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We study the interplay between the Kitaev and Ising interactions on a ladder geometry. We show that the ground
state of the Kitaev ladder is a symmetry-protected topological (SPT) phase, which is protected by a Z2 × Z2

symmetry. The nature of the SPT phase is confirmed by degeneracy of the entanglement spectrum. Nonlocal order
parameters that indirectly measure phase factors (inequivalent projective representations of the symmetries) of the
Z2 × Z2 symmetry explicitly show the protection of the SPT phase under the Z2 × Z2 symmetry. We derive the
effective theory to describe the topological phase transition on the ladder geometry, which is given by a transverse
field Ising model with/without next-nearest-neighbor coupling based on the primary Ising configurations. The
ladder has three phases, namely, the Kitaev SPT, symmetry-broken ferro/antiferromagnetic order, and classical
spin liquid. The nonzero quantum critical point and its corresponding central charge are provided by the effective
theory, which are in full agreement with the numerical results, i.e., the divergence of entanglement entropy at
the critical point and change of the entanglement spectrum degeneracy. The central charge of the critical points
are either c = 1 or c = 2, with the magnetization and correlation exponents being 1/4 and 1/2, respectively. The
transition from the classical spin-liquid phase of the frustrated Ising ladder to the Kitaev SPT phase is mediated
by a floating phase, which shows strong finite entanglement scaling.
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I. INTRODUCTION

Topologically ordered quantum many-body systems have
received a great deal of interest due to rich insights emerged
from their nature, namely, lack of any local order parameter
to characterize them [1,2], i.e., failure of symmetry-breaking
paradigm, exhibiting long-range entanglement [3], robustness
against local perturbations [4,5], nontrivial anyon statistics
[6,7], and so on. Topological quantum codes including
color codes [8–11] have a universal feature characterized by
topological entanglement entropy [12,13] manifesting their
topological nature. Emergent fermions and anyons [14–16] are
typical quasiparticle excitations above a topological ground
state that influence the finite temperature properties with
nontrivial limiting features [17] and bound states [18]. The
stability of the topological ordered state against the thermal,
external magnetic field [19] and other interactions [20] (like
Ising [21]) is an interesting issue, which could lead to the
phase transition from a topological state. For instance, an
in-plane magnetic field on the toric code leads to both first-
and second-order quantum phase transition [22], while a
perpendicular magnetic field gives a first-order phase transition
at the self-dual point of the effective quantum compass model
[23]. The two-dimensional (2D) color code shows similar
behavior in the presence of a magnetic field [24] and Ising
interactions [25]. The nature of such a phase transition and its
corresponding quantum critical properties are debating issues
inherited from the topological properties of the model.

Recently, many efforts, inspired by the concepts of quantum
information theory, have been made to provide a com-
prehensive understanding of topological order [26–28]. So
far, it is believed that there exist three different kinds of
topological orders, namely: symmetry-protected topological
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(SPT) order, long-range entangled states with topological
order, and symmetry-enriched topological order. The SPT
orders or SPT phases are of a short-range entanglement
type and totally characterized by some symmetries. Theses
symmetries protect the SPT phase: The SPT phase is stable
as far as the symmetries are being preserved. The mechanism
that determines which symmetries protect the phase is called
symmetry fractionalization. In other words, symmetry frac-
tionalization provides a recipe, based on matrix-product state
(MPS) representation of the ground state, to determine a set
of unique labels for the SPT phase—for more explanation, see
Ref. [29]. Symmetry fractionalization theory in one dimension
is complete and thoroughly characterizes the SPT phases.
In higher dimensions, it is believed that symmetry fraction-
alization, symmetry breaking, and long-range entanglement
mechanisms are capable of characterizing the aforementioned
orders. However, to get a complete understanding, further
studies are currently active and demanding.

Characterization of topological order relies on appropriate
nonlocal order parameters. In one dimension, the entanglement
spectrum distinguishes SPT orders from trivial ones [26], while
nonlocal order parameters based on inequivalent projective
representations [30] identify different SPT orders [31]. In
two dimensions, even so, there is not a unique and faithful
tool to classify them but topological entanglement entropy
[13] is assumed as the most common tool to characterize
intrinsic topological phases. The case of symmetry-enriched
topological orders is more complicated as both orders, i.e., SPT
and intrinsic topological orders, simultaneously exist—some
proposed nonlocal measures might hopefully identify them
[32,33]. Understanding a quantum phase transition (QPT)
from a topological phase to a trivial phase requires less
effort than the classification of phases, since local-order
parameters according to the symmetry-breaking mechanism
can identify the quantum phase transition. Novel quantum

1098-0121/2015/91(2)/024415(14) 024415-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.91.024415


A. LANGARI, A. MOHAMMAD-AGHAEI, AND R. HAGHSHENAS PHYSICAL REVIEW B 91, 024415 (2015)

phase transitions, which rarely have been studied, happen
when there are two distinct topological phases.

In this article, we consider the Kitaev toric code model
accompanied by different Ising interactions, namely, rhombic-
Ising (RI), leg-Ising (LI), and rhombic-leg-Ising (RLI) inter-
actions, on ladder geometry. The nonfrustrated RI case of
ladder geometry has been studied recently in Ref. [21]. Here,
we consider all possible Ising interactions, which include the
frustrated model on the ladder structure. The Kitaev-toric code
[5] is a well-known model showing topological order, while
the Ising model with respect to the geometry of lattice and
the type of interactions can show symmetry-broken phases
and spin-liquid phases [34]. The latter is due to the frustration
of antiferromagnetic (AF) interactions of the Ising model (AF
RLI interactions), which leads to a rich phase diagram [35–43].
It should be mentioned that the Kitaev-toric code discussed
here is different from the Kitaev-honeycomb model [44] which
has been studied on both ladder and 2D structures [45–47].

We show that the ground state of the Kitaev ladder is an SPT
phase by introducing the responsible Z2 × Z2 symmetries,
which is confirmed by numerical results on the corresponding
nontrivial phase factor [31]—see Appendix B. To investigate
the competition between the Kitaev SPT phase and an Ising
phase we employ two general approaches: an effective theory,
which comes from an exact map of the original model
to an effective one, and the infinite system density-matrix-
renormalization-group (iDMRG) algorithm [48–50] based
on infinite matrix product state (iMPS) representation. On
the ladder geometry, the Kitaev plus Ising interactions are
mapped to decoupled chains of the nearest-neighbor (NN)
with/without next-nearest-neighbor (NNN) transverse field
Ising (TFI) model. The effective theory and numerical iDMRG
computations show a quantum phase transition at finite
nonzero coupling from the Kitaev SPT phase to the broken
symmetry antiferro/ferromagnetic phase except in the case of
AF RLI interactions. The existence of quantum critical point
(QCP) and its location is proved by numerical simulation that
leads to the divergence of the entanglement entropy, change
in the degeneracy of the entanglement spectrum, change of
phase factor, and the nonzero magnetic order parameter. We
have also computed the corresponding central charges, which
is in agreement with the proposed effective theory, namely,
c = 2 for Kitaev-LI, c = 1 for both Kitaev-RI and Kitaev-RLI
QCPs. The critical exponents of magnetization and correlation
function are β = 1/4 and η = 1/2, correspondingly for all
types of nonfrustrated ladders. Concerning the QCP, our result
for Kitaev-RI interactions is in contrast to Ref. [21], which
concludes zero Ising coupling strength, while we observe a
finite nonzero Ising coupling (Jz = Jv; see Fig. 6). Moreover,
the whole study for the LI and RLI cases are new investigations
of this manuscript that include the frustrated case. The case of
AF RLI coupling makes a competition between the Kitaev SPT
phase and a classical spin-liquid one, which can be explained
in terms of the frustrated NNN TFI effective theory. Our
numerical results for the AF RLI case are in favor of the
existence of a floating phase—which has algebraic decaying
correlations—between the classical spin-liquid and Kitaev
SPT phases. This is in agreement with the phase diagram
proposed for the (effective) frustrated NNN TFI chain in Refs.
[41,42].

