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The use of a special quasirandom structure (SQS) is a rational and efficient way to approximate random alloys. A
wide variety of physical properties of metallic and semiconductor random alloys have been successfully estimated
by a combination of an SQS and density functional theory calculation. Here, we investigate the application of
an SQS to the ionic multicomponent systems with configurations of heterovalent ions, including point-charge
lattices, MgAl2O4 and ZnSnP2. It is found that the physical properties do not converge with the supercell size of
the SQS. This is ascribed to the fact that the correlation functions of long-range clusters larger than the period of
the supercell are not optimized in the SQS. However, we demonstrate that the physical properties of the perfectly
disordered structure can be estimated by linear extrapolation using the inverse of the supercell size.
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I. INTRODUCTION

A. Special quasirandom structure (SQS)

Density functional theory (DFT) calculation [1,2] enables
us to compute a wide variety of physical properties. However,
it is not directly applicable to random alloys since they
are expressed only by average occupancies of constituent
atoms. The use of a special quasirandom structure (SQS) [3]
is one approach to approximating random alloys. In this
approach, a periodic ordered structure having a similar atomic
configuration to the perfectly disordered structure is used,
as mentioned below. By replacing the perfectly disordered
structure with a periodic ordered structure, physical properties
can be easily computed by DFT calculation. An SQS has been
widely used in DFT calculation to estimate the physical prop-
erties of random alloys such as the mixing enthalpy [4–16],
lattice parameters [4–7], elastic properties [17], magnetic
properties [4,18], paramagnetism [19,20], lattice vibrational
properties [12,21], electronic structure and related properties
such as the band gap [8,22–35], optical absorption spec-
trum [22], and piezoelectric properties [36].

The idea of the SQS was derived from the cluster expansion
(CE) method [37–39]. Within the formalism of the CE
method for binary alloys, a physical property � for an alloy
configuration is written as

� =
∑

α

Vαϕα, (1)

where Vα and ϕα are called the effective cluster interaction
(ECI) and the correlation function of cluster α, which ranges
from −1 to +1, respectively. The correlation function is used
to find an SQS similar to the perfectly disordered structure.
The similarity of two alloy configurations is usually measured
by the squared norm of the difference of the correlation
functions. The similarity of a candidate structure and the
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perfectly disordered structure is expressed as
∑

α

∣∣ϕα − ϕ(disorder)
α

∣∣2
, (2)

where ϕ(disorder)
α denotes the correlation function of cluster α

for the perfectly disordered structure that is analytically given
according to its composition.

B. Cluster truncation for SQS

The definition of similarity given by Eq. (2) can be
composed of an infinite number of clusters. However, a small
number of truncated pairs has been practically adopted to
find the SQS. For instance, in the original paper by Zunger
et al. [3], SQSs were obtained by minimizing a similarity
defined by pairs up to the fourth nearest neighbor (NN) with a
constraint that the correlation function of the first NN pair is
exactly the same as that of the perfectly disordered structure.
Generally, the similarity must be defined without any a priori
knowledge of ECIs. Therefore, the cluster truncation has been
determined from an empirical consideration or occasionally
from a convergence test of the physical properties with an
increasing number of pairs.

In the general case of optimizing the correlation functions
of only a small number of pairs, an SQS with a small number
of atoms can be adopted. Such an SQS can be explored
exhaustively by calculating the correlation functions of all
candidate alloy configurations expressed by a small number
of atoms, which are obtained by a search for derivative struc-
tures [40,41]. Among the candidates, the alloy configuration
with the closest correlation functions to those of the perfectly
disordered structure is regarded as the best SQS.

