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We consider whether it is possible to find ground states of frustrated spin systems by solving them locally.
Using spin glass physics and Imry-Ma arguments in addition to numerical benchmarks we quantify the power of
such local solution methods and show that for the average low-dimensional spin glass problem outside the spin
glass phase the exact ground state can be found in polynomial time. In the second part we present a heuristic,
general-purpose hierarchical approach which for spin glasses on chimera graphs and lattices in two and three
dimensions outperforms, to our knowledge, any other solver currently around, with significantly better scaling
performance than simulated annealing.
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I. INTRODUCTION

The combination of disorder and frustration in spin
glasses [1] creates a complex energy landscape with many local
minima that makes finding their ground states a formidable
challenge. In particular finding the assignments of spins
si = ±1 which minimizes the total energy of an Ising spin
glass with Hamiltonian

H =
∑

ij

Jij sisj +
∑

i

hisi, (1)

where si = ±1 and Jij ,hi ∈ R, is nondeterministic polynomial
(NP) hard [2] and no polynomial time algorithm is known
for the hardest instances. NP-hardness also means that any
problem in the complexity class NP can be mapped to an Ising
spin glass with only polynomial overhead. This includes the
traveling salesman problem, satisfiability of logical formulas,
and many other hard optimization problems. Explicit mapping
for a number of these problems have recently been given in
Ref. [3]. Efficient solvers for Ising spin glass problems hence
can have an impact far beyond spin glass physics.

This broad spectrum of applications has also motivated
the development of the devices by the Canadian company
D-Wave Systems [4–7]. These devices have been designed to
employ quantum annealing [8] for Ising spin glass problems
using superconducting flux qubits. However, it has not yet
been shown that they can outperform classical devices [9,10].
Determining the complexity of solving the spin glass problems
on the so-called “chimera graph,” which is implemented by the
hardware of the D-Wave devices, and finding the best classical
algorithms for them is important in the search for quantum
speedup on these devices [10].

Motivated by these comparisons and the importance of
efficiently solving Ising spin glass problems, here we consider
the complexity of solving such problems for random spin
glass instances on finite-dimensional lattices, including the
chimera graph. In Sec. II we discuss the effects of nonzero
temperature and magnetic field on Ising spin glasses and
argue that the absence of correlations outside the spin glass
phase allows for polynomial time algorithms. Section III
presents an exact solver based on this idea which solves the
system quasilocally by considering finite patches of the lattice.

Finally, in Sec. IV we present a hierarchical heuristic approach,
which recursively solves groups of spins by splitting each
group into smaller subgroups. For our benchmark problems
on two- and three-dimensional periodic lattices and chimera
graphs with random disorder this approach outperforms, to
our knowledge, any other solver currently available and scales
significantly better than simulated annealing. While we give a
qualitative explanation of the advantage of the hierarchical
solver, it remains an open theoretical question to give a
quantitative argument for its improved scaling. The interested
reader can skip directly to this section as it can be understood
independently of the scaling analysis earlier in the paper.

II. BOUNDARY CONDITION DEPENDENCE IN
FRUSTRATED SPIN SYSTEMS

It is evident that if the fields hi in Eq. (1) are very large, the
problem can be solved by simply aligning each spin relative
to the field. The problem becomes more difficult at smaller
hi , and the meaningful question is whether a phase transition
intervenes at some nonzero value of the field strength, where
the difficulty increases greatly. In this section, we argue that
the relevant transition indeed is already known in the literature,
where it is referred to as the de Almeida–Thouless line. We
argue that above this transition (which happens for any nonzero
random choice of hi,Jij in two dimensions), the problem can
be solved by considering larger patches of spins, with the patch
size diverging as the field strength goes to zero; the spins in
the middle of these large patches become independent of those
outside the patch and can be fixed using a local algorithm. We
first review the relevant literature at hi = 0 and the scaling
theory at small hi .

A. Review

In the particular ensemble where fields vanish (hi = 0),
the behavior of the model depends strongly on both the
dimensionality of the system and upon the choice of the
ensemble for the couplings between spins. In this discussion,
we will focus on the case of a continuous distribution, e.g., a
Gaussian one, with vanishing mean.
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We will also refer to results in the literature that study
nearest-neighbor couplings on a square or cubic lattice, rather
than the chimera graph. One important distinction between
the two-dimensional square lattice and the chimera graph is
that for the square lattice, as for any planar graph, if the
magnetic fields vanish there are efficient polynomial time
matching algorithms for finding exact ground states [11],
while on nonplanar graphs, such as the chimera, it is NP-hard.
We discuss this further below.

