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The ab initio calculation of charged supercells within density-functional theory is a necessary step to access
several important properties of matter. The relaxation volume of charged point defects or the partial molar
volume of ions in solution are two such examples. However, the total energy and therefore the pressure of
charged systems is not uniquely defined when periodic boundary conditions are employed. This problem is
tightly related to the origin of the electrostatic potential in periodic systems. This effect can be easily observed
by modifying the electrostatic convention or modifying the local ionic potential details. We propose an approach
to uniquely define the pressures in charged supercells with the use of the absolute deformation potentials. Only
with such a definition could the ab initio calculations provide meaningful values for the relaxation volumes
and for the elastic interactions for charged defects in semiconductors or ions in solution. The proposed scheme
allows one to calculate sensible data even when charge neutrality is not enforced, thus going beyond the classical
force-field-based approaches.
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I. INTRODUCTION

The volume variation of a solid or a liquid upon the
addition of a foreign specie is an important measure for several
experimental situations. In material physics, the addition
of defects (vacancies, self-interstitials, impurities) modifies
the macroscopic volume of the sample. This situation is
particularly relevant for the swelling of materials under
irradiation [1], for the elastic interaction between impurities
and dislocations [2–5], or for stress induced by implantation in
thin films [6]. This is quantified by the relaxation volume of a
defect. In the physics of liquids, the addition of ions in solution
is to change the overall volume of the sample. Think of the
change of density of salted water compared to fresh water [7].
In the context of liquids, this property is expressed in terms of
partial molar volume, which is precisely a relaxation volume
expressed in moles.

Some of the cited examples have a nonzero electric charge,
such as the point defects in insulating or semiconducting solids
or as ions in solution. Calculating the pressure, the relaxation
volume, or the elastic energies for charged species would be a
significant outcome of ab initio calculations.

Condensed matter systems, be they a crystal, a glass, or
a liquid, are most generally handled with periodic boundary
conditions, which allow one to get rid of the surface effects.
Unfortunately, the combination of periodic boundary condi-
tions and of nonzero charges poses a wide variety of problems.

First of all, the simulation cell needs to be maintained charge
neutral in order to obtain a finite value for the total energy.
This is generally enforced by the use of an homogeneous
compensating background. For instance, this background is
readily enforced in the reciprocal space term of the Ewald
summation technique [8,9]. But even with a charge-neutralized

simulation cell, the electrostatic potential is only defined up to
a constant. The constant is intrinsic to the long-range nature
of the Coulomb interaction. The Ewald summation trick,
for instance, transforms the mathematically conditionally
convergent sum of Coulomb interactions into two absolutely
convergent sums up to a constant. The impossibility to define
an absolute electrostatic potential is not without consequences
when we want to calculate the formation energy of a charged
defect [10]. The formation energy as calculated from ab
initio codes needs to be corrected with two terms: the
so-called electrostatic energy and the potential alignment
corrections [11–14].

As long as formation energies are concerned, the electro-
static energy correction is in general large and converges very
slowly as �−1/3, where � is the supercell volume, whereas the
potential alignment correction is small and converges quickly
as �−1. In a previous paper [15], we have demonstrated
the surprising statement that when evaluating the relaxation
volume of a charged defect, the potential alignment indeed
prevails over the other correction. Furthermore, it yields a
correction that converges to a finite value with the supercell
size. In other words, the uncorrected relaxation volume does
converge, but to a wrong value. The recent literature [14,16]
has however shown that the potential alignment prescription
we adopted in our previous study [15] was unfortunately not
adequate. Some of our earlier conclusions need to be revised.

In the present article, we use the latest understanding in
charge corrections [14,16] in order to explore the interplay
between the electrostatic potential definition and the calculated
pressure, relaxation volume, and elastic interaction energies
in a charged simulation cell. We will demonstrate that these
three mentioned physical properties can only be properly
defined through the connection with a model for the variation
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of the electrostatic potential as a function of the volume.
This problem is equivalent to obtaining reliable absolute
deformation potentials (ADPs), quantities that measure the
variation of the absolute position of the electron energies
with respect to the volume. The ADP can be calculated
either with the simplistic model-solid theory introduced by
van de Walle [17] in the 1980s or the more accurate strained
superlattice calculations [18–20]. Another way to circumvent
the problem would be to limit ourselves to groups of defects
whose total charge would vanish, such as Frenkel or Schottly
pairs [21]. However, this would leave many defect charge states
not properly described.