To guarantee the accuracy of the SQS, however, the
numbers of atoms and clusters used for the SQS should be
determined very carefully. Let us consider an SQS with a com-
position of 0.5 in a binary system with the simple cubic lattice.
This SQS is constructed by optimizing the correlation func-
tions of pairs up to the fifth NN by simulated annealing [42,43]
within the 4 × 4 × 4 supercell of the simple cubic lattice. The
correlation functions of pairs up to 40th NN of the SQS are
shown in Fig. 1. As can be seen in Fig. 1, the correlation
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FIG. 1. (Color online) Correlation functions of SQS with the
composition of 0.5 in binary systems with the simple cubic lattice. The
analytical correlation functions of the perfectly disordered structure
are exactly zero. The SQS is constructed by optimizing the correlation
functions of pairs up to the fifth NN within a 4×4×4 supercell. The
correlation functions of the 15th and 34th NN pairs are exactly one
because the 15th and 34th NN pairs are always composed of the same
types of atoms owing to the periodicity of the supercell.

functions of several pairs deviate from those of the perfectly
disordered structure. In particular, the correlation functions of
the 15th NN and 34th NN pairs are exactly unity owing to
the periodicity of the supercell. When the ECIs of these pairs
are not negligible, the deviation of the correlation functions
generates systematic errors. To improve the accuracy of the
SQS, it is necessary to increase the number of atoms of the SQS
and/or the number of pair clusters used for the optimization.

With the exception of multicomponent metallic or isovalent
ionic systems, the contributions of long-range ECIs to config-
urational energetics are not negligible in heterovalent ionic
systems, which are ascribed to long-range electrostatic inter-
actions [44]. Therefore, careful validation of the convergence
of long-range interactions is necessary to find an SQS in such
systems. In this paper, we examine the error resulting from
the use of an SQS for the calculation of physical properties
in heterovalent ionic systems. The dependence of the SQS
energy on the numbers of atoms and pairs used to optimize
the SQS will be demonstrated. As heterovalent ionic systems,
model systems described only with point charges on the spinel
and zinc-blende lattices are first examined, hereafter called
the “point-charge spinel lattice” and “point-charge zinc-blende
lattice,” respectively. The use of such model systems makes
it easier to discuss the error of the SQS energy because the
exact energy of the perfectly disordered structure can be easily
computed. Then, the SQS is applied to the DFT calculation
of the energy, volume, and band gap in actual MgAl2O4 and
ZnSnP2 systems.

II. ENERGY OF DISORDERED STRUCTURE
IN POINT-CHARGE LATTICE SYSTEMS

A. Point-charge spinel and zinc-blende lattices

To begin with, we consider cation disordering on a
point-charge spinel lattice with the formula AB2C4 and a

point-charge zinc-blende lattice with the formula ABC2,
where A and B are cations and C is an anion. The spinel
structure has two types of cation sites, namely, tetrahedral
fourfold-coordinated and octahedral sixfold-coordinated sites.
The number of octahedral sites is double the number of
tetrahedral sites. When all the tetrahedral sites are occupied
by cation A, the spinel is called “normal.” When all the
tetrahedral sites are occupied by cation B, the spinel is
called “inverse.” In the zinc-blende lattice, cations occupy
half of the fourfold-coordinated tetrahedral sites and form
the face-centered-cubic (fcc) lattice. When cations A and B

have the D022 configuration, the configuration is called the
chalcopyrite structure.

In point-charge lattices, interatomic interactions are de-
scribed only by the electrostatic interactions between point
charges. The electrostatic energy Ees for a point-charge
configuration is expressed by

Ees = 1

2

∑

i,j

qiqj

rij

, (3)

where qi and rij denote the charge of lattice site i and the
distance between lattice sites i and j , respectively. We adopt
a point-charge spinel lattice with qA = +2, qB = +3, and
qC = −2, where only the cation disordering is considered.
The unit-cell shape is kept cubic. The lattice constant and
internal parameter are fixed to 8 Å and 0.3855, respectively.
For the point-charge zinc-blende lattice, charges of qA = +2,
qB = +4, and qC = −3 are used. The lattice constant of
the point-charge zinc-blende lattice is set to 5.5 Å. The
electrostatic energy is evaluated by the Ewald method [45–47]
using the CLUPAN code [48–50].