The remainder of this paper is organized as follows. In
Sec. II we first briefly review the Kitaev toric code on ladder
and introduce the Z2 × Z2 symmetry, which protects the
degeneracy of the entanglement spectrum. We then define
different types of Ising interactions in Sec. III and derive the
effective theory for the Kitaev-Ising interplay. We present our
numerical results in the same section. Finally in Sec. IV, we
end up with a summary and discussion. The article is ac-
companied by two appendixes, which describe the underlying
numerical iDMRG (iMPS) approach.

II. THE SPT PHASE OF KITAEV LADDER

The Kitaev ladder is defined on the ladder geometry as
shown in Fig. 1, where the spins sit on the bonds of the two-leg
ladder. The Kitaev Hamiltonian (HK) is composed of two
terms, vertex (Av) and plaquette (Bp) interactions,

HK = −Jv

∑
⊥,�

Av − Jp

∑
�

Bp,

Av ≡
∏

i

σ x
i , i ∈⊥ or � ; Jv > 0, (1)

Bp ≡
∏
j

σ z
j , j ∈ � ; Jp > 0,

where σα
j is the α-component Pauli matrix at position j .

The model is exactly solvable [51], which has twofold
topologically degenerate ground states. Let |�〉 ≡ ⊗i |+〉i ,
where |+〉i is the eigenstate of σx

i ; a ground state of the Kitaev
ladder is given by

|ψK〉 = 1

2N

∏
p

(1 + Bp)|�〉, (2)

where N is the total number of rungs on the ladder. And |ψ ′
K 〉 =

Wz|ψK〉 is the other ground state in which Wz = ∏
� σ z

� , where
� runs only on one of the legs of the ladder. The ground state is
understood as an equally weighted superposition of the states,
which are obtained by the operation of any homologically
trivial loop of σ z operators on |�〉. The excited states can be
constructed by the operation of open strings of σ z operators
on |�〉. A complete characterization of the spectrum shows
that the excited states are at least twofold degenerate, which
could be more except the highest energy level that has only a
double degeneracy [51]. Moreover, the ground-state entropy
of the model is equal to ln(2).

The Kitaev ladder (HK) has (i) twofold degenerate ground
state which cannot be distinguished by a local-order parameter
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FIG. 1. (Color online) Two-leg Kitaev ladder, where the solid
blue circles show the position of real spins. The triangles show
the vertex term and rhombuses represent the plaquette term in the
Hamiltonian. The dashed red rectangle shows the unit cell of the
model.
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of the Landau-Ginzburg symmetry-breaking paradigm, (ii)
a finite-energy gap between the ground state and the first
excited one, and (iii) anyonic excitations of integer magnetic
and electric charges with Abelian statistics [51]. Although the
quasi-one-dimensional Kitaev ladder does not bear topological
characters like Wilson loops and topological entanglement
entropy its ground state is classified to be an SPT phase. We
will show explicitly that the ground state of the Kitaev ladder
is protected by a Z2 × Z2 symmetry. For each unit cell of the
two-leg ladder, Fig. 1, the following operator is defined:

	abc(j ) = σa
1 (j )σb

2 (j )σ c
3 (j ), a,b,c = I,x,y,z, (3)

where σ I
i (j ) is the identity operator at position i of unit cell

j . It is straightforward to show that HK is invariant under the
operation of the following two operators:

X =
∏
j

	xxx(j ) and Z =
∏
j

	Izz(j ), (4)

where j runs over all unit cells. Moreover, [X ,Bp] = 0,
which states that the ground state of the Kitaev ladder is
invariant under X . Similarly, it can be shown that the ground
state of the Kitaev ladder is invariant under Z , since the
product of Z by

∏
p(1 + Bp) is equivalent to the operation

of
∏

p(1 + Bp). Hence, the Kitaev-ladder ground state is
invariant under the mutual symmetry operation X × Z , which
defines the mentionedZ2 × Z2 symmetry. The local symmetry
operation 	Izz,	xxx , are two members of the group G =
{	Izz,	xxx, − 	xyy,	III }. According to Ref. [31], we exploit
this property and define an order parameterO, which can serve
to detect which projective representation holds for the ground
state in terms of its iMPS representation. The order parameter
O is defined by

O = 1

χ
Tr(UgUg′U †

gU
†
g′), g ∈ G, (5)

where Ug comes from the transformation of the iMPS repre-
sentation of the ground state (�j ) under the symmetry X × Z ,
i.e., �j → U

†
g�jUg , where g ∈ G and χ is the dimension of

matrices in iMPS (for details see Appendix B). The SPT, trivial,
and symmetry-breaking phases are, respectively, characterized
by O = {−1,1,0}. Hereafter, O is called the “phase factor
order parameter.”

These kind of order parameters—as discussed in Refs.
[31,52]—is generally realized by a string of unitary operations
accompanied by some permutations. To show explicitly the
form of Eq. (5) in terms of a nonlocal order parameter, we
define εm(ψ) as follows:

Xm = (	xxx)⊗m,Zm = (	Izz)⊗m,Im = (	III )⊗m,

εm(ψ) : = 〈ψ |(Zm ⊗ Zm ⊗ Im)F13(Xm ⊗ Xm ⊗ Im)|ψ〉,
where F13 swaps the first and third pack of sites, i.e.,

F13 : (Xm ⊗ Xm ⊗ Im) −→ (Im ⊗ Xm ⊗ Xm).

As shown in Ref. [52]— Cf. Fig. 2 and Eq. (2) of Ref. [52]—
when m increases, εm(ψ) exponentially converges to O.
Therefore, order parameter O could be calculated directly
from an explicit expectation value, i.e., εm(ψ), without using
symmetric transformation of iMPS representation. We find
numerically that the Kitaev phase reveals O = −1, (see Fig.

10) which justifies that it is being protected by X × Z sym-
metries. Moreover, the entanglement spectrum is degenerate in
the Kitaev phase (see Fig. 5), which confirms that the ground
state of the Kitaev ladder is an SPT phase.

III. KITAEV-ISING LADDER

The Ising term, which is composed of two-body interac-
tions, competes with the SPT character of the pure Kitaev
ground state on the ladder. The Ising interaction Jzσ

z
i σ z

j

(which is defined on the nearest-neighbor spins of ladder)
does not commute with the vertex terms (Av) of HK, hence,
it establishes a competition between a symmetry-protected
topological phase and a classical state. The classical state,
which is a result of strong Ising interaction could be realized in
different forms according to the pattern of Ising interactions.
We classify three types of Ising interactions on the two-leg
ladder in Fig. 2: (a) Rhombic-Ising interactions, where the
Ising terms are defined only between the nearest neighbor spins
sitting on each rhombus [see Fig. 2(a)]. The corresponding
Ising Hamiltonian (HR) is defined in Eq. (8). (b) Leg-Ising
interactions, which are defined between nearest-neighbor spins
on the legs of the ladder as shown in Fig. 2(b) and given
by HL in Eq. (22). (c) Rhombic-leg-Ising interactions that
are composed of nearest-neighbor interaction between any
pair of spins on the two-leg ladder, which is shown in
Fig. 2(c) and is represented by the sum of two previous
cases, i.e.,HRL = HR + HL. We consider both ferromagnetic
(Jz > 0) and antiferromagnetic (Jz < 0) coupling for the Ising
terms. The latter leads to a rich structure of the ground-state
phase diagram as a result of frustration originated from the
antiferromagentic interactions on the bonds of triangles (see
Fig. 3).