The article is organized as follows. Section II is an
introduction to the problem of the definition of pressure
with the example of the free carriers in semiconductors. In
Sec. III, we describe the general framework for the definition of
absolute pressures. Section IV provides several applications to
deep and shallow defects, gives an example for the connection
with elasticity models, and sketches the consequences for ion
solvation. Finally Sec. V gives some concluding remarks.
Atomic units will used be throughout the text.

II. FREE CARRIER INDUCED PRESSURE IN
SEMICONDUCTORS

In this section, we propose to examine a simple case in order
to provide the first insights into the problem of defining the
pressure in charged systems. Let us consider the calculation
of the induced pressure by a free carrier in a semiconductor,
that is, a hole in the valence band or an extra electron in the
conduction band.

To approach this situation within a periodic ab initio
framework, we propose to add or subtract a tiny part q of
an electron to the system. In periodic calculations, which
use the reciprocal space technique, the additional charge is
automatically compensated by an opposite background density
−q/�, where � is the volume of the cell. The image charge
error is expected to be vanishing for two independent reasons:
(i) the leading monopole correction [11] scales as q2 and
therefore can be made very small when q is a percent of a
charge; (ii) the small additional charge is mostly carried by
the top valence wave functions or the bottom conduction wave
functions that are delocalized all over the cell, which makes
the charge correction vanishing.

An evaluation of the induced pressure in a charged unit cell
of silicon is proposed in Fig. 1, as obtained from three different
plane-wave codes ABINIT [22], QUANTUM ESPRESSO [23], and
VASP [24]. Surprisingly, even though we employed the exact
same convergence parameters and pseudopotentials for ABINIT

and QUANTUM ESPRESSO the two results noticeably differ. The
projector augmented wave [25,26] (PAW) results from VASP

are also very different. This puzzling statement calls for more
investigations.

The pressure of a system with charge q is defined as

P (q) = −∂E(q)

∂�
, (1)

where E(q) is the total energy of the system with charge q.
As the values of q used here are relatively small, a first-order
Taylor expansion of the total energy with respect to the charge
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FIG. 1. (Color online) Pressure induced in a charged unit cell
of silicon as obtained from different calculation conventions. ABINIT

uses the zero average potential convention (blue up triangle symbols),
QUANTUM ESPRESSO uses an other convention, named N convention
in our previous study [16], (orange, down triangle symbols), VASP

uses a zero average convention for the smooth potential (black, left
triangle symbols). Absolute pressures as obtained from model-solid
theory is shown with the red line.

is legitimate:

P (q) = −∂E(0)

∂�
− q

∂

∂�

(
∂E

∂q

)
. (2)

The first term in the right-hand side is just the pressure in the
charge neutral cell P (0), while the second term can be worked
out with Janak’s theorem [27].

Indeed, the charge q = Z − N in the cell can be expressed
as a function of the number of electrons N and of the number of
positive charges from nuclei Z. Then, Janak’s theorem implies
that1

∂E

∂N

∣∣∣∣
N−

= εv (3)

∂E

∂N

∣∣∣∣
N+

= εc, (4)

where εv stands for the top valence Kohn-Sham orbital energy
and εc is the bottom conduction Kohn-Sham orbital energy.
Note that this expression of the Janak’s theorem assumes an
exchange-correlation potential with no discontinuity [28] as it
is the case of most of the practical approximations.