The electrostatic energy of the perfectly disordered struc-
ture can be exactly evaluated using the average point charges
of cation and anion sites, qcation and qanion. In the perfectly
disordered structure of the point-charge spinel lattice, qcation =
+8/3 and qanion = −2. Similarly, for the point-charge zinc-
blende lattice, the average point charges are qcation = +3
and qanion = −3. The exact electrostatic energies of the
perfectly disordered structure for the point-charge spinel and
zinc-blende lattices are −78.206 and −89.139 eV/cation,
respectively, as listed in Table I.

B. Supercell approaches

We then estimate the energy of the perfectly disordered
structure using supercell approaches and compare it with
the exact energy. Here, we adopt two types of supercell
approaches. One is based on the generation of a huge number
of random configurations. To generate random configurations,
several types of supercell are constructed by isotropic expan-
sions of the primitive cell up to 8×8×8 (7162 atoms) and
12×12×12 (3456 atoms) for the point-charge spinel and zinc-
blende lattices, respectively. For each supercell, 107 random
configurations are generated and the average of their energies
is evaluated. Although this average corresponds almost to the
energy of the disordered structure within the supercell, the
approach using a huge number of random configurations is
not practically applicable to the DFT calculation.

The other approach is based on SQS calculations. Contrary
to the use of a huge number of random configurations, it
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TABLE I. Exact electrostatic energy of the perfectly disordered structure for the point-charge spinel and zinc-blende lattices
(unit: eV/cation). Energies extrapolated from the average energies of random configurations and SQS energies are also shown.

Exact Random SQS

Spinel −78.206 −78.215 −78.194 (60th NN) −78.249 (300th NN)
Zinc blende −89.139 −89.176 −89.097 (10th NN) −89.118 (50th NN)

is practical to use the SQS to estimate the energy of the
perfectly disordered structure by DFT calculation. SQSs are
explored within a fixed size of supercell using simulated
annealing instead of by computing correlation functions for
all possible configurations. In this scheme, the accuracy of
the SQS is determined by the supercell size L and the
number of clusters m used to optimize the SQS. Since a
unique solution cannot be obtained by simulated annealing,
the simulated annealing is repeated ten times for each L and
m. SQSs for the spinel and zinc-blende lattices are searched
for using several types of supercell that are up to 6×6×6
and 12×12×12 expansions of the primitive cells, respectively.
Moreover, several pairs up to the 300th and 55th NNs are
adopted to optimize the SQS in the point-charge spinel and
zinc-blende lattices, respectively. The SQS explorations are
performed using the CLUPAN code.

C. Correlation functions by supercell approaches

Figure 2 shows the differences between the correlation
functions of pairs of the averaged random configuration and
those of the perfectly disordered structure for the spinel
and zinc-blende lattices. The differences in the correlation
functions between the SQSs with 4×4×4 and 8×8×8 su-
percells and the perfectly disordered structure for the spinel
and zinc-blende lattices, respectively, are also shown. For the
spinel lattice, the correlation functions are optimized up to

(a) Random (4x4x4)

(b) SQS (4x4x4, 15th NN)

(c) SQS (4x4x4, 120th NN)
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FIG. 2. (Color online) (a)–(c) Differences in the correlation func-
tions between the perfectly disordered structure and the averaged
random configuration and between the perfectly disordered structure
and an SQS with a 4×4×4 supercell for the spinel lattice. (d)–
(f) Differences in the correlation functions between the perfectly
disordered structure and the averaged random configuration and
between the perfectly disordered structure and an SQS with a 8×8×8
supercell for the zinc-blende lattice.

the 15th NN and 120th NN pairs, as respectively shown in
Figs. 2(b) and 2(c). For the zinc-blende lattice, the correlation
functions are optimized up to the fifth NN and 55th NN
pairs, as respectively shown in Figs. 2(e) and 2(f). As can
be seen in Fig. 2(a), the difference in the correlation functions
between the averaged random configuration and the perfectly
disordered structure is small and hardly any dependence on the
number of pairs is observed. On the other hand, the correlation
functions of only pairs up to the 15th NN are well optimized
in the SQS (15th NN), as shown in Fig. 2(b). Although they
are closer to those of the perfectly disordered structure than
those of the averaged random configuration, the correlation
functions of pairs longer than the 15th NN deviate considerably
from those of the perfectly disordered structure. The SQS
(120th NN) also has a slightly large deviation of the correlation
functions, as shown in Fig. 2(c). Upon increasing the supercell
size, the deviation is found to be reduced. The same tendency
can be seen for the zinc-blende lattice.