In two dimensions it is accepted that there is no spin glass
phase at temperature T > 0 [12]. To quantify this, consider a
pair of sites i,j . Let 〈. . .〉 denote the thermal average of an
operator at temperature T and let [. . .]H denote the disorder
average over Hamiltonians H . Since the couplings are chosen
with zero mean, we have that [〈sisj 〉]H = 0 exactly. However,
generically the ground state is unique and hence [(〈sisj 〉)2]H =
1 at T = 0, and this average is expected to be positive at T > 0;
however, the average vanishes in the limit of large distances
between i,j .

The reason for the absence of a spin glass phase is that
it costs very little energy to flip a domain of spins. Consider
flipping a cluster of spins of linear size �. In a ferromagnetic
state, this costs energy proportional to �. In a spin glass ground
state, it is possible, however, that a cluster can be found
which costs very low energy to flip. Using various methods of
generating flipped patches (by for example boundary condition
changes), it is found that the energy of the domain wall scales
proportional to �θ with θ ≈ −0.282(2) [12]. Thus, it costs less
energy to flip larger clusters, and no matter how small T is,
for T > 0 there eventually will be some � such that flipping
clusters at that scale costs energy smaller than T . Hence there
will be many thermally excited domain walls. On the other
hand, for three dimensions and higher, there is believed to
be a phase transition temperature Tc > 0 with a domain wall
exponent θ > 0 for excitations above the ground state [13].

Similarly, we can consider random models with nonzero
fields [14–16] and denote standard deviation of the field
magnitude by h. In this case, we consider the quantity

[(〈sisj 〉 − 〈si〉〈sj 〉)2]H .

If this quantity tends to a nonzero limit at large distance
between i,j , then we term this a spin glass phase. It has
been shown that such a spin glass phase can exist in a
mean-field model at h �= 0 [17]; the line in the h-T plane
separating the spin glass from the paramagnetic phase is
termed the de Almeida–Thouless line. However, it is unclear
whether such a spin glass phase at h �= 0 can persist in a local
finite-dimensional model. Numerical work [18,19] suggests
that it exists for dimension d > dc = 6. However, it is accepted
that the spin glass phase at h �= 0 does not persist in dimension
d = 2 and in the next subsection we will explain why this is
expected given the exponent θ discussed above.

It should be emphasized that it is not necessarily difficult
to find ground states in a spin glass phase, as exemplified by
the matching algorithm for the planar case in d = 2 at h = 0.
Conversely, even if a random ensemble is not in the spin glass
phase, particular instances may be difficult, as exemplified by
the fact that in d = 2 at h �= 0 the model is not in a spin glass
phase, but finding the ground state of arbitrary instances is still
NP-hard.

B. Weak-field scaling in d = 2

We now consider the effect of a weak magnetic field h �= 0
in d = 2. Our general goal is to show that in this case, we
expect that the value of a given spin in the ground state can
often be fixed using a purely local calculation. The argument
is a version of the Imry-Ma argument applied to disordered
systems [20] and in the specific application to spin glasses is
an example of the droplet picture [21]. We conjecture that a
similar argument (with different exponents) will work if there
is no de Almeida–Thouless line (i.e., whenever there is no spin
glass phase at nonzero magnetic field).

Consider a spin scent at the center of a patch of size � inside
a larger system of linear size L. Suppose that we have found
some configuration of spins which is a ground state. At h = 0,
it is impossible to know whether scent = +1 or scent = −1
without knowing the value of the boundary spins because there
is a Z2 symmetry. However, at h �= 0, it may be possible to
determine the value of the spin si independently of the value of
the boundary spins. That is, there may be some choice (either
scent = +1 or scent = −1) that minimizes the energy inside the
patch for all choices of boundary spins. In this case, we know
that in the global ground state the spin scent will take the given
value.