Finally, introducing these expressions into Eq. (2) yields

P (q) = P (0) + q

�

∂εv

∂ln�
when q > 0 (5)

P (q) = P (0) + q

�

∂εc

∂ln�
when q < 0. (6)

1The Janak’s theorem was originally derived for finite systems, but
it can immediately be transposed to the infinite case, provided that
the state index i is thought as a combined index on band and k point.
No assumption of locality nor of finite extension is actually needed
in the derivation.
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In these equations, one recognizes the so-called deformation
potential of state i

ai = ∂εi

∂ln�
. (7)

Owing to the impossibility of uniquely defining the electro-
static potential within periodic boundary condition, the origin
of the energy scales for the eigenvalues is arbitrary. Its variation
with respect to the volume is also arbitrary. As a consequence,
the deformation potentials introduced in Eq. (7) are convention
dependent. That is precisely why the different periodic codes
have yielded different values for P (q) in Fig. 1. The different
conventions used in ABINIT, QUANTUM ESPRESSO, and VASP are
studied in detail in Ref. [16]. This latter work is simply used
to understand the connection between the different codes, but
does not induce any correction.

In the natural band offset approach, authors have been able
to define absolute values for the potential, eigenvalues, and as
a consequence for the deformation potentials [17]. These are
the so-called absolute deformation potential (ADP), labeled
āi . The method for calculating the absolute quantities will be
detailed later on in Secs. III C and III D. In the following, we
will note with a bar all the physical quantities that are anchored
to absolute references.

Knowing the ADP for a semiconductor hence provides
well-defined expressions for the pressure whatever the
charge q:

P̄ (q) = P (0) + q

�
āv when q > 0 (8)

P̄ (q) = P (0) + q

�
āc when q < 0. (9)

Note that P (0) does not need a bar symbol, since the charge
neutral pressure is (fortunately) a well-defined quantity.

We have calculated āv = 2.37 eV using the model-solid
theory of van de Walle [17] (detailed in Sec. III C) for silicon,
which agrees very well with the value 2.38 eV calculated in
Ref. [20] with the strained superlattice technique (detailed
in Sec. III D). We obtained āc = 4.03 eV under the same
conditions. With these absolute values, we can now obtain
the absolute pressure for charged silicon unit cells as shown in
Fig. 1. Owing to the similarity of the numerical ADP values,
the result using the strained superlattice evaluation would be
indistinguishable from the model-solid lines.

A consequence of nonvanishing ADP in semiconductors is
the finite value for the relaxation volume �� induced by a free
electron in conduction or a free hole in valence. If we limit
the equation of state of the semiconductor to its bulk modulus
dependence B, one obtains

��(h+) ≈ P̄ (+1)�

B
= āv

B
(10)

��(e−) ≈ P̄ (−1)�

B
= − āc

B
. (11)

An experimental value for silicon is available in the
literature for the free electrons in silicon [29]. −5.5 ± 1.3
Å3, which is similar to our calculated value, −6.65 Å3. As the
experimental data had been obtained in heavily doped silicon

sample (xGa = 0.1), the comparison with our value can be
considered as satisfactory.

III. DEFINING ABSOLUTE PRESSURES

A. Total energies and pressures of charged systems depend on
the average electrostatic potential convention

Beyond the particular case of free carriers, the pressure of
any charged cell is indeed ill defined. This uncertainty arises
from a definition problem of the total energy itself for charged
systems. This problem was addressed in great detail in our
previous work [16], however, it is instructive to review here
where the lack of an absolute definition enters in the total
energy expression of the periodic ab initio framework.

The easiest way to appreciate the ill definition of the total
energy of charged systems is to make use of the Janak’s
theorem again [27]. The same final result could be alternatively
obtained by detailing each of the terms of the total energy of a
charged system. The derivation would be, however, much less
concise. Janak’s theorem shows the link between total energies
Etot and electron eigenvalues:

Etot(q) − Etot(0) =
∫ q

0
dq

∂Etot(q)

∂q
(12)

= −
∫ q

0
dqεf (q), (13)

where εf (q) is the frontier orbital, either εv for positive q or
εc for negative q.