D. Average energy of random configurations

The deviation of the correlation functions from those of the
perfectly disordered structure causes the error in the energy
estimation of the perfectly disordered structure. Figures 3(a)
and 3(d) show the dependence of the average energy of
random configurations on the inverse of the supercell size
1/L for the point-charge spinel and zinc-blende lattices,
respectively. For the point-charge spinel lattice, even for the
L = 8 supercell (7162 atoms), the average energy does not
converge. Similarly, the average energy does not converge even
for the L = 12 supercell (3456 atoms) for the point-charge
zinc-blende lattice. To accurately estimate the energy of the
perfectly disordered structure, extrapolation of the average
energy to L → ∞ is indispensable. Since the average energy
and the inverse of the supercell size are likely to have a linear
relationship, the energy of the perfectly disordered structure
can be estimated by extrapolation with linear regression
from a set of average energies. The linear relationship is
expressed as Eave = aL−1 + b, where the y intercept of the
fitted line b corresponds to the energy of the disordered
structure. This kind of extrapolation has been generally used
to investigate critical phenomena from finite-size Monte Carlo
simulations [51]. The regression coefficients a and b are
estimated using the standard least-squares technique. As listed
in Table I, the estimated energy of the disordered structure for
the point-charge spinel lattice is −78.215 eV/cation, which
is very close to the exact energy of −78.206 eV/cation.
In a similar manner, the estimated energy of the perfectly
disordered structure for the point-charge zinc-blende lattice is
−89.176 eV/cation, which is also close to the exact energy of
−89.139 eV/cation. These results indicate that the energy of
the perfectly disordered structure can be accurately estimated
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FIG. 3. (Color online) Average energies of random configura-
tions for (a) the point-charge spinel lattice and (d) the point-charge
zinc-blende lattice, shown by solid circles. The fitted line and the
estimated energy of the perfectly disordered structure are shown by
the solid line and solid square, respectively. SQS energies for (b), (c)
the point-charge spinel lattice and (e), (f) the point-charge zinc-blende
lattice are also shown.

from the linear extrapolation of the energies of random
configurations with supercells of several sizes.

E. SQS energy

Next, the energy of the perfectly disordered structure is
estimated from a set of SQS energies. Figures 3(b) and 3(c)
show the SQS energies obtained using pairs up to the 60th NN
and 300th NN, respectively, for the point-charge spinel lattice.
Figures 3(e) and 3(f) show the SQS energies obtained using
pairs up to the tenth NN and 50th NN, respectively, for the
point-charge zinc-blende lattice. Similar to the average energy
of random configurations, the SQS energy does not converge at
L = 8 and L = 12 for the point-charge spinel and zinc-blende
lattices, respectively. In addition, the situation does not change
upon increasing the number of pairs used to optimize the
SQS, hence the selection of the number of pairs is practically
less important than that of the supercell size in this case. In
contrast to the average energy of random configurations, the
SQS energies are scattered even for a fixed supercell size.
These results mean that the supercell used here is too small to
find an ordered structure that can be regarded as the perfectly

disordered structure. Therefore, linear extrapolation is needed
to estimate the energy of the perfectly disordered structure for
both the point-charge spinel and zinc-blende lattices.