To analyze the ability to fix the spin independently of
boundary conditions, we again begin with the case h = 0 to
develop a scaling argument that will apply at small h. Consider
a given configuration of boundary spins, which we write as
�sbdry, where we write this as a vector to emphasize that there
are many boundary sites. At h = 0, we can minimize the
energy inside the patch for this choice of boundary spins,
uniquely fixing all spins inside the patch. Suppose that this
minimization gives scent = +1. Now consider the case in which
we force scent = −1, defining a new configuration of spins
inside the patch which minimizes the energy subject to the
given boundary conditions �sbdry and given that scent = −1.
Forcing scent to take the opposite value will flip also a cluster
of spins around the central spin, creating a domain wall around
that cluster of spins, as shown in Fig. 1. The energy of
this domain wall will be proportional to �θ which therefore
decreases with increasing �.

The number of spins in the cluster scales also as a power of
�, with the power slightly less than [22] 2; in that reference,
the exponent 1.80(2) was found for one specific method
of constructing droplets. Our numerical studies, shown in
Fig. 2, indicate that the number scales as �dclust , with a fractal
dimension dclust ≈ 1.84; while this dimension might revert
to 2 for larger system sizes, we use the fractal dimension
extracted at these system sizes to facilitate comparison with
our complexity analysis below.

This cluster then defines a larger effective spin. The cost
to flip this effective spin relative to the rest of the patch is
proportional to �θ . We now consider the case that h �= 0, and
analyze the effect of the nonzero h on this effective spin. Given
that the magnetic fields acting on the spins in the cluster are
chosen randomly, we expect that the cluster will experience an
effective magnetic field

heff ∝ h�dclust/2. (2)
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FIG. 1. (Color online) If central spin is forced to be opposite to
its optimal orientation while keeping the spins on the boundary of
the patch fixed, a cluster of spins around it will also flip. Central spin
marked in yellow, flipped cluster marked in red, and the boundary in
black.

Balancing these energy scales, we find that

heff ∼ �θ → � ∝ h
− 1

−θ+dclust/2 . (3)

In Fig. 3, we show our estimate for θ ≈ −0.33 obtained
from the defect energy Ed gained when the central spin is
forced in opposite direction to its optimal with a fixed boundary
configuration around a patch. While this differs slightly from
the numbers quoted above, we remark that many different
ways of forcing domain walls in have been considered in the
literature, such as flipping a central spin as here or changing
global boundary conditions and these may give rise to different
values, especially for finite sizes; see Refs. [22–24] for various
possibilities. Thus, we get that

� ∝ h−0.8. (4)

FIG. 2. (Color online) Number of spins in the cluster F averaged
over different boundary configurations and Hamiltonians vs linear
dimension of patch �. The data are fitted to a power law (dashed line).
Inset shows log-log scale.

FIG. 3. (Color online) Defect energy Ed averaged over different
boundary configurations and Hamiltonians vs linear dimension of
patch �. The data are fitted to a power law (dashed line). Inset shows
log-log scale.

For � larger than this number, the coupling of the cluster
to the effective field exceeds its coupling to the rest of the
patch, so that the value of the central spin can be fixed
independently of boundary conditions. Note that this analysis
focuses on one possible way to fix in which the central spin can
become independent of boundary conditions; others may be
possible.

C. Boundary condition dependence

The above scaling analysis gives an estimate of the length
scale at which we can fix the central spin in a patch. The total
number of spins which can be fixed in the system depends on
the local fields and patch size and can be estimated from the
probability of fixing a single spin. To quantify this probability
we define

χB(h,�) = 1 − [([sc]B)2]H , (5)

where sc is the central spin and where [. . .]B denotes the
average over boundary conditions. We term this quantity χB

as it measures the response of the central spin to change in
boundary conditions. If this quantity is equal to 0, then the
spin can be fixed independently of boundary conditions as it
assumes the same value for all choice of boundary.

For this averaged quantity, we find a scaling collapse as
shown in Fig. 4. The scaling collapse onto a single curve is
implemented by defining the scaling variable ξ = h �1.19. This
implies a scaling

� ∼ h1/1.19 = h0.840....