As we already insisted on above, there is no way to
calculate the absolute electrostatic potential and therefore the
eigenvalues on an absolute scale within periodic boundary
conditions. In order to track down the effect of the constant
value, let us emphasize the zero-average convention with
primed symbols:

εf (q) = ε′
f (q) + 〈vH (�)〉. (14)

〈vH (�)〉 is the average value of the Hartree potential, which
incorporates both the electron density n(r) and the nuclei
density ñZc(r) following the notations of Ref. [16]. Note that
the Hartree potential differs by the sign with the electrostatic
potential, due to the conventional negative sign of electrons.
The dependence of the average value on the cell shape and
volume is outlined with our notation 〈vH (�)〉. However, in
all the practical implementations we are aware of, 〈vH (�)〉
is independent from q. Then the integral in Eq. (12) can be
calculated by introducing the total energy with zero-average
convention E′

tot and noting that the neutral total energy does
not depend on the convention Etot(0) = E′

tot(0):

Etot(q) = E′
tot(q) − q〈vH (�)〉, (15)

which is the final result. This last equation highlights the
difference between the zero-average total energy and the
general expression. As a consequence, as soon as q is nonzero,
the total energy shows a dependence on the arbitrary average
value of the electrostatic potential.

As the convention used for 〈vH (�)〉 can be cell dependent,
the pressure of charged system is also ill defined

P (q) = P ′(q) + q

�

∂〈vH (�)〉
∂ln�

, (16)
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FIG. 2. (Color online) Pressure induced by a vacancy V 2+
C in

diamond as calculated from a cubic 63-atom supercell as a function of
the local pseudopotential cutoff radius rc. The local pseudopotential
is the d component and is expected to have little influence on the
physical results in diamond (mainly sp electrons).

where the logarithm derivative has been readily introduced for
consistency with the ADP definition.

As shown in Fig. 2, different codes with different electro-
static convention give different results for the pressure of a
charged supercell containing a +2 vacancy in diamond. The
norm conserving version of ABINIT uses a zero-average con-
vention, QUANTUM ESPRESSO convention, named N convention
in Ref. [16]. None of the mentioned conventions allow one
to obtain physically sound pressures and therefore relaxation
volumes. The zero-average convention pathologically depends
on the details of the pseudopotential generation. The N

convention is rather insensitive to the pseudopotential but
yields nonphysically large pressures of about −18 GPa. The
two corrected curves will be discussed later in the section.

B. Definition of absolute pressures

In the context of band offset calculations, i.e., the respective
positioning of valence or conduction bands of two semicon-
ductors in contact, several techniques have been developed
to circumvent the issue of the unknown average electrostatic
potential. These techniques can be sorted into two families:
the strained superlattice calculations [18] and the electronic
density modeling [17].

Let us postpone the connection with a specific technique
and just allow us to assume that it is indeed possible to define
a physically sound average potential 〈v̄H (�)〉. Following the
convention introduced in Sec. II, we wrote the physical
potential with a bar. Using this assumption, the absolute
eigenvalues ε̄i of any state i can be uniquely defined:

ε̄i = εi + 〈v̄H (�)〉 − 〈vH (�)〉, (17)

where εi is the eigenvalue obtained from a periodic code having
an average Hartree potential 〈vH (�)〉.

Hence, the total energy and most importantly for us the
pressures can be obtained on an absolute scale. Writing

Eq. (16) for the absolute quantities yields

P̄ (q) = P (q) + q

�

∂ [〈v̄H (�)〉 − 〈vH (�)〉]
∂ln�

, (18)

which is our final expression for the absolute pressure P̄ (q).
As a conclusion, provided that one could obtain the

variation of the average electrostatic potential on an absolute
scale, the pressure and hence all the derived quantities have
a physical meaning now. Note that we only need to know the
variation of the electrostatic potential and not its value. Our
approach then relies on a weaker assumption than the one
commonly used to build the so-called natural band offsets.

C. Absolute pressures with model-solid theory

With the model-solid theory [17], it is indeed possible
to provide an approximate value for the average potential.
Though approximate, this theory will be very insightful for
our problem and its scaling properties.

