibrium configuration the binding
energy decreases. Figure 13 shows the dependence W0(τ )
during the motion of the vortex center influenced by the field
with f = 0.4,0.5,0.6 (curves 1–3). Orientation of the field and
the initial configuration are the same as in the previous figure.
The figure shows that during the movement of the vortex, the
system passes through several local minima of the binding
energy. However, it should be noted that these energy minima
do not correspond to energy equilibrium states themselves,
as they are revealed in the process of vortex motion under
the influence of an external field. This explains the difference
between the three dependences obtained for different values
of the parameter f , and the absence of symmetry of these
dependences, when the vortex approaches the center of the
array and moves away from it.

B. Transitions between equilibrium configurations at different
exchange interaction

Stable positions of the vortex structure and the number
of possible stationary values of the magnetic moment of the
system depend, in particular, on the parameters of the exchange
interaction. With a relatively weak exchange interaction only
P = 0 configuration can occur and, with a strong exchange
interaction, P = 0, P ≈ N , or P ≈ N configurations occur.
Figure 14 shows the time dependence of the magnetic moment
of the system with parameter λ = 0.2,0.7,0.8 [curves 1–3 (a)]
and λ = 2.0 (b) at remagnetized field with f = 0.5 acting
in the direction of the side of the array (ψ = 0) for the
initial configuration with P = 0 (the center of the vortex is
located in the center of the array). In the case shown in
Fig. 14(a) the remagnetizing field was turned off once the
saturation of the magnetic moment occurred, i.e., at reaching
of the maximum value of P for a given f . At this, the first
two curves correspond to the maximum (for a given field)
displacement of the vortex center from the central position
and its return to the center of the array when the external
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FIG. 14. Time dependence of magnetic moment of the system
with the exchange parameter λ = 0.2,0.7,0.8 [curves 1–3 (a)], and
λ = 2.0 (b) at a field with f = 0.5, acting along the side of the array,
is the initial configuration with P = 0. The field was turned off at the
maximum value P (a) or at different moments of time (b). In the inset
the longitudinal configuration of the dipoles is presented.

field is turned off. In the case of curve 3, i.e., at λ = 0.8,
only one equilibrium configuration with a displaced vortex
center is possible. The curves in Fig. 14(b) correspond to
various time intervals of the influence of an external field.
The figure shows that at the exchange parameter λ = 2.0, the
configurations with a central location of the vortex structure
with orientation of the dipoles mainly along the side of the
array (see inset) and one displaced vortex configuration with a
small value P �= 0 (curves 1, 3, and 2 correspond respectively
to the transitions to these states) become stable ones. Figure 15
shows the time dependence of the magnetic moment of the
system with exchange parameter λ = 1.0,1.5 [(a),(b)] under
the influence of an external magnetic field with f = 0.5 and
the orientation angle ψ = 0 in the case of the initial central
vortex configuration, i.e., with P = 0. In the beginning the
magnetic field was turned off at different times, resulting in

FIG. 15. Transitions due to the planar magnetic field between the
different vortex configurations, characterized by the corresponding
values of the total magnetic moment; the curve 4(a) and the curve
5(b) correspond to the transition to the longitudinal equilibrium
configuration; exchange parameter λ = 1.0,1.5 (a),(b).

either the system returning to its initial state (curve 1), or to
the longitudinal configuration [curve 4 (a); curve 5 (b)], or to
one of the vortex configurations with a displaced center of the
vortex and P �= 0. When λ = 1.0, there are two equilibrium
configurations with a displaced center of the vortex (excluding
symmetric configuration), and with λ = 1.5 there are three
configurations. Next, taking the established configuration as
the initial one, an external magnetic field was turned on again
(in the same or in the opposite direction), which put the system
into another vortex configuration, i.e., a configuration with
another location of the vortex center. In the end, the field
was turned on which transitioned the system to the initial
vortex configuration with P = 0. It should be noted that the
latter process is not possible if a longitudinal (or diagonal)
equilibrium configuration is established in the system because
a planar homogeneous magnetic field cannot transition the
system into any of the vortex configurations. The examples in
curves 4(a) and 5(b) show how the influence of the magnetic
field with orientation angles ψ = 0 or ψ = π changes the
value of P of longitudinal configuration, but after turning off
the field, the configuration is restored. Figure 16 shows the
equilibrium vortex configurations 24 which correspond to the
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FIG. 16. Equilibrium configurations corresponding to the respec-
tive stationary values of the magnetic moment P (2–4) in Fig. 15(b).

respective stationary values of the magnetic moment of system
of P (2–4) in Fig. 15(b).