This should be compared with the estimate in Eq. (4); the
agreement of exponents is reasonable, and if we use θ = −0.28
instead of our measured θ = −0.33 the agreement becomes
more accurate. We find that the scaling collapse can be
approximately fitted by the form

χB(h,�) = exp [−poly(h,�)]. (6)

To obtain statistical information about whether we can fix
a spin independently of boundary, it suffices to determine
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FIG. 4. (Color online) Correlation of central spin with the bound-
ary for different fields and patch sizes. ζ = h �1.19. The fit of χB (h,�)
is to 2−a ζb

, where a = 0.198 and b = 1.02 (dashed line).

the behavior of χB in the tail; see Fig. 4, where we fit
χB = 2−a ζ b

with the constants a and b. We cannot be
completely confident about the tail behavior of χB at large
h,� from these simulations, but let us use this estimate to
try to determine the complexity of a simple solver which
tries to solve each spin by taking a sufficiently large patch
that χB = 0. The complexity of the solver will depend on the
scaling of χB , but we will estimate that it takes a polynomial
time (in N ) for any nonzero h. We will find in the next
section that we can improve on this, by using the fact that
once a single spin is fixed it simplifies the fixing of other
spins.

Since there are only 24� possible boundary conditions, the
minimum nonzero value of χB is of order 2−4�. Considering the
N possible choices of central spin, only O(1) spins correlate
with the boundary if exp [−poly(h,�)] = O(1/N )2−4�. Equiv-

FIG. 5. (Color online) Illustration of a patch. Central spins are
marked in red, boundary spins in green, and the rest of the spins in
the system are blue.

alently, this holds if 24� exp [−poly(h,�)] = O(1/N); since
ζ b > 1, the scaling of the left-hand side of this equation is
dominated by the second term. Hence, the equation will hold
when

h �1.19 ∼ log10(N )1/b. (7)

Thus, we expect that for � larger than this, it will be possible
to fix all spins.

Since each patch can be solved exactly with complexity
exp {�} using a dynamic programming method [25], at a fixed
h the whole system can be solved with complexity

poly(L) exp{h−1/1.19(log10 N )1/(1.19·b)}. (8)

Since b > 1 and 1/(1.19 b) < 1, the exponential term is
sub-linear and the total complexity is therefore polynomial;
however, it diverges as h → 0. The exact estimate may
depend sensitively upon the tail of the curve which we cannot
determine with full confidence.

It should, however, be emphasized that the data in Fig. 4
arise only from an average over a finite number (in this case,
1000) of boundary conditions. This finite number was chosen
to enable rapid sampling of the curve. To exactly solve a
specific sample, we need to consider all possible boundary
conditions, as discussed in the next section.

III. FINDING THE EXACT GLOBAL GROUND STATE

Following the argument above, correlations in a typical
finite-dimensional lattice decay exponentially if h > 0 and
the ground state for such a system can therefore be found in
polynomial time as the optimal orientation of single spins
can be determined with high probability by considering
only finite regions of the system. Furthermore, even for
zero fields we present strong numerical evidence that the
typical two-dimensional case can be solved in polynomial
time with a more general approach which we describe
below.

A. Single-spin reduction

Let us consider a spin in the center of a patch in our system.
If for all boundary configurations of the patch the optimal
orientation of the central spin is the same, then it is independent
of the boundary and can thus be fixed to that value. Based
on this idea, the simplest way to find the ground state is by
determining the optimal orientation of each spin independently
by building a patch around it and checking whether the optimal
orientation of the central spin is independent of the boundary.
If this is not the case, we increase the patch size and check
again until the spin becomes independent of the boundary.
When all spins are fixed the system is solved.

This approach can be further improved by solving the
system similar to a crossword puzzle rather than considering
each spin independently. If a spin gets fixed, this will reduce
the number of possible configurations for patches containing
that spin, which in return may allow more spins to get fixed
without increasing the patch sizes.

Fixing single spins is a simple algorithm which can be very
efficient for systems with large fields. In the limit of very
large fields the complexity approaches O(N ) as each spin
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becomes independent of its neighbors. However, for small
fields the computational effort increases as the correlation
length diverges when the field approaches zero requiring
patches comparable to the total system size. A more general
approach, discussed next, remains effective in that limit.

B. Patch reduction

Instead of only attempting to fix the central spin, cor-
relations between spins inside a patch can be captured by
considering all possible configurations of a patch that minimize
the energy for a given choice of boundary conditions (see
Fig. 5). These configurations are then constrained by requiring
consistency between overlapping patches. We find numerically
that this approach is significantly more efficient than the
single-spin algorithm.