A two−body Ising interaction

(a)

(b)

(c)

FIG. 2. (Color online) Ising interactions that would be added to
the Kitaev ladder. (a) Rhombic-Ising (RI) interactions (HR), (b)
leg-Ising (LI) interactions (HL), and (c) rhombic-leg-Ising (RLI)
interactions (HRL). A two-body Ising interaction σ z

i σ z
j is denoted

by ←→ between the corresponding spins.
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FIG. 3. (Color online) (a) The Kitaev ladder, where each vertex
operator (triangle) is denoted as an effective spin (τ z

μ) labeled by μ.
(b) The original spins are relabeled by the triangle index (μ) and its
position (L, R, C) on it.

To investigate the competition between the Kitaev and Ising
interactions, we consider a Hamiltonian, which is composed of
the Kitaev terms in addition to one form of Ising interactions
defined in Fig. 2, i.e.,

H = HK + HIsing, (6)

where HIsing is either (A) HR, or (B) HL or (C) HRL. The
Hamiltonian is composed of three types of terms, i.e., the
vertex (Av), plaquette (Bp), and Ising (σ z

i σ z
j ) terms. The

plaquette term commutes with both the vertex and Ising ones,
[Bp,Av] = 0,[Bp,σ z

i σ z
j ] = 0, and consequently does not play

any role in the competition for quantum phase transition.
However, the plaquette term adds a constant term to the
underlying Hamiltonian, which is being fixed to its minimum
value for the ground-state properties, i.e., Bp = +1.

A. Rhombic-Ising interactions

In this subsection, we consider the competition between
Kitaev and rhombic-Ising interactions that is shown in
Fig. 2(a) and is given by the following Hamiltonian,

HKR = HK + HR = −Jv

∑
v

Av + HR, (7)

where HR is given by

HR = −Jz

∑
μ

(
σ z

μ,Cσ z
μ,R + σ z

μ,Cσ z
μ,L

)
. (8)

The spins are labeled in terms of the notation defined in
Fig. 3. In this representation, the spin of the original lattice
carries two indices, the label of a triangle (μ) and a label,
which sticks to the right (R), left (L) or center (C) of a triangle,
as can be seen in Fig. 3(b). Accordingly, a vertex operator is
given by

Aμ = σx
μ,Lσ x

μ,Rσ x
μ,C. (9)

In a qualitative description, we get the Kitaev-SPT phase for
Jz → 0, and on the other extreme limit a classical ferromag-
netic order for Jv → 0 and Jz > 0, which suggests having a
quantum phase transition between the mentioned limits. First,
we introduce a transformation that gives the effective theory,
which illustrates the quantum phase transition of the Kitaev
model in the presence of rhombic-Ising interactions. Then,
we examine our findings with numerical computations and
elaborate the quantum critical properties of the model.

The building block of the effective theory is a triangle that
is denoted by a vertex operator. To visualize this picture,
the ladder is labeled by its triangles corresponding to each
vertex operator as shown in Fig. 3(a). We consider the x

representation as the basis of our study. In this representation,
a vertex operator (Aμ) has two values either +1 or −1, which
is denoted by the associated quasispin (τ z

μ), i.e.,

Aμ −→ τ z
μ. (10)

It concludes that the effect of the Kitaev Hamiltonian on the
quasispin representation is like a magnetic field,

Jv

∑
v

Av −→ Jv

∑
μ

τ z
μ. (11)

The effect of a single σ z
μ,L on a quasispin (a triangle) is to flip

its state, which is denoted by τ x
μ in the quasispin representation,

σ z
μ,m −→ τ x

μ, m = L,R,C. (12)

The rhombic-Ising terms are two-body spin interactions,
which act only along the edges of rhombic shapes in Fig. 3(a). It
is important to note that an Ising term, which is along an edge of
the rhombus does not change the state of a quasispin (a triangle)
that shares the mentioned edge. For instance, σ z

μ,Cσ z
μ,R flips

two times the state of the triangle denoted by μ, which leads
to its original state [see Figs. 3(b) and 4]. However, an Ising
term, which shares a single spin at the corner of a triangle, flips
the associated state of quasispin. In other words, the operation
of σ z

μ,Cσ z
μ,R flips the state of quasispins (triangles) denoted

by μ − 1 and μ + 1 (as shown in Fig. 4). Therefore, each
Ising term, like σ z

μ,Cσ z
μ,R is represented by the product of two

x-component quasispins acting as τ x
μ−1τ

x
μ+1,

σ z
μ,Cσ z

μ,R −→ τ x
μ−1τ

x
μ+1. (13)

µ−4

µ−5

µ−3

µ−2 µ−1

µ

µ+2

µ+1

µ+3

µ+4

µ

µ+2 µ+2

µ

µ−1

;

µ−1

µ+1µ+1

µ−2 µ−1

µ

µ+2

µ+1

µ+3

µ+4µ−3

C C

L R

L LR R

L R

Jz

Jz
2Jz Jz

Jz 2Jz

FIG. 4. (Color online) Effective Hamiltonian for the Kitaev lad-
der with rhombic-Ising interactions. A triangle is considered as a
quasispin (τ ), which is defined by a vertex operator acting on the
corners of a triangle [Eq. (10)]. The Ising interactions, which act only
along the edge of rhombuses [see also Fig. 2(a)] changes the state of
quasispins (triangles) that are against each other, which is considered
as the effective interaction between those quasispins. A quasispin is
represented by an oval. Hence, the effective Hamiltonian is composed
of two decoupled chains of the transverse field Ising model acting on
the quasispin Hilbert space [Eq. (14)].
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The Ising interactions on the edges of a rhombus create
effective interactions between the quasispins corresponding
to the opposite edges. It leads to the effective interaction,
2Jzτ

x
μ−1τ

x
μ+1, between two odd-labeled or two even-labeled

quasispins, independently (see Fig. 4). Thus, the effective
Hamiltonian (HR

eff), which describes the Kitaev Hamiltonian
in the presence of rhombic-Ising interactions, HK + HR, is
given by two decoupled chains of the transverse field Ising
(TFI) model,

HKR
eff = −2Jz

′∑
μ

τx
μτ x

μ+2 − Jv

′∑
μ

τ z
μ, μ = odd or even,

(14)
where

∑′
μ emphasizes the odd and even quasispins are

decoupled. Accordingly, a quantum phase transition takes
place exactly at 2Jz = Jv , which is known from the exact
solution of the spin-1/2 TFI chain. Our result is in contrast
to J c

z = 0 presented in Ref. [21]. In Ref. [21] the Kitaev
ladder with the rhombic-Ising interaction is mapped to a
spin-1/2 XY chain using a nonlocal transformation. Their
mapping and the effective XY model are correct; however, the
conclusion of zero Ising critical coupling (J c

z = 0) overlooks
the true QCP. The exactly solvable spin-1/2 XY chain [53] is
defined by the Hamiltonian HXY = Jx