The model-solid theory states that the average electrostatic
potential in the crystal is identical to the average electrostatic
potential of the superposition of independent neutral spherical
atoms. These neutral spherical atoms are usually the config-
urations used for the pseudopotential generation and can be
calculated easily for each atom a through

αa =
∫

dr4πr2vH

[
na + ña

Zc

]
(r), (19)

where vH [na + ña
Zc] is the Hartree potential generated by the

neutral atom electron density na and the smooth charge ña
Zc

that would induce the local ionic potential of atom a. Then the
model-solid theory simply supposes that the physical Hartree
potential in the crystal is well approximated by

〈v̄H (�)〉 ≈ 1

�

∑
a

αa, (20)

where a runs over the atoms in the cell. The model-solid theory
would be exact if there were no electronic relaxation in the
crystal compared to the collection of the isolated atoms.

Hence, let us write down the correction to the pressures
compared to a zero-average potential convention pressure
P ′(q):

P̄ (q) = P ′(q) − q

�2

∑
a

αa. (21)

In Fig. 2, the absolute pressure P̄ obtained with the formula
in Eq. (21) is shown to deviate much from the bare data
obtained from a straightforward calculation. The calculated
pressure value is much more realistic and is almost independent
from the pseudopotential details.

It is worth spending some time analyzing this formula for
the correction and its asymptotic behavior when achieving
the dilute limit. To approach the dilute limit for a defect in
a matrix or for an ion in solution, one considers larger and
larger supercells. Taking this limit, not only � increases but
also the term

∑
a αa since the summation includes more and

more atoms.
Let us consider the case of a single substitutional impurity

atom in order to fix the ideas. Let Nbulk be the number of bulk
atoms in the supercell. The supercell volume is Nbulk�0 with
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�0 the volume per bulk atom and the sum over the atomic
potentials reads∑

a

αa = (Nbulk − 1)αbulk + αimp. (22)

Hence the correction to the pressure for a single substitutional
impurity is

P̄ (q) = P ′(q) − q

�2
0

(
αbulk

Nbulk
+ αimp − αbulk

N2
bulk

)
. (23)

The previous expression tells us two important facts: (i) The
leading term of the error in the pressure of a charged supercell
is 1/Nbulk; (ii) The leading term depends on the bulk material
quantities only. The details of the particular defect or impurity
type induce some faster converging terms in 1/N2

bulk. We will
neglect these terms from now on.

The slow convergence of the error has a huge consequence
when evaluating the relaxation volume of a charged defect or
of a solvated ion, as previously noticed in our earlier work [15]:
the finite-size error in the relaxation volume converges to
a nonzero value when achieving the dilute limit. Indeed,
assuming the equation of state is limited to a second-order
polynomial as in Sec. II, the error in the relaxation volume
reads

�� − ��′ = − q

B

αbulk

�0
(24)

= − q

B
〈v̄H (�)〉. (25)

This error is indeed independent from the supercell size.

D. Absolute pressures from published ADP

The model-solid theory allowed us to derive some inter-
esting scaling behavior and general features of the absolute
pressures and absolute relaxation volumes. However it is a
simplistic model whose predictions can noticeably deviate
from the higher accuracy strained superlattice calculations.
The strained superlattice technique consists in monitoring
the average potential change through an interface between
a shrunken and a stretched region of the same material. The
position of the atoms are fixed in the direction perpendicular to
the interface, whereas the positions in the other two directions
are allowed to relax. A strained superlattice calculation permits
one to obtain the absolute deformation potential for one
strained direction. Then the isotropic value is calculated thanks
to an average over several superlattice stacking directions. The
reader is referred to Ref. [30] for additional details.

We now show how the absolute pressure can alternatively
be obtained from the knowledge of a material ADP value,
previously calculated by any accurate technique. By combin-
ing Eq. (17) and Eq. (18), and introducing the definition of
the deformation potential from Eq. (7), the absolute pressure
becomes

P̄ (q) = P (q) + q

�
(āi − ai) . (26)

In other words, the knowledge of the ADP for any state i

is sufficient to reconstruct the absolute pressure. As shown in
the previous section, the ADP of the bulk material is a fast
converging approximation to the defective supercell ADP.

For instance, in Fig. 2 we evaluated Eq. (26) with the ADP
value for the top valence band of diamond (2.16 eV) published
by Li and coworkers [20]. Again, the calculated pressure has
a realistic magnitude, but it differs somewhat from the model-
solid evaluated pressure. The difference is to be ascribed to the
limited predictive power of the model-solid theory.