C. Minimal system with a controlled vortex configuration

The array 4 × 4 is a minimal system representing a
vortex configuration with a possibility to control the magnetic
moment and the implementation of its zero value. Figure 17
shows the time dependence of the magnetic moment of the
system under the influence of the external field of value
f = 1.2. In the case of solid curves, the initial configuration
is a vortex one 1 (P = 0), with the field oriented at an

FIG. 17. Transitions between the equilibrium configurations of
the system 4 × 4 under the influence of the field with f = 1.2 and
the orientation angle ψ = 3π/4 (solid curves), ψ = π (line 4), and
ψ = 0 (curve 5). Curves 1–3 correspond to different exposure time
field on the system.

angle of ψ = 3π/4. In the case of dashed curves the initial
configuration is a vortex configuration 2 (P �= 0), angle ψ = π

(curve 4), and ψ = 0 (curve 5). Curves 1–3 correspond to the
various lengths of the dipoles’ systems exposure to the field.
The figure shows that if the length of exposure to the field
is insufficient (or the field is weak), the system returns to its
initial state (curve 1). Otherwise, the system goes into a new
vortex state with nonzero magnetic moment (transition 2),
from which it can return to its previous state with P = 0
when changing the direction of the external field (transition 5).
When exposure to an external field is sufficiently long, the
system goes from any vortex configuration into a longitudinal
(transition 4) or diagonal (transition 3) configuration, from
which it can no longer be returned to the vortex configuration
by using a planar field influencing the whole array. As seen
in the previous figure in the array 4 × 4, with the exclusion
of the central vortex configuration, only vortex states with
one value of the total dipole moment (P ≈ 6) are established.
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FIG. 18. Switching of the magnetic moment of the system 4 × 4
under the influence of a magnetic field differently oriented.

There are four possible destinations of vector P along each
of the edges of the array depending on the orientation of the
vortex structure. This allows one to obtain a switch of the
magnetic moment with the possibility of reversible transition
to the state where P = 0. Figure 18 shows switching of the
magnetic moment of the system with the help of a variously
oriented external field. As shown in the figure, to switch the
magnetic moment P in the direction of ϕ = 0,±π/2,π the
orientation angle of the external field must be in the interval of
ϕ − π/4 < ψ < ϕ + π/4. In the case when the system goes
into a state with P = 0, the orientation angle of the field must
be −ϕ − π/6 � ψ � −ϕ + π/6 (i.e., the direction of the field
should be close to the direction opposite to the vector P). At
this the field value should be approximately half the value of
the field required to establish a new direction of a nonzero
magnetic moment of the system. So, for the establishment of
the state with P �= 0 or for rotation of a magnetic moment,
the field with f � 0.2 is sufficient. To return the system to a
central vortex state (P = 0) the value f � 0.1 of the field is

required, given that the exposure time of the field is sufficient
for both the first and the second transitions.

VI. CONCLUSION

(1) Investigation of square arrays of the dipoles showed
that in the case of a weak exchange interaction between
objects within the system, the establishment of equilibrium
configurations with a saddle orientation of the dipole moments
takes place, as well as the establishment of the configurations
in which the central areas are composed of the dipole moments
forming pairs of rows going in opposite directions. These
equilibrium states are similar to equilibrium states in dipole
systems without exchange interaction.