∑
i(s

x
i sx

i+1 + γ s
y

i s
y

i+1),
where γ ≡ Jy/Jx . For a nonzero value of γ , the XY chain is
gapped except at γ = 1, where the gap vanishes as |γ − 1|
at momentum q = π/2. The elementary excitations at the
(gapless) critical point are spinons [54]. Moreover, the second
derivative of ground-state energy (E0) diverges as

d2E0

dγ 2
∼ |γ − 1|−3 at q = π

2
, (15)

which justifies the quantum phase transition at the isotropic
point, γ = 1, that corresponds to our result J c

z = Jv/2.
To gain more insights on the structure of phases and the

nature of quantum phase transition, we obtain, using numerical
computations, the ground state of the Kitaev ladder in the
presence of rhombic-Ising terms using an implementation of
the iDMRG algorithm (see Appendix A). The code is based
on iMPS representation, where χ denotes the dimension of
matrices in this formalism. The entanglement spectrum of
the ground state is defined in terms of the eigenvalues of the
reduced density matrix. Let ρ be the ground-state reduced
density matrix, which is obtained by tracing over half of the
ladder from the middle to either the left or right end of the
ladder,

ρ = trL/2(|ψ0〉〈ψ0|), (16)

where |ψ0〉 is the ground state of the Kitaev ladder with Ising
interactions. Let λi be the eigenvalues of ρ; the entanglement
spectrum (ES) is defined by εi = − ln(λi). We have plotted the
entanglement spectrum versus Jz of the Kitaev ladder in the
presence of rhombic-Ising interactions in Fig. 5, which exhibits
a change of degeneracy at Jz = 0.5. We set Jv = 1 as the scale
of energy in all plots and results unless it appears explicitly.
The spectrum has even degeneracy for 0 � Jz < 0.5, which
is a clear signature for the SPT character of the Kitaev phase,
while it has mixed degeneracy for Jz > 0.5 in the (trivial)
ferromagnetic product state. The change of degeneracy of

0.05 0.20 0.35 0.50 0.65 0.80 0.95
Jz

0

1

2

3

4

5

6

7

8

E
S

FIG. 5. (Color online) Entanglement spectrum (ES) versus Jz for
the ground state of HK + HR. The lowest level is doubly degenerate
for 0 � Jz < 0.5, which is a signature of SPT character, while it
is nondegenerate for Jz > 0.5 in the (trivial) ferromagnetic product
state. At the quantum critical point Jz = 0.5, the spectrum becomes
dispersed over the entire range of eigenvalues, which is a signature
of the critical point.

the entanglement spectrum at Jz = 0.5 is an indication of
the quantum phase transition, which is accompanied by a
qualitative change in the ground state.

The von-Neumann (entanglement) entropy (SE) is defined
in terms of the eigenvalues of ρ,

SE = −
∑

i

λi ln(λi). (17)

We have plotted SE versus Jz in Fig. 6 for different χ =
8,16,32,64. The entropy shows a divergent behavior only at
Jz = 0.5, which justifies the quantum phase transition. As
shown in Fig. 6, SE asymptotically reaches the value of ln(2)
for the pure Kitaev ladder (Jz = 0), which is the signature

0.00 0.25 0.50 0.75 1.00
Jz

1

2

S
E
/

lo
g

(2
)

χ = 8

χ = 16

χ = 32

χ = 64

FIG. 6. (Color online) von-Neumann entropy (SE) versus Jz for
Kitaev plus rhombic-Ising interactions. The divergent behavior of
SE at Jz = 0.5 is a clear signature of quantum phase transition. SE

reaches ln(2) asymptotically for the pure Kitaev ladder (Jz = 0).
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1.0

σ
x
,σ
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σx

σz, χ = 8

σz, χ = 16
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FIG. 7. (Color online) Magnetic order parameters versus Jz for
Kitaev plus RI interactions. The ferromagnetic order parameter 〈σz〉
becomes nonzero for Jz � 0.5 justifying the quantum phase transition
to the symmetry-broken state. The inset shows the scaling of 〈σz〉 ∼
(J − 0.5)(0.24±0.01), where the horizontal axis is in log scale, close to
the critical point.

of its SPT character (the double degeneracy of ES), while it
vanishes in the extreme Ising limit (Jz → ∞) representing a
product state of up (or down) spins in a ferromagnetic state.

We have also computed the ordinary magnetic order
parameter on both sides of the quantum critical point. We
have plotted in Fig. 7 the magnetic order parameters in
the x and z directions, 〈σx〉 and 〈σz〉, respectively. 〈σx〉 is
always zero for the whole range of Jz, which shows no
magnetic order in the x direction. However, 〈σz〉 becomes
nonzero at Jz = 0.5 indicating the magnetic order of the
ferromagnetic state. Approaching the quantum critical point
from the ferromagnetic phase (Jz > 0.5) shows 〈σz〉 to vanish
like (J − 0.5)(0.24±0.01) manifesting a second-order phase
transition with exponent β = 0.24 ± 0.01 (the inset of Fig. 7),
in agreement with the effective theory described in Eq. (14).
The effective theory, for the Kitaev ladder with rhombic-Ising
interactions, is expressed in terms of two decoupled TFI
chains, which predicts the central charge for the corresponding
QPT at Jz = 0.5 is being twice the central charge of the TFI
chain, i.e., c = 2 × 0.5 = 1. Similar argument shows that the
magnetization exponent, which comes out of the effective
theory, is β = 1/4, which is elaborated in the following.

The ferromagnetic order parameter 〈σz〉 is

〈σz〉 = 1

3N

N∑
μ=1

〈ψ0|
(
σ z

μ,C + σ z
μ,R + σ z

μ,L

)|ψ0〉. (18)

The effect of σ z
μ,C on the ground state of the ladder (|ψ0〉) is

equivalent to flipping the state of the quasispins denoted by the
two triangles, which share σ z

μ,C at their common corner (see
Fig. 3). It is shown by

σ z
μ,C |ψ0〉 = τ x

μ

∣∣ϕ(even)
0

〉 ⊗ τ x
μ−1

∣∣ϕ(odd)
0

〉
, (19)

where |ϕ(even)
0 〉 (|ϕ(odd)

0 〉) represents the ground state of TFI
effective theory for the even (odd) decoupled chain. Hence,
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C(r) ∝ 1/rη, η ∼= 0.5

η = 0.50 ± 0.01

FIG. 8. (Color online) Log-log plot of correlation function C(r)
versus r for the Kitaev-rhombic-Ising ladder at the QCP. The (green)
dotted line shows the best fit of r (−0.5), which states η = 0.50 ± 0.01.
The correlation length is ξ � 400 for χ = 150, which determines the
reliable behavior for r < ξ , i.e., log(r) � 5.99.

we conclude that

〈σz〉 = (〈τ x〉TFI)
2 = ∣∣Jz − J c

z

∣∣ 1
4 , (20)

which leads to β = 1/4 as confirmed numerically in the inset
of Fig. 7. A similar calculation gives the exponent of the
algebraic decay of correlation functions at the QCP,

C(r)|Jz=J c
z

= 〈
σ z

1 (i)σ z
1 (i + r)

〉 ∼ 1

rη
, η = 1

2
, (21)

where σ z
1 (i) is defined in a unit cell of Fig. 1. This is

in agreement with the numerical computation of correlation
function of the Kitaev RI ladder performed at Jz = J c

z = 0.5
in Fig. 8, where the numerical exponent is η = 0.50 ± 0.01.
It should be noticed that both β and η exponents are twice
the corresponding one of the TFI chain. It means that the
decoupled chains of the effective theory contribute to the
quantum critical properties of the original ladder. In other
words, although the effective TFI chains are decoupled they
are not independent.

Moreover, we have numerically calculated the central
charge at the critical point Jz = 0.5, which leads to c =
1.01 ± 0.01 as shown in Fig. 9(a). The central charge is
calculated within finite-entanglement scaling introduced in
Refs. [55–57]. In this approach, the scaling of SE with the
correlation length (ξ ) would give a fair approximation of
the central charge (see Appendix A). The numerical result
confirms that the effective theory truly captures the critical
properties of the original model.