Let us summarize here the practical way to obtain absolute
pressures for a charged supercell representing a charged specie
in a solid or liquid matrix:

(i) Find an ADP for any state of the bulk āi , either from
the literature or from a new calculation (strained superlattice
technique or model-solid theory).

(ii) Calculate the uncorrected deformation potential in a
unit cell of the bulk ai for the same state i. This value depends
on the calculation scheme: details of the pseudopotential
or PAW local potential, convention used for the average
electrostatic potential, etc.

(iii) Calculate the pressure in the supercell containing
the charged specie P (q). This value also depends on the
calculation scheme.

(iv) Evaluate the absolute pressure P̄ (q) with the formula
in Eq. (26). This value does not depend on the calculation
technical details anymore.

IV. APPLICATIONS

A. Relaxation volume as a function of the charge state

Here we would like to illustrate the method with the silicon
vacancy. The silicon vacancy case is interesting because of the
Jahn-Teller distortion that appears for charge states +1, 0, −1,
and −2, but that is absent for charge state +2.

Figure 3 represents the relaxation volume of a single
vacancy in silicon from different calculations. These data
were obtained from a norm-conserving pseudopotential cal-
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FIG. 3. (Color online) Relaxation volume of a single vacancy
VSi in silicon as a function of the charge state expressed in atomic
volume �0. The charged pressures have been obtained in 215-atom
supercells calculated with the zero-average potential convention
(blue, up triangle symbols), with the N convention (orange, down
triangle symbols), or corrected with the knowledge of the silicon
ADP (red, square symbols).
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FIG. 4. (Color online) Absolute relaxation volume of shallow
dopants in silicon as a function of the charge state. The charge state
dependence of the relaxation volume of free hole and free electrons
are a guide to the eyes.

culation with ABINIT [22] using a 215-atom cubic supercell
within the local-density approximation (LDA) within different
conventions for the electrostatic potential. The pressure for
the charged supercell was calculated for the supercells at the
equilibrium lattice constant of the bulk. Then the relaxation
volume is evaluated with ��(q) = P (q)�/B as mentioned
earlier in the text. The different conventions (zero-average
potential or N convention) again yield different values for the
relaxation volume.

Using a published value [20] for the ADP of the top valence
of silicon (2.38 eV), we were able to calculate absolute pres-
sures through Eq. (26). The corresponding absolute relaxation
volumes plotted in Fig. 3 show two interesting features: First,
there is a discontinuity in the relaxation volume when the
Jahn-Teller distortion disappears for charge state +2. Second,
even for absolute relaxation volumes, an important charge state
dependence can be observed. But this dependence strongly
differs from the variations obtained with the naive conventions.

B. Defect relaxation volume compared to free
carrier relaxation volume

At this stage, a legitimate question arises: Is it indeed
necessary to calculate the relaxation volume of the charged
defects? Could we evaluate the relaxation volume thanks to
the combination of a neutral defect and free carriers?

The answer to that question depends on the defect type. Let
us illustrate this with two examples.

The first example reported in Fig. 4 shows the relaxation
volume dependence of shallow dopants in silicon. We consid-
ered two shallow acceptors (Al and Ga) and two shallow donors
(P and As) in their relevant charge states. The data represented
Fig. 4 are absolute relaxation volumes obtained from a
published ADP value [20]. The shallow defect relaxation
volumes were extracted from 216-atom supercell calculations.
Even though this doping level is still far from the dilute limit,
the relaxation volume appears as convergence with respect to
the supercell size.

Once again the relaxation volume strongly depends on
the charge state. However, the dependence can be easily
rationalized for shallow defects. A shallow acceptor induces
in principle a defect state very close to the valence band
maximum. This delocalized defect state is very similar in
nature to the top valence wave function. It is then expected
that the relaxation volume difference between the occupied
and the empty defect state is of the order of a free hole
relaxation volume. The corresponding statement is valid for
donors and free electrons relaxation volume. In other words,
the relaxation volume of the charged shallow defects can be
well approximated by

��(Al−Si) ≈ ��
(
Al0Si

) − ��(h+) (27)

��(P+
Si) ≈ ��

(
P0

Si

) − ��(e−). (28)

The quality of the approximation is demonstrated in Fig. 4
by the similarity between the thin black lines and the actual
calculations of the charged supercells.