The algorithm starts with a small patch size (e.g., a single
spin in the center) and sequentially builds patches around
each spin. For each boundary configuration of a given patch
we store the configuration of the boundary together with the
corresponding optimal configuration of the center spins. If the
local ground state of a patch turns out to be degenerate for
a given boundary condition, we arbitrarily pick any of these
configurations if our aim is to obtain just one of the potentially
degenerate global ground states. Note that if instead we are
interested in finding all ground states, then for each boundary
configuration all degenerate interior configurations need to be
stored.

The number of potential ground state configurations within
a patch (boundary and interior) is then further reduced by
removing those configurations which are inconsistent with the
constraints imposed by overlapping patches.

After a pass through all spins we increase the patch size
and repeat the above steps with larger patches until only a
single configuration remains or all remaining configurations
have the same energy. As the patch size increases, the set of
configurations which satisfy all constraints is strongly reduced
and typically scales much better than the exponential worst
case.

C. Improved patch reduction

One way to significantly reduce the cost of storing configu-
rations is by removing some spins from the system. If for a pair
of neighboring spins si and sj , their product sisj is constant
in all configurations, they can be replaced by a single spin. If
only one ground state is targeted, this procedure will finally
eliminate all but one spin. More generally, any arbitrary spin
can be removed by replacing it with multispin interactions
such that for each configuration of the neighboring spins the
local energy is conserved given that the spin to be removed
aligns optimally with respect to its neighbors.

D. Empirical scaling

As shown in Figs. 6 and 7 the median time to solution
appears to scale polynomially in the number of spins for all
values of the field h, including zero field [26]. While faster
specialized exact solvers are available [27], this algorithm is
not necessarily intended as a general purpose optimizer, but
rather to demonstrate polynomial scaling in the number of

FIG. 6. (Color online) Median wall clock time (in seconds) for
different system sizes and various fields.

spins at all values of h for typical low-dimensional spin glass
instances.

IV. HIERARCHICAL SEARCH

A. Motivation

In this section we present a general purpose heuristic
hierarchical algorithm for finding the ground state of Ising spin
glasses based on recursively optimizing groups of variables.
Before describing the algorithm we motivate why solving
groups of variables is significantly more efficient than solving
the whole system at once.

The arguably simplest heuristic algorithm for finding the
ground state is by generating random spin configurations and
recording the energy, in other words random guessing. The
probability to find the global ground state of N spins this
way is trivially 2−N per guess, assuming for simplicity a
nondegenerate ground state in the discussion here and below.
A more sophisticated way to guess the solution is to generate
random configurations of only Nr = N − Ng spins and for

FIG. 7. (Color online) Scaling exponent for the runtime shown
in Fig. 6, obtained from fitting the data to a power law, for different
system sizes and various fields.
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each configuration find the lowest energy of the remaining
Ng spins by some other algorithm, e.g., by enumerating all
possible combinations or any other more optimized algorithm.
This improves the probability of guessing the correct solution,
but as the cost of finding the optimal orientation of the
remaining Ng variables may be as much as 2Ng , we might
not have gained much. This idea can, however, be extended
to solving multiple groups. Let us consider two groups with
N1 and N2 spins respectively, chosen such that spins in one
group do not couple to any of the spins in the other group.
For each random guess of the remaining Nr = N − N1 − N2

spins, the complexity of finding the optimal configuration of
both of them with respect to the rest of the system is 2N1 + 2N2 ,
thus reducing the total complexity by an exponential amount
from 2N = 2Nr+N1+N2 to 2Nr (2N1 + 2N2 ). In our algorithm,
described below, we find a significant reduction in complexity
even if spins in subgroups are coupled and overlap with each
other.

B. Optimization of groups

The above argument provides a basis for a simple algorithm
to find the global ground state by iteratively optimizing groups
of spins. We start with a random global state, sequentially
pick M groups with Ng spins each, and optimize their
configurations by calling some—as yet unspecified—solver
as follows:

procedure SOLVE ()
initialize random spin configuration
for j ∈ {1 . . . M} do

pick a random spin i

build group G of size Ng around spin i

�σ ← SOLVE GROUP (G)
UPDATE CONFIGURATION(G,�σ )

end for
end procedure

Here, SOLVE GROUP(G) is a solver that solves the group
G (taking into account the interaction with spins outside
G to produce an effective field) and returns an optimized
configuration �σ for the spins in that group. The procedure
UPDATE CONFIGURATION(G,�σ ) updates the spins inside G to
configuration �σ ; if the solver SOLVE GROUP is a heuristic
solver, then UPDATE CONFIGURATION (G,�σ ) only makes this
change if the energy is lowered. Alternatively one may also
consider an algorithm which replaces the group configuration
probabilistically with a Metropolis-type criterion or similar.