We have plotted the phase factor order parameter O versus
Jz in Fig. 10. It shows that for small values of Jz < J c

z , the
model is in the SPT phase of the Kitaev ladder, which is
justified by O = −1. More specifically, Fig. 10(a) shows that
for Jz < 0.5 the model represents an SPT phase, while it shows
a symmetry-broken trivial phase (O = 0) for Jz > 0.5 via a
quantum phase transition. The symmetry-broken phase does
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FIG. 9. (Color online) SE versus log(ξ ), which gives the central
charge of the Kitaev ladder in addition to (a) RI, (b) LI, and (c)
RLI interactions according to the finite entanglement scaling (see
Appendix A and Refs. [55–57]).

not respect the symmetry, which gives the largest eigenvalue
of the transfer matrix to be less than 1, leading to O = 0.

Almost the whole discussion of the ferromagnetic rhombic-
Ising interaction is also valid for the antiferromagnetic Ising
interaction. In other words, we can simply consider a mirror
image of all Figs. 5, 6, 7, and 10 with respect to Jz = 0 to get
the antiferromagnetic regime. A better understanding can be
achieved by considering a π rotation around the x axis for the
spins sitting on the rungs of the ladder and Jz → −Jz, which
leaves the whole Hamiltonian invariant.

B. Leg-Ising interactions

The Ising terms may be considered only between the spins
on the legs of the ladder, without any inter-leg interaction;
see Fig. 2. Therefore, the Ising interactions would be between
spins labeled L and R, namely, σ z

μ,Rσ z
μ,L, which is given by
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0

O
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0
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0.00 0.25 0.50
α

−1

0
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(c)

FIG. 10. (Color online) Phase factor order parameter for the
ferromagnetic Kitaev ladder in the presence of (a) RI, (b) LI, and
(c) RLI interactions.
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µ+3µ−5

: Original spin : Quasi−spin : Ising interaction 

Jz

FIG. 11. (Color online) Effective Hamiltonian for the Kitaev
ladder with leg-Ising interactions. An Ising interacting along the leg
of the original ladder is shown with ←→, which acts on the original
spins. Different colors of ←→ lead to effective interactions between
quasispins, represented by an oval of the same color. Accordingly,
the effective Hamiltonian is equivalent to four decoupled TFI chains
acting on quasispins of different colors, denoted by tick-colored lines.

the following Hamiltonian:

HL = −Jz

∑
μ

σ z
μ,Lσ z

μ,R. (22)

We explain the effect of σ z
μ,Rσ z

μ,L on quasispins. The quasispin
associated with μ is not changed by this Ising term as it
flips two original spins, which leaves the product of spins on
the triangle (quasispin) unchanged. However, the quasispins
labeled μ − 3 and μ + 1 are being flipped (see Fig. 11), which
initiates the following correspondence in terms of quasispin
operators,

σ z
μ,Rσ z

μ,L −→ τ x
μ−3τ

x
μ+1. (23)

In accordance with Eq. (23), the Ising interactions along the
legs are responsible for the interactions between the quasispins
labeled mod(4, n), independently, where n = 0, 1, 2, 3.
Therefore, the effective Hamiltonian is described by four
decoupled TFI chains, namely,

HKL
eff = −Jz

′′∑
μ

τx
μτ x

μ+4 − Jv

′′∑
μ

τ z
μ, (24)

where
∑′′

μ indicates four decoupled chains as shown in
Fig. 11. The effective model shows a quantum phase transition
at Jz = Jv .

The quantum phase transition at Jz = 1 (for Jv = 1)
is justified by von-Neumann entropy versus Jz plotted in
Fig. 12. For the small Ising coupling (Jz → 0) SE is equal
to ln(2) confirming the SPT phase of the pure Kitaev ladder.
The entropy rises up and becomes divergent at Jz = 1, which
is the signature of the quantum phase transition. Increasing
the value of Jz > 1 leads to a ferromagnetic phase for the
original spins ordered in the z direction and mediated by the
Ising interactions along the legs of the ladder. The factorized
ferromagnetic state gives a zero value for SE as is shown in
Fig. 12 for the strong Ising coupling (Jz → ∞).

Another indication of the quantum phase transition is found
in the structure of the entanglement spectrum and especially
the degeneracy of levels. The degeneracy of the entanglement
spectrum is even for Jz < 1 while it has mixed degeneracy
for Jz > 1 (not shown here). The type of spectrum is similar
to Fig. 5 except the change of degeneracy, which occurs at
Jz = 1. The even degeneracy for Jz < 1 is a signature of the
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FIG. 12. (Color online) von-Neumann entropy versus Jz for the
Kitaev ladder with leg-Ising interactions. The entropy diverges
exactly at Jz = 1 confirmed by the effective theory (HKL

eff ).

Kitaev SPT phase, which is verified by O = −1 in Fig. 10(b).
The phase factor order parameter (O) jumps to zero for Jz > 1.

Our numerical results show that the quantum critical point
between Kitaev SPT and the ferromagnetic leg-Ising phase
is described by the central charge c = 2.01 ± 0.03 as shown
in Fig. 9(b). This is in agreement with the effective theory
obtained in Eq. (24), which shows four decoupled TFI chains
that give c = 4 × 0.5 = 2.

The phase diagram of the Kitaev ladder with the antifer-
romagnetic leg-Ising interaction is the mirror image of the
ferromagentic phase diagram with respect to Jz = 0. In fact,
the full Hamiltonian is invariant under the transformation
Jz → −Jz and a π rotation around the x axis on the even
(or odd) spins on the legs of the ladder.

C. Rhombic-leg-Ising interactions

Here, we consider the Ising interactions along both the legs
and the rhombic plaquettes [shown in Fig. 2(c)] that leads to a
very interesting phase diagram, where the full Hamiltonian is
given by

HKRL = (1 − |α|)HK + α(HR + HL), |α| � 1. (25)

Here, we introduce α to sweep between the extreme limits
of the Kitaev interaction for α = 0 and the Ising limit
for |α| = 1. α > 0 corresponds to the ferromagnetic Ising
interactions, while α < 0 represents the antiferromagnetic
ones. The ground-state phase diagram can be understood
in terms of competition between the nearest- and next-
nearest neighbor interactions, which come out of the effective
theory. The antiferromagnetic Ising interactions have specific
features, where frustration hinders simultaneous minimization
of energy according to a classical antiferromagnetic state.
The effective theory is simply obtained by incorporating
the representation of rhombic-Ising (Fig. 4) and leg-Ising
(Fig. 11) interactions in the quasispin representations. The
Ising terms on rhombuses lead to Ising interactions between
even (odd) quasispins, while the leg terms establish interac-
tions between quasispins of μ and μ + 4. Hence, the even

Jz Jz

Jz Jz

2Jz

2Jz

µ−1

µ−4

µ−5 µ−2

µ−3 µ µ+1

µ+2 µ+3

µ+4

FIG. 13. (Color online) The effective interactions between the
quasispins for the Kitaev ladder with both rhombic- and leg-Ising
terms. The rhombic terms create two decoupled TFI chains, namely
odd and even ones, where the leg terms add the next-nearest-neighbor
interactions on each chain, separately. Solid red (blue) lines represent
the nearest-neighbor interactions, while dashed red (blue) lines show
the next-nearest-neighbor ones, on even (odd) quasispins.

and odd chain of quasispins remain decoupled bearing the
next-nearest-neighbor interactions, which are the effect of
leg-Ising interactions. This can be seen in Fig. 13, where
solid red (blue) lines show NN and dashed red (blue) lines
represent NNN interactions for the even (odd) decoupled
effective chains. It should be mentioned that the strength of
NNN coupling is half the NN one. The effective Hamiltonian
for the Kitaev ladder in the presence of rhombic-leg-Ising
interactions is given by

HKRL
eff = −αJz

′∑
μ

(
2τ x

μτ x
μ+2 + τ x

μτ x
μ+4

)

− (1 − |α|)Jv

′∑
μ

τ z
μ, μ = odd or even. (26)

The presence of NNN interactions in the antiferromagnetic
regime leads to interesting and exotic features in the model.
Thus, we discuss the ferromagnetic and antiferromagnetic
cases in the following two subsections, separately.