As a consequence, for shallow defects, there is not much
interest in calculating the relaxation volume of the ionized
dopant through an actual calculation. It could rather be
obtained through Eqs. (27), (28).

The second example reported in Fig. 5 is the oxygen
vacancy case in MgO in a 215-atom supercell. This example
demonstrates that the rationale used for shallow defects is
not valid for deep defects. We carry out the same analysis
as previously and compare the calculated relaxation volume to
those of the free carriers. The relaxation volume of VO is linear
with the charge state. However, the slope cannot be captured
by the ADP of the top valence, nor bottom conduction. In
other words, the ADP of the oxygen vacancy state does
not match any of the band edges. In this case, a complete
defect calculation for each of the charge state cannot be
avoided.
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FIG. 5. (Color online) Relaxation volume of the oxygen vacancy
in MgO as a function of the charge state, expressed in units of volume
per atom �0. The relaxation volume of VO (red, square symbols) is
compared to that of free holes (dotted black line) and of free electrons
(dashed black line).
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C. Elastic interaction corrections in charged supercells

The definition of an absolute pressure is also beneficial in
the context of finite-size effects corrections. Indeed, a point
defect introduced in a host bulk material induces long-range
elastic fields, which create spurious interactions as soon as
the supercell technique is employed. In order to achieve the
dilute limit, one should remove this spurious interaction energy
between the defect periodic images.

In a previous study [31], we had developed a scheme
that evaluates this interaction energy in the framework of the
linear elasticity theory. The correction, labeled �E here, is
subtracted to the direct ab initio calculation of the defective
supercell energy. The dilute limit is then achieved with only
few atoms, as long as only elastic interactions are concerned.
The scheme we proposed is very handy in practical situations,
since the only inputs required are the elastic constants of the
host material and the stress tensor of the supercell with the
defect.

We would like here to extend the original study that included
only neutral point defects to the specific case of charged
defects. As shown here, the pressure and then the stress
tensor of a charged supercell are ill defined. The absolute
stress tensor, instead of a potential convention-dependent stress
tensor, should then be calculated to obtain the meaningful
elastic corrections.

In Sec. II, we extensively used the model-solid theory to
derive the general properties of the absolute pressures. Within
the model-solid theory, the correction to the electrostatic
potential is only a function of the volume �, as written in
Eq. (20). Therefore only the trace of the stress tensor is affected
by shifting from a given potential convention to the absolute
values. Here, we thus only correct the isostatic pressure part of
the stress tensor to obtain the absolute stress tensor. It should
be however noted that the interface calculations as proposed
by Li et al. [30] measure a directional dependence of the ADP.
However this dependence is not huge, so the correction of the
deviatoric part of the stress tensor should be of second order.

We illustrate this effect for a vacancy in silicon, with charge
states +2, +1, 0, −1, and −2, using a 215-atom supercell. In
Table I, we compare the evaluation of the elastic corrections
�E′ using the direct output of a zero-average convention
code (such as the norm-conserving pseudopotential version of
ABINIT), with the absolute evaluations of the elastic corrections

TABLE I. Pressure and spurious elastic interaction induced by a
single vacancy in a 215-atom supercell of silicon in its different stable
charge states. The zero-average pressures and the corresponding
elastic corrections are provided with primed labels. The absolute
pressures and the corresponding elastic corrections are provided with
overlined labels.

P ′ �E′ P̄ �E

VSi GPa meV GPa meV

+2 −0.58 19 −0.04 0
+1 −0.70 38 −0.43 21
0 −0.56 44 −0.56 44

−1 −0.38 23 −0.65 39
−2 −0.26 17 −0.80 49

�E. Besides for the neutral case of course, the corrections
largely deviate from the other convention evaluation. This part
had the simple purpose of demonstrating the approach. We
acknowledge that, for a single vacancy in a 215-atom supercell,
the magnitude of the correction is rather small. However, larger
defect clusters may induce much larger elastic interaction as
we showed in Ref. [31].