Linear fittings of the SQS energies are shown in
Figs. 3(b), 3(c), 3(e), and 3(f). The estimated energies of
the disordered structure for the point-charge spinel and zinc-
blende lattices are listed in Table I. For both the point-charge
spinel and zinc-blende lattices, the estimated energies are close
to the exact energy and slightly dependent on the choice of the
number of pairs used to optimize the SQS. To more accurately
estimate the energy of the perfectly disordered structure, SQSs
with larger supercells are needed.

III. APPLICATIONS TO REAL SYSTEMS

So far, the energy of the perfectly disordered structure
has been estimated for point-charge lattices where the exact
energy of the perfectly disordered structure is known. Next,
we attempt to estimate the physical properties of the perfectly
disordered structure in real systems, where the exact properties
are unknown. Here the energy and band gap of the perfectly
cation-disordered structure in MgAl2O4 and ZnSnP2 are
estimated in analogy with the point-charge lattices.

DFT calculations are performed by the projector
augmented-wave (PAW) method [52,53] within the Perdew-
Burke-Ernzerhof (PBE) exchange-correlation functional [54]
as implemented in the VASP code [55,56]. The plane-wave
cutoff energy is set to 300 eV. We made a convergence test
of the energy difference between a normal spinel and an
SQS configuration with a 3×3×3 supercell in MgAl2O4. We
confirmed that the cutoff energy of 300 eV is sufficient for
achieving the convergence of the energy difference of less
than 1 meV/cation. The total energies converge to less than
10−2 meV. The atomic positions and lattice constants are
relaxed until the residual forces become less than 10−2 eV/Å.
DFT calculations are performed for SQSs constructed by
simulated annealing using supercells. The similarity of the
SQS and the perfectly disordered structure is defined by pairs
up to the 120th and 50th NNs for MgAl2O4 and ZnSnP2,
respectively. Supercells are constructed by isotropic expansion
of the primitive lattices up to 6×6×6 in both MgAl2O4 and
ZnSnP2. Similar to the case of point-charge lattices, a unique
solution cannot be obtained by simulated annealing, hence
simulated annealing is repeated ten times for each supercell
size. Only in the case of a 6×6×6 supercell for MgAl2O4

is a single simulated annealing performed owing to the high
computational cost.

Figure 4 shows the excess energies of the SQSs with several
types of supercells for MgAl2O4 and ZnSnP2, which are
measured from those of the normal spinel and chalcopyrite
cation configurations, respectively. Similar to the point-charge
lattices, the SQS energy does not converge with increasing
supercell size. Therefore, linear extrapolation is carried out
to estimate the excess energy of the perfectly disordered
structure. The estimated excess energies of the perfectly
disordered structure for MgAl2O4 and ZnSnP2 are 0.15 and
0.21 eV/cation, which are about 0.02 and 0.05 eV/cation
larger than those of the SQSs with a 6×6×6 supercell,
respectively. This indicates that the energy of the perfectly
disordered structure cannot be accurately estimated from a
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FIG. 4. (Color online) Supercell size dependences of the excess
energies, volumes, and band gaps of the SQSs in MgAl2O4 and
ZnSnP2. The SQSs are constructed by optimizing the correlation
functions of pairs up to the 50th and 120th NNs for MgAl2O4

and ZnSnP2, respectively. The energies of the SQSs are measured
from those of the normal spinel and chalcopyrite configurations in
MgAl2O4 and ZnSnP2, respectively.

single SQS by DFT calculation with a practical computational
load. In addition to the excess energy, the volumes of the
SQSs for MgAl2O4 and ZnSnP2 are also shown in Fig. 4.
The volume also does not converge with increasing supercell
size. By linear extrapolation of the volumes of the SQSs, the
volumes of the perfectly disordered structures are estimated