1. Ferromagnetic RL Ising

Contrary to the RI and LI cases, the effective theory
for the Kitaev ladder in the presence of both the leg-
and rhombic-Ising terms does not have an exact solution
due to the NNN coupling in the TFI effective chain. Our
numerical simulation of entropy, SE versus α is plotted
in Fig. 14, which shows divergent behavior at the critical
point αKRL

c = 0.219 ± 0.001. This is equivalent to a phase
transition at (Jz/Jv) = 0.280 ± 0.001 with a rescaling of the
Kitaev and Ising couplings in Eq. (25). Here, the presence of
Ising interactions on all bonds (legs and rhombuses) sustain
the ferromagnetic order to overcome the Kitaev SPT phase
within smaller Jz coupling than the RI and LI cases. The
model represents the Kitaev SPT phase for α < αKRL

c , with
finite entanglement entropy ln(2), double degeneracy in the
entanglement spectrum, no (local) magnetic order, and phase
factor order parameter O = −1 in Fig. 10(c). A second-order
phase transition drives the model to the (trivial) ferromagnetic
phase for α > αKRL

c , which is presented by a factorized state
of up (or down) spins in the z direction. The quantum critical
point is described by the central charge c = 2 × 0.5 = 1 given
by two decoupled NNN TFI chains and justified by numerical
simulation in Fig. 9(c), which renders c = 1.09 ± 0.02.

024415-8



QUANTUM PHASE TRANSITION AS AN INTERPLAY OF . . . PHYSICAL REVIEW B 91, 024415 (2015)

0.0 0.2 0.4 0.6

α

0.0

0.5

1.0

1.5

2.0

2.5

S
E
/

lo
g

(2
)

χ = 8

χ = 16

χ = 32

χ = 64

χ = 128

FIG. 14. (Color online) von-Neumann entropy [scaled by ln(2)]
versus α for the Kitaev ladder in the presence of ferromagnetic
rhombic-leg-Ising interactions.

2. Antiferromagnetic RL Ising

The antiferromagnetic Ising interactions on both legs and
rhombus bonds create the basic building block of frustrated
magnetic systems, i.e., triangles with antiferromagnetic bonds
[see Fig. 2(c)]. The antiferromagnetic Hamiltonian is defined
by Eq. (25) with −1 � α � 0. Although the ground state of
the model is twofold degenerate at the Kitaev limit (α = 0)
it has exponentially degenerate ground-state configurations
at the AF Ising limit (α = −1). To get more insight on the
model at the AF Ising limit, we associate a magnetization (mz

μ)
with each triangle, which is simply the total magnetization
in the z direction of a single triangle. For the ground state,
the antiferromagnetic nature of interactions forces the spins
on each triangle to be oriented as either 2-up-1-down or
2-down-1-up (see Fig. 15), which yields mz

μ = ±1. Therefore,

+ + + + +

+++++

− − − − −

−−−−−

+ +

+

− −

− +

−

− −
(b)

(c)

(a)

FIG. 15. (Color online) Some of the ground-state configurations
at the antiferromagnetic rhombic-leg-Ising limit (Jv = 0) of the two-
leg ladder. The ↑ and ↓ represent σ z spin orientation. The ± shows
the sum of σ z spins in each triangle. All configurations are classified
as 2-up-1-down or 2-down-1-up for each triangle.
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FIG. 16. (Color online) von-Neumann entropy versus α for the
Kitaev ladder in the presence of AF RL-Ising interactions.

the ground-state degeneracy at the AF Ising limit is 22N , where
2N is the number of triangles in the ladder (assuming a periodic
boundary condition along the legs). The spins that sit on the
legs of the ladder are not constrained to a boundary condition
perpendicular to the legs of the ladder, which leads to an
intensive degenerate configuration with total magnetization
Mz ∈ {2N,2N − 1, . . . , − 2N + 1, − 2N},

Mz =
2N∑
μ=1

mz
μ. (27)

Some configurations of the mentioned subspace are shown in
Fig. 15, where the ± in each triangle represents mz

μ. A state
with Mz = 2N is shown in Fig. 15(a), where all triangles
carry mz

μ = +; an intermediate state with Mz = 0 is presented
in Fig. 15(b) and a state of all mz

μ = − is given in Fig. 15(c).
Accordingly, the model does not show a magnetic long-range
order out of a symmetry breaking, which is called a classical
spin liquid. A classical spin-liquid state shows no long-range
order, an extensive degeneracy of ground state and algebraic
decay of correlation functions.

We have plotted SE versus α in Fig. 16 for the Kitaev
ladder in the presence of AF RL-Ising interactions. Our
data shows that SE reaches ln(2) for α → 0, which is the
signature of the Kitaev SPT phase. The entanglement entropy
shows finite entanglement scaling for −1 < α < −0.7, which
is represented by χ = 8,16,32,64,128. Although a bump is
observed around α � −0.8 the whole set of data does not
conclude to a single divergent peak, rather showing a broad
area of finite entanglement scaling. It suggests a broad critical
area, which starts at α = −1 (the classical spin liquid) toward
an intermediate region, α � −0.75, where the Kitaev SPT
phase dominates. This is confirmed by the structure of the
entanglement spectrum versus α presented in Fig. 17. We
have shown in Sec. II that the ground state of the Kitaev
ladder is an SPT phase, which leads to even degeneracy of ES.
Accordingly, the even degeneracy of ES is the signature of the
Kitaev SPT phase for αc < α � 0, where αc = −0.75 ± 0.05.
The computation for higher values of χ (> 128) is a massive
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FIG. 17. (Color online) Entanglement spectrum versus α for the Kitaev ladder in the presence of AF RL-Ising interactions. (Left) χ = 64,
(right) χ = 128.

time consumption for our model, where the unit cell contains
three spin-1/2. However, the results shown in Fig. 17 for
χ = 64 (left), χ = 128 (right), and other χ = 16,32 (not
shown here) convince us that the degeneracy of Kitaev SPT
is persistent for αc < α � 0. For −1 < α � αc, the model
shows finite entanglement scaling (Fig. 16) and dispersed ES
(Fig. 17), which resembles a critical area with algebraic decay
of correlation functions. This is consistent with the conclusion
that can be derived from the effective theory.