D. Sketching the consequences for ab initio molecular dynamics
simulations of ion solvation

Here we sketch the consequence of our developments for
ion solvation. An actual calculation would be beyond our
computational resources and beyond the scope of the paper.

The method of choice to determine the hydration properties
of ions in solution is the ab initio molecular dynamics. Owing
to the price of such calculations, the simulation cells are limited
to few solvent molecules. For water, a simulation with 64 water
molecules in a 12.44 Å edge cubic box is the most commonly
used setup nowadays [32,33]. In such small cells, only one ion
could be introduced: no counterion is present in the simulation
box yielding a nonzero total charge. Therefore all the previous
developments can be applied in the context of ions in solution
too. Of course, the presence of ions in solution gives rise to the
phenomenon of electrostriction. Some authors have ascribed
the unusually large pressures they obtain in their simulations
to this truly physical effect [34]. However, in the periodic cell
calculation, there is an intrinsic error in the pressures. That is
why most of the authors discard the pressures obtained in their
calculation and rather assume a zero molar partial volume
for the introduced ion [32,33]. While this approximation is
certainly harmless for monoatomic ions, its consequences have
never been controlled for larger molecular ions.

We have adapted the model-solid theory, for which the solid
are considered as a sum of neutral atoms, to the specific case of
liquid water. Let us approximate the potential in a liquid water
simulation cell by a collection of neutral water molecules. With
our norm-conserving pseudopotentials, we have evaluated that
the error in the pressure for a 64 H2O molecules box can be
as large as 0.5 GPa per unit charge q when the zero-average
convention is used. As the bulk modulus of liquid water is one
or two orders of magnitude smaller than the one of solids, the
consequences for the relaxation volume of the simulation box
are catastrophic. Considering an experimental bulk modulus
B = 2.2GPa, a monovalent ion would induce a 20% error of
the simulation cell volume.

In the context of ions in solution, the change of volume
induced by the ion (i.e., the relaxation volume) is named the
partial volume. It is usually reported per mole. This is the so-
called partial molar volume of the ionic species. If one wants
to avoid any trouble, one could define the partial molar volume
of pairs of ion and counterion. But this would preclude the use
of small cells for the simulation and the experimentalists often
desire to define an individual partial molar volume too [7,35].

In this context, it would be extremely useful to evaluate
an accurate value of the ADP of liquid water from ab initio
molecular dynamics. Such a value could be used with more
confidence than the model-solid theory value we used here,
however this evaluation is beyond the scope of the present
article.
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V. CONCLUSION

We have shown that the total energies, the pressures, the
relaxation volume, and the elastic corrections are ill-defined in
a charged supercell. The use of charged supercells is, however,
crucial for point defects in semiconductors and for solvated
ions for instance. We have proposed a general scheme to fix this
definition problem. The solution requires the knowledge of the
ADP of one single state of the bulk material. The calculation
ADP requires some extra calculations or can be obtained from
literature. In practice, ADPs are extracted either from density
modeling (fast but sometimes inaccurate) [17] or from strained
superlattice calculations (slow but more accurate) [18]. Once
an ADP value is obtained, then the pressure, the relaxation
volume, and the elastic corrections are uniquely defined. To
first order, only bulk ADPs are indeed necessary to obtain
absolute pressures for charged defects. Many bulk ADPs are
readily available from literature [20].

In some cases, for shallow defects especially, the defect
relaxation volume has the same charge state dependence as

the free carriers. However, in the vast majority of the cases,
the defect relaxation volume has its own particular behavior
with respect to the charge state. This specific behavior has two
origins: Different structures may be stabilized for different
charges states and there is no reason why the defect state ADP
should be similar to the ADP of the band edges.

In all the practical cases considered in the present work,
a supercell containing around 200 atoms was sufficient to
converge the relaxation volume of a defect, even for shallow
defects, which present delocalized defect wave functions. We
do not exclude the possibility that some defects may experience
a slower convergence. This work may pave the way towards
the ab initio evaluation of the partial molar volume of ions in
solution, which has been only sketched here.
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