If we pick trivial groups of size Ng = 1, consisting of a
single spin, the group solver just returns the spin direction
which minimizes its energy with respect to its neighbors.
For larger groups—as will usually be the case—we can use
any arbitrary exact or heuristic solver, including potentially
special purpose classical or quantum hardware. We note in
passing that in the case of Ng = 1, if the new configuration
is accepted probabilistically depending on its energy this
algorithm reduces to simulated annealing.

C. Hierarchical recursive algorithm

If solving a given system in groups is more efficient
than solving the whole system at once, performance can be

FIG. 8. (Color online) Optimal group, marked in red, of 4 spins
in complete graph of 16 spins with Gaussian disorder.

increased even further by solving each group by subdividing it
recursively into subgroups, thus giving a hierarchical version
of the algorithm. That is, in the pseudocode written above,
we could use the function SOLVE(), restricted to the spins
in a group, as the solver SOLVE GROUP(). The recursion
terminates at some (small) group size, which is solved by
another algorithm.

Note that the hierarchical scheme randomizes the configu-
ration of each group before solving it by optimizing subgroups,
thus implementing random local restarts without affecting the
global spin configuration. This randomization also implies that
it makes no sense to solve a particular group more than once in
a row, but rather a new group should be chosen after one group
has been optimized. It should be emphasized that random
restarting is just one possible way to initialize the state of
a group and the one we used here. Other ways are possible and
could be more efficient.

The total complexity of the hierarchical algorithm is
dominated by the number of calls to the solver for the bottom
level group rather than by the group size at each level. This is
because for a given group of size Ng , the effort to calculate the
local energy and randomize spins is at most O(N2

g ) for dense

TABLE I. Optimal parameters for chimera graphs with random
bimodal disorder. N is the system size, M is the number of groups,
Ng is the group size, Sg is the number of simulated annealing sweeps
per group, S is the number of sweeps for plain simulated annealing.

N M Ng Sg S

32 78 9 1 8
72 80 37 5 24
128 100 60 7 64
200 349 41 4 192
288 408 68 6 400
392 500 105 13 1024
512 642 129 14 2048
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TABLE II. Optimal parameters for chimera graphs with cluster
bimodal disorder. The parameters have the same meaning as in Table I.

N M Ng Sg S

32 28 8 1 4
72 237 9 1 4
128 388 9 1 4
200 197 26 3 1281
288 454 29 3 4800
392 470 27 3 24576
512 718 28 3 131072

graphs, which is typically negligible relative to the effort of
finding a lower energy configuration of that group.

D. Selecting groups

Up to now, we have ignored the hard problem of how to
best pick groups. Here we provide a simple strategy that turned
out to work well. Intuitively, in a well chosen group spins are
strongly coupled to each other and more weakly coupled to
the rest of the system; see Fig. 8. We thus build a group G

by starting from one spin and greedily adding spins until the
group G has reached the desired size. We add the spin i that
maximizes Wi = ∑

j∈G |Jij | − ∑
j �∈G |Jij |, if this maximum

is positive, and a random neighbor of one of the spins in G

otherwise.
Other ways of building a group may be more effective.

For example, single spins could be added probabilistically,
or instead of single spins we could consider sets of spins
which can be added to the group. Such improvements will be
discussed in follow-up work.

E. Results

To test the performance of our algorithm we compare it
to simulated annealing, which is currently one of the most
versatile and efficient solvers for finding ground states of spin
glasses. As mentioned above, simulated annealing is a special
case of our algorithm. For our benchmarks we perform a
hierarchical search with two levels, using simulated annealing
to solve groups of size N1 with the optimized configuration
being accepted if its energy is lower or the same as the current
configuration.

As a measure of complexity we use the median total
number of spin updates required to find the ground state with
a target probability p0 = 0.99. Since a heuristic algorithm
will find the ground state with some probability ps < 1

TABLE III. Optimal parameters for two-dimensional lattices with
Gaussian disorder. The parameters have the same meaning as in
Table I.

N M Ng Sg S

16 72 8 1 4
64 314 9 1 48
144 273 33 21 891
256 573 47 43 30189

TABLE IV. Optimal parameters for three-dimensional lattices
with Gaussian disorder. The parameters have the same meaning as in
Table I.