In the case of a large exchange interaction the only equi-
librium configuration is the one in which the dipole moments
are aligned predominantly along the diagonal of the array. At
an intermediate value of the exchange interaction, the systems
can establish both diagonal equilibrium configurations and
the configurations with orientation of the magnetic moments
mainly along the side of the array, as well as the configurations
with a vortex orientation. Vortex equilibrium states may differ
by location in the array structure of the vortex center and,
consequently, by the magnitude of the total magnetic moment
of the system.

When the vortex center is located in the center of an array
with an even number of dipoles, the total magnetic moment of
the system is equal to zero; at the displacement of the vortex to
the edge of an array its dipole moment increases. The greatest
magnetic moment for these equilibrium states is possible in
the case of a diagonal configuration.

(2) Consideration of the binding energy showed that the
most stable configuration is the one with a diagonal orientation
of the dipoles, and the least stable is the vortex configuration.
Using a planar magnetic field acting on the whole system,
transitions from a vortex configuration to a diagonal one or
to the configuration with orientation of the dipole moments
along the side of the system can be implemented, as well
as from the latter one to the diagonal configuration. In the
case of a diagonal configuration, the homogeneous planar
field can only cause remagnetization of the system changing
the orientation of the magnetic moment of the array while
preserving the diagonal structure. The transition from a
diagonal configuration to a vortex configuration or to a
configuration with the orientation along the side of the array
of dipoles (and from the latter to the vortex configuration) can
be realized with a magnetic field directed perpendicular to the
plane of the system and acting only on the part of the dipoles in
the array. At the same time the planar field created by the rest of
the dipoles of the array is changed in a certain way. As a result,
the system proceeds to another equilibrium configuration, after
switching off the external field. There is also a possibility
of transitions within the equilibrium configurations, changing
both the magnitude and direction of the total magnetic moment
of the system, under the influence of planar fields, which was
shown on one dipole of array.

In the case of a vortex configuration under the influence of
a magnetic plane field on the system, the motion of the vortex
structures center is carried out in the direction perpendicular to
the direction of the external field. When the magnetic field is
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turned off, the vortex center approaches one of the equilibrium
positions, and the relevant value of the magnetic moment of
the system is established.

(3) The number of equilibrium states of a vortex config-
uration, and the resulting number of possible values of the
total magnetic moment is determined by the parameters of
the system and, in particular, by the parameters of exchange
interaction. With a weak exchange interaction (for an array
10 × 10 of λ � 0.5) only the central vortex configuration (P)
is stable, and the displacement of the vortex center by an
external field and the consequent turning off of the field make
the vortex return to its initial central position. With a strong
exchange interaction (λ > 2.0) only diagonal configuration is
stable, when the dipoles are oriented along the diagonal lattice.
In other cases, as a rule, several vortex equilibrium states with
P �= 0 can take place (excluding symmetrical configurations
with the opposite direction of the magnetic moment of the
system).

Using an external field, a reversible transition between
different vortex configurations takes place, including the
central-oriented configuration with P = 0. Therefore, the
control of both magnitude and direction of the total magnetic
moment of the dipoles’ system are carried out.

(4) A minimal system, where the vortex states control the
total magnetic moment with the help of a plane magnetic
field influencing the entire array, is a 4 × 4 system. In this
array, apart from a center-oriented vortex structure with
zero magnetic moment, only four symmetric to each other
equilibrium configurations can occur and display the same
magnitude but a different direction of the total magnetic
moment. As a result, a transition of the systems’ magnetic
moment between its four positions takes place by using a
planar field the direction of which is included in one of the
quadrants of the plane of the array. Transition to the state of a
zero magnetic moment of dipoles is also possible.

These results are general and may apply to different systems
of objects with a dipole magnetic moment.
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D. Weiss, D. Pescia, M. R. Scheinfein, and C. H. Back, Phys.
Rev. B 71, 104415 (2005).

[15] R. Zivieri and F. Nizzoli, Phys. Rev. B 78, 064418 (2008).
[16] V. Kireev and B. Ivanov, JETP Lett. 94, 306 (2011).
[17] S. S. Sosin, L. A. Prozorova, P. Bonville, and M. E. Zhitomirsky,

Phys. Rev. B 79, 014419 (2009).
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