The effective Hamiltonian defined in Eq. (26) for the Kitaev
ladder in the presence of AF RL-Ising interactions renders the
frustrated NNN TFI chain in which the NNN coupling is half
of the NN coupling, being denoted by κ = 0.5. The effective
theory at α = −1 falls exactly on the critical point κ = 0.5 at
the zero transverse field, which separates the antiferromagnetic
phase from the antiphase of frustrated NNN TFI [37,40,41,43].
It states that the classical spin liquid of the AF RL-Ising limit
corresponds to the critical point of the frustrated NNN TFI
model at the zero transverse field. The onset of the Kitaev
term (α �= −1) adds quantum fluctuations to the model, which
corresponds to the effect of the transverse field on the frustrated
NNN TFI critical point. A recent study on the frustrated NNN
TFI chain [43] confirms the existence of a tri-critical point
at κ = 0.5, where a Kosterlitz-Thouless transition line and
two second-order transition lines merge at κ = 0.5 and zero
field. Thus, the effect of the Kitaev term on the classical spin
liquid is similar to the effect of the transverse field on frustrated
NNN TFI at κ = 0.5 toward passing through the floating phase
before reaching a paramagnetic phase. The floating phase has
algebraic decaying correlation functions, which could lead
to finite entanglement scaling and broad dispersion of ES.
Therefore, our results in Figs. 16 and 17 are in agreement
with the phase diagram proposed in Refs. [41,42] for NNN
TFI (that is sometimes denoted by the ANNNI model in the
literature).

IV. SUMMARY AND DISCUSSION

We have studied the Kitaev Hamiltonian (HK) on a ladder
geometry. We find that the ground state of the Kitaev ladder
is an SPT phase protected by Z2 × Z2 symmetries namely

X = ∏
i σ

x
i which runs over all ladder bonds and Z =∏

�/∈rungs σ z
� that excludes the rung bonds. We have justified

our argument by employing the iDMRG method within an
iMPS representation, which leads to an inequivalent projective
representation of Z2 × Z2 symmetries providing the phase
factor order parameter O = −1, for the Kitaev phase.

We have also investigated the competition between the
Kitaev and Ising terms on the ladder, which is given by
deriving the corresponding effective theory in addition to
the direct iDMRG computations. For the Ising interactions
being solely on the edges of the rhombus or on the legs, the
effective Hamiltonian is given by decoupled one-dimensional
TFI models, which explains the quantum phase transition from
the Kitaev SPT phase to the antiferro/ferromagnetic phase
at the exact finite value Jz/Jv = 0.5,1.0, respectively. The
quantum phase transition is justified by numerical divergence
of entanglement entropy (SE) at the critical point, the change
in the degeneracy of the entanglement spectrum, and magnetic
order parameters. The quantum critical points and their
corresponding central charges of the effective theory and
iDMRG results agree with each other, exactly. The critical
behavior of Kitaev-rhombic-Ising interactions is given by
central charge c = 1, while the Kitaev-leg-Ising ladder is
represented by c = 2. If the Ising interactions reside on both
the rhombus and legs of the ladder, the effective theory would
be NNN TFI chain with the critical properties given by c = 1.
For the ferromagnetic Ising interactions it leads to a quantum
phase transition at finite ratio Jz/Jv = 0.280 ± 0.001, while
for the antiferromagnetic Ising interactions our data show a
broad range of finite entanglement scaling. It is the interplay
between the classical spin liquid at the AF Ising limit and the
Kitaev SPT phases. According to the effective theory, the onset
of the Kitaev term induces quantum fluctuations in the classical
spin-liquid subspace, which would finally lead to the Kitaev
SPT phase passing through an intermediate floating phase. The
Kitaev SPT phase is persistent for |Jz|/Jv � 3 witnessed by
the even degeneracy of the entanglement spectrum.

The phase diagram of the Kitaev ladder in the presence of
mentioned Ising interactions is plotted in Fig. 18. Moreover,
the quantum critical properties and the effective theory of each
case are summarized in Table I.
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FIG. 18. (Color online) Phase diagram of the Kitaev ladder with
Ising interactions. (a) The case of ferro/antiferromagnetic RI or
LI and ferromagnetic RLI interactions. (b) Antiferromagnetic RLI
interactions, where α

1−|α| = Jz

Jv
.

A remark is in order concerning the effective theory
introduced in this paper. For simplicity, we consider the ladder
geometry with a periodic boundary condition along the legs,
where N is the number of spins sitting on each leg or rung
of ladder, which sums up to 3N spins. The dimension of the
Hilbert space of the original ladder is 23N . The number of
triangles (quasispins) is 2N and the number of rhombuses
(plaquettes) is N . Accordingly, the dimension of the Hilbert
space of the effective theory (in terms of quasispins) is 22N

which is smaller than the original Hilbert space by a factor
of 2N . In principle, this is always the case for an effective
theory, which is responsible for the low-energy behavior of
the original model and is confirmed by numerical iDMRG
results. However, taking into account the plaquette degrees of
freedom (Bp = ±1) we find the lost 2N degrees of freedom.
For the lowest energy spectrum we consider all N plaquettes
to be at Bp = +1, which adds a constant term −JpN to the
effective theory. As far as all configurations of the original
spin model have been kept in constructing the effective theory
we expect that the whole spectrum of the original model is
represented by a tower of TFI models in addition to their
corresponding constant values, i.e., (−Jp)

∑
p Bp. Having in

mind that the effective theory considers the whole degrees of
freedom of the original model, we have found the exact critical
exponents of the mentioned QCPs, summarized in Table I in
agreement with the numerical simulations.

The extension of our approach to the two-dimensional case
would lead to study the competition between the topological
Z2 spin-liquid state of the toric code with the symmetry-
broken or classical spin-liquid state of Ising interactions. A

TABLE I. A summary of quantum critical properties of the Kitaev
ladder with Ising interactions defined in Fig. 2. J c

z is the quantum
critical point (assuming Jv = 1), c is the central charge, β is the
magnetization critical exponent, and η is the correlation function
exponent.

Model J c
z c β η Effective theory

RI 0.5 1 1/4 1/2 Two decoupled TFI chains
LI 1 2 1/4 1/2 Four decoupled TFI chains
RLI(F) 0.280 1 1/4 1/2 Two decoupled NNN TFI chains

special case has been studied in Ref. [21], which gives the
two-dimensional transverse field Ising model as the effective
Hamiltonian. A straightforward extension of our effective
model would give the two-dimensional TFI model for different
configurations of Ising interactions, which will be elaborated
on in future works.

Our approach can also be applied to the Kitaev (hon-
eycomb) model on ladder geometry. The model has been
investigated in Refs. [45–47], which shows topological phases
that have been characterized by string order parameters.
One may investigate the nature of topological phases, us-
ing our approach—symmetry fractionalization and finite-
entanglement scaling— to get more information about these
phases.
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APPENDIX A: NUMERICAL APPROACH: iDMRG

To examine the properties of the model, we have made use
of the standard iDRMG technique that is based on an infinite
matrix product state (iMPS) representation for the ground state
[48,50]. It is a well-known fact that iMPS is an efficient method
to describe translationally invariant many-body states with an
accuracy depending on the dimension of implemented matrices
[58,59].

The translationally invariant ground state is characterized
by canonical [60] � and � matrices,

|�〉 =
∑

s1,...,sN

Tr[�s1� . . . �sN �]|s1 . . . sN 〉, (A1)

which satisfy the following (fixed point) relation,
∑

s

�s�s�s†�s† = 1, (A2)

where the sum is over different spin configurations and �s
serve as the matrix coefficients for these configurations.

The spectrum (i.e., singular values in the Schmidt decom-
position of the left and right bipartition of the Hilbert space)
is simply the square root of � and the entanglement entropy
is defined as

SE = −
∑

i

�2
ii log

(
�2

ii

)
. (A3)

In the general case, to give an exact representation of a state,
iDMRG needs infinitely large matrices. Hopefully, this is not
necessary, especially in the case of gapped systems, by putting
an upper bound on the cardinality of the matrices χ , and
truncating the spectrum, one can reach a good approximation,
which has all the properties of the low-energy state. This
will give rise to the so-called truncation error which can be
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controlled by the dimension of matrices and is the cause of the
entropy scaling.