N M Ng Sg S

27 39 10 1 5
64 118 22 4 45
125 232 30 5 512
216 271 58 23 2700
343 562 86 42 13056
512 614 113 101 61440

we may have to repeat the optimization multiple times
if ps < p0. Assuming independent repetitions, the required
number of repetitions is R = �log10 (1 − p0)/ log10 (1 − ps).
For each set of parameters the probability ps was estimated by
performing 1024 repetitions from random initial states.

For both algorithms and each class and size of problems we
optimize the simulation parameters to minimize the median
effort in terms of single-spin updates. For simulated annealing
the total effort for a single repetition is SN , where S is the
number of sweeps and N is the system size. We used a linear
schedule in β = 1/T where the initial and final values of
inverse temperature, β0 and β1, respectively, as well as the
number of sweeps S are chosen to minimize the total effort.
We list the parameters used in Tables I–V.

For the hierarchical approach a single repetition requires a
total effort MSgNg , where M is the number of groups, Sg is
the number of simulated annealing sweeps per group, and Ng

is the group size. The same annealing schedule is used for each
group. The values of M , Sg , and Ng are chosen to minimize
the total effort and are listed in Tables I–V.

As benchmark problems we used typical spin glass prob-
lems on two- and three-dimensional lattices: two-dimensional
square lattices, three-dimensional simple cubic lattices [28],
and so-called two-dimensional chimera graphs. The unit cell of
the chimera graph [29], shown in Fig. 9, is a complete bipartite
graph with eight vertices and is coupled to the neighboring unit
cells with four edges each. Hence, each vertex has either five or
six edges corresponding to four edges to spins within the unit
cell and one or two edges to neighboring unit cells depending
on whether it is on the edges of the graph or in the interior,
respectively.

One choice of benchmark problems is spin glasses with
bimodal disorder, i.e., couplings Jij = ±1, and another choice
will be Gaussian disorder with couplings drawn from a
normal distribution with zero mean and unit variance. In all
benchmarks we choose zero local fields h = 0.

TABLE V. Optimal parameters for two-dimensional lattices with
bimodal disorder. The parameters have the same meaning as in Table I.

N M Ng Sg S

256 235 56 10 64
400 224 119 23 227
576 384 103 17 768
784 686 208 31 3506
1024 656 151 29 7680
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FIG. 9. (Color online) Chimera graph with 512 spins composed
of an 8 × 8 grid of unit cells. Each unit cell is a complete bipartite
graph with 8 spins.

A special benchmark problem is chimera graphs with
cluster structure, which has recently been proposed as a class of
problems to explore an advantage of quantum annealing over
simulated annealing [30]. In these problems the spins within
each unit cell are coupled ferromagnetically with Jij = −1.
Of the four edges connecting neighboring pairs of unit cells
one randomly chosen edge is assigned a random coupling
Jij = ±1 and the rest is set to zero.

FIG. 10. (Color online) Chimera graphs with cluster bimodal
disorder. Speedup and the inset are defined the same as in Fig. 13. For
both plain simulated annealing and for each group, β0 = 0.1, β1 = 3.
Optimal parameters for both algorithms are listed in Table II.

FIG. 11. (Color online) Two-dimensional square lattices with
Gaussian disorder. Speedup and the inset are defined the same as in
Fig. 13. As the energy gap between the ground state and first excited
state decreases linearly with system size, the final temperature is also
reduced with the number of spins. β0 = 0.014, β1 = 0.037N + 2.5
for plain simulated annealing (SA) and parallel tempering (PT) and
β1 = 0.037Ng + 2.5 for each group of the hierarchical algorithm
(HS). Optimal parameters for SA and HS are listed in Table III.

In all benchmarks we find that hierarchical search performs
significantly better than simulated annealing. The gain is
evidently more significant for problems that are harder for
simulated annealing, such as cluster chimera graphs and
systems with Gaussian disorder; see Figs. 10, 11, and 12,
respectively. Random bimodal disorder is significantly easier
for simulated annealing and hence the speedup on those
problems is smaller, although still substantial; see Figs. 13
and 14, respectively.