Since the ground state is known to be gapped for the extreme
coupling limit of our model, it can be represented by a finite
iMPS, where the truncation error for the couplings that are
far from the critical point, is less than machine precision.
However, close to the critical point, when the ground-state
entanglement spectrum should show a long tail, the truncation
errors become considerable and they do not vanish even when
we increase the size of the matrices.

After reaching the canonical �, � with the desired accuracy,
several properties of the ground state can be evaluated using
the iMPS representation. It includes any local observable like
energy and σ z, entanglement spectrum and the corresponding
von-Neumann entropy, the application of symmetry operators,
and the ground-state fidelity [61]. In order to calculate the
mentioned quantities the concept of the transfer matrix should
be introduced:

Tαα′,ββ ′ =
∑

s

(
�s

αβ�β

)(
�s

α′β ′�β ′
)∗

. (A4)

The expectation value of a local operator (defined on one
specific site), such as Ô, is obtained by using the following
transfer matrix:

T̂αα′,ββ ′ =
∑
s,s ′

(
�s

αβ�β

)
Ôs,s ′(

�s ′
α′β ′�β ′

)∗
. (A5)

The expectation value of 〈�|Ô|�〉 simply reduces to Tr(� ⊗
�T̂ ). The central charge is calculated according to the scaling
relation between von-Neumann entropy and the correlation
length. The correlation length is defined as the second largest
eigenvalue (e2) of the transfer matrix T [55–57,62],

SE ∝ c

6
log (ξ ), ξ = − 1

ln (e2)
. (A6)

The above scaling relation helps us to calculate directly the
central charges of the underlying model. So, we need to have
some different values of correlation length and von-Neumann
entropy to fit them according to Eq. (A6). Thus, to produce
different values of correlation length and von-Neumann
entropy, we change the size of iMPS matrices of the ground
state and calculate for each matrix size, correlation length,
and von-Neumann entropy.

It is also worth mentioning that there is another direct
connection between the correlation length and the size of the
iMPS matrices [55–57]:

ξ ∝ χ

1√
12
c +1 . (A7)

So both quantities, the correlation length and the size of the
matrices, have an explicit scaling relation. Hence, one can be
replaced with the other one throughout the paper.

The general scheme of the algorithm for our model is as
follows. First, we formulate the model to get a 1D model with
only NN interactions; we bundle every three particles on a
triangle, as shown in the Fig. 1, into one unit cell with dimen-
sion 8. For instance, according to the definition in Eq. (3), the
Kitaev Hamiltonian is written in the following form:

HK = −Jv

∑
〈i,j〉

	(i)IxI	(j )xxI − Jp

∑
〈i,j〉

	(i)zzz	(j )zII .

(A8)

Similar expressions would be used for the Ising terms. The
CPU time of the iDMRG algorithm is proportional to the
square of the spin dimensions d2. It is obvious that
the calculation time needed to accomplish a simple iDMRG
on the mentioned lattice (with d = 8) is much larger than
iDMRG performed on a lattice with spin dimension 2. This
is the main reason that we were unable to examine larger
matrices for this model. For example, the necessary time
for convergence was about a couple of weeks for a single
run of matrix size χ = 128, and close to critical region. The
convergence criterion was a fixed point relation between the
� generated at the current step with the � of the last step.

We have also examined the iDMRG for the one-dimensional
NNN TFI model and compared the results with the
corresponding one of the original ladder. The entanglement
spectrum and hence the entropy was the same within the
relative error of 10−5.

APPENDIX B: SYMMETRY

A symmetry is defined as an operation, which leaves the
model Hamiltonian invariant. These symmetries can form
either an ordinary group or a projective one. However, if the
ground state of the Hamiltonian does not respect the Hamil-
tonian symmetries, one concludes the phase is a symmetry-
broken one. At the same time, the remaining symmetry
groups can protect a phase due to their inequivalent projective
representations, also known as symmetry fractionalization.
These two properties can be used to assign a unique label
to every possible phase of a system and to detect possible
phase transition within this classification [28].

The ground state of the Kitaev ladder Hamiltonian (HK) is
doubly degenerate and both ground states are invariant under
the operations of X and Z [defined in Eq. (4)]. The mutual
symmetry operation X × Z defines a Z2 × Z2 symmetry,
which protects the Kitaev ladder ground states. In other words,
providing the symmetry is preserved, the Kitaev SPT phase
cannot be adiabatically mapped to a fully product state.

To gain more insight on how the Z2 × Z2 symmetry group
can serve to protect the degeneracy of the entanglement
spectrum, and how we can express them numerically we need
to explore the properties of the symmetry group in terms of
iMPS representation. To preserve the Z2 × Z2 symmetry for
an iMPS state, the following relation should be satisfied [63],

∑
s ′

uss ′ (g)�s ′
αα′ = U †(g)αβ�s

ββ ′U (g)β ′α′ , (B1)

where u(g) ∈ G, G = {	Izz,	xxx, − 	xyy,	III } and g repre-
sents the index of group elements. To obtain Ug for all elements
of the group G, we construct the following transfer matrix (T̂ g)
for each element of group G,

T̂
g

αα′,ββ ′ =
∑
s,s ′

(
�s

αβ�β

)
u(g)s,s

′(
�s ′

α′β ′�β ′
)∗

. (B2)

The symmetry represented by u(g) on all sites is respected,
if the largest eigenvalue of T̂ g becomes equal to 1. Using
Eq. (B1), one can show the corresponding eigenvector is
simply U

†
g [31].

Generally, Ug,Ug′ may not always form a regular group
but a projective one. To see this behavior we need to apply
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the symmetries in different order and make use of the facts
that u(g)u(g′) = u(g′)u(g) and u2(g) = 1. Using u(g)u(g′) =
u(g′)u(g), we conclude

u(g)u(g′)� = UgUg′�U
†
g′U

†
g ,

u(g′)u(g)� = Ug′Ug�U
†
gU

†
g′ , (B3)

⇒ UgUg′ = ei�gg′ Ug′Ug,

where the phase ei�gg′ is called “phase factor” (for simplicity
we drop indices corresponding to summations). The property
of u2(g) = 1 results in U 2(g) = eiθg1. Using Eq. (B3) and
U 2(g) = eiθg1, one can easily show that ei�gg′ can only be
±1. The signs introduce two different kind of orders, i.e.,
SPT and trivial orders. Throughout the SPT (trivial) phase,
ei�gg′ = −1(+1) and only upon quantum phase transition, the
sign can change. The two signs also represent two inequivalent
projective representations of Z2 × Z2 symmetry.

One can exploit this property and define an order parameter
O (called phase factor order parameter), which can serve to

detect, by measuring the sign, which projective representation
holds for a possible phase,

O = 1

χ
Tr(UgUg′U †

gU
†
g′). (B4)

When the iMPS doesn’t possess one of the symmetries in
the group, the phase factor order parameter O is simply 0,
demonstrating the symmetry-broken phase.

The proposed Z2 × Z2 symmetry group is not just the
symmetry for the Kitaev Hamiltonian, but it commutes with
the Ising interactions as well. As a result the phase factor order
parameter O, can be a good quantity to observe the phase
transition which kills the symmetry-protected phase. When
the system is close to the Kitaev phase the phase factor order
parameter has a negative sign, which shows the system is in
a symmetry-protected state, but for the ferromagnetic phase,
while 	Izz is still respected, 	xxx is no longer preserved and
the phase operator order parameter suddenly drops to zero, as
shown in Fig. 10.
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