A further comparison was also made with parallel temper-
ing [31], another state-of-the-art method for finding ground

FIG. 12. (Color online) Three-dimensional cubic lattices with
Gaussian disorder. Speedup and the inset are defined the same
as in Fig. 13. β0 = 0.05, β1 = 0.028N + 5.68 for plain simulated
annealing and β1 = 0.028Ng + 5.68 for each group of the hierarchi-
cal algorithm. Optimal parameters for both algorithms are listed in
Table IV.
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FIG. 13. (Color online) Speedup (ratio of the median number of
spin updates) of hierarchical search relative to simulated annealing for
chimera graphs with random bimodal disorder. The inset shows the
total number of spin updates for simulated annealing (SA), parallel
tempering (PT), and hierarchical search (HS). For SA, PT, and each
group of HS, β0 = 0.1, β1 = 3. Optimal parameters for SA and HS
are listed in Table I.

states of Ising spin glasses. For each class and problem
size, the total number of replicas and sweeps per replica
was optimized minimizing the median total number of spin
updates. For a single repetition the total effort is NRSN , where
NR is the number of replicas, S is the number of sweeps
per replica, and N is the system size. On chimera graphs
its performance is very similar to simulated annealing; see
Fig. 13. On two-dimensional lattices with Gaussian disorder
it performs slightly better; see Fig. 11. However, analogously
to simulated annealing, its performance can be significantly
improved by optimizing groups of spins rather than the whole
system at once; see Fig. 15. Note that although in all cases
the advantage of hierarchical search over plain simulated

FIG. 14. (Color online) Two-dimensional square lattices with
bimodal disorder. Speedup and the inset are defined the same as
in Fig. 13. For both plain simulated annealing and for each group,
β0 = 0.2, β1 = 3. Optimal parameters for both algorithms are listed
in Table V.

FIG. 15. (Color online) Speedup (ratio of the median number of
spin updates) of hierarchical search (HS) with parallel tempering as
a group solver to plain parallel tempering (PT) for two-dimensional
square lattices with Gaussian disorder. β0 = 0.014, β1 = 0.037N +
2.5 for plain parallel tempering and β1 = 0.037Ng + 2.5 for each
group of the hierarchical algorithm.

annealing and parallel tempering grows with problem size,
a spin update is effectively more costly due to the additional
overhead of randomizing the spins and computing the energy
of a group. However, the difference is typically insignificant.
For example, the wall clock time per spin update is only about
7% higher than plain simulated annealing for 8 × 8 × 8 3D
lattices with Gaussian disorder run with optimal parameters.

V. CONCLUSION

It has long been established that the complexity of finding
grounds states of spin glasses is strongly dependent on the
ensemble of couplings and is in the worst case NP-hard. How-
ever, while the most trivial cases, such as the ferromagnetic
Ising model, are relatively evident, the hardest problems are
far more elusive [32].

One way to look for hard problems is by sampling ran-
domly distributed couplings. Although this approach certainly
includes such problems, in this work we presented strong
numerical evidence that the average complexity of low-
dimensional spin glasses with randomly distributed couplings
is actually polynomial in the number of spins and looking
for hard problems in such a large ensemble might be next to
futile. Another way to generate hard cases is to map 3-SAT
problems at the critical clause to variable ratio [33], where
previous studies have shown evidence of a universal peak in
complexity, to the Ising model. Further studies are to be done
in this direction.

Our most significant result reported here is a hierarchical
approach as a way to potentially improve the performance of a
given algorithm for finding ground states of Ising spin glasses.
With simulated annealing as a reference solver, on all our
benchmark instances we find that optimizing groups of spins
is significantly more efficient than solving the whole system
at once.

It should be noted that approaches other than simulated
annealing can be used at the bottom level of the hierarchical
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solver. Suppose that for some class of problems another
algorithm (or special purpose classical or quantum device)
outperforms simulated annealing. In that case, we can use
that algorithm or device at the lowest level. Let T0 denote
the time annealing takes to optimize the bottom level. If
it is now replaced by a device which takes time, including
communication overhead, T1 � T0, we expect the potential
speedup to the whole algorithm to be ∼T0/T1. As the
complexity of finding the ground state scales exponentially
with the number of spins, this can be significant even for small
groups.

Although we limited our investigation to spin glasses,
similar ideas can be applied directly to other problems such
as machine learning, protein folding, traveling salesman, etc.,

by constraining groups of variables independently relative to
the rest of the system. We will address such applications in a
follow-up work.
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