to be 21.306 and 47.309 Å
3
/cation for MgAl2O4 and ZnSnP2,

respectively.
The band gaps of the SQSs for MgAl2O4 and ZnSnP2 are

also shown in Fig. 4. In both MgAl2O4 and ZnSnP2, the

band gap also does not converge with increasing supercell
size. By linear extrapolation of the band gaps of the SQSs,
the band gap is estimated to disappear in the perfectly
disordered structure, although it is obtained by the PBE
functional that generally underestimates the band gap. In
the literature, Scanlon and Walsh estimated the band gap of
cation-disordered ZnSnP2 using a 64-atom SQS [35]. Their
band gap of cation-disordered ZnSnP2 was 0.75 eV, obtained
using the screened hybrid functional developed by Heyd,
Scuseria and Ernzerhof (HSE06). On the basis of the results
of the present study, the larger band gap in their study can
be ascribed not only to the use of the HSE06 functional
but also to the use of a 64-atom SQS without considering
the effect of the supercell size. However, it should be noted
that the band gaps estimated in this way do not necessarily
correspond to those observed in experiments. To compare the
computed band gap with the optical band gap typically used to
measure the gap, one needs to compute the optical absorption
spectrum and obtain the gap by fitting to an empirical
equation.

Finally, to investigate the origin of the negative supercell
size dependence of the band gap, we analyze the site-projected
and lm-decomposed wave function character of valence band
maximum (VBM) and conduction band minimum (CBM) for
ZnSnP2 in comparison with the chalcopyrite structure. In the
chalcopyrite structure, the VBM is mainly composed of a P 3p

orbital with a mixture of Zn 3d and Sn 4d orbitals, and the
CBM is mainly composed of Zn 4s and Sn 5s orbitals, as also
investigated in Ref. [57]. In an SQS with a 6×6×6 supercell,
the VBM is mainly composed of P 3p, Zn 3d, and Sn 4d

states as well as the chalcopyrite. In addition, Zn 4s and Sn 5s

orbitals provide a tiny contribution to the VBM. The difference
from the chalcopyrite is prominent for the CBM. In contrast
to the chalcopyrite, the CBM is primarily composed of Sn 5s

and Sn 5p orbitals, and the site-projected and lm-decomposed
wave function character for Sn atoms strongly depends on
the local structure around Sn atoms. Therefore, we examine
the local cation configuration around Sn atoms that highly
contribute to the CBM. Table II shows the number of cation
elements for the first, second, and third NN cation sites around
Sn atoms. The chalcopyrite has eight Sn-Zn and four Sn-Sn
first NN pairs, which implies that Sn-Zn first NN pairs are
energetically favorable. In the SQS, however, the Sn atoms
highly contributing to the CBM have many unfavorable Sn-Sn
first NN pairs than the average number of pairs in the perfectly
disordered structure. The formation of unfavorable cation pairs
is likely to be one of the reasons for the negative supercell size
dependence of the band gap.

TABLE II. Number of cation elements around Sn atoms in the chalcopyrite and an SQS with a 6×6×6 supercell. SQS (Sn1), SQS (Sn2),
and SQS (Sn3) denote Sn atoms with the highest, second highest, and third highest site-projected and lm-decomposed wave function character
for CBM, respectively.

Chalcopyrite SQS (Sn1) SQS (Sn2) SQS (Sn3)

Zn Sn Zn Sn Zn Sn Zn Sn

First NN 8 4 4 8 4 8 3 9
Second NN 2 4 3 3 1 5 3 3
Third NN 8 16 9 15 11 13 13 11
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IV. CONCLUSION

In this paper, the physical properties of the perfectly
disordered structure were estimated from SQS techniques for
heterovalent ionic systems such as the point-charge spinel
and zinc-blende lattices, MgAl2O4 and ZnSnP2. Then, their
accuracy was discussed. We found that the physical properties
of the SQSs show a clear supercell size dependence and do not
converge even when using a supercell that is considerably
larger than that generally used for metallic alloys. This
originates from the fact that a large number of long-range ECIs
should be considered in heterovalent ionic systems. Therefore,
to accurately estimate the physical properties of the perfectly
disordered structure using the SQS, it is important to examine
the convergence of the SQS properties with respect to the

number of atoms. In addition, it is found that each physical
property and the inverse of the supercell size of the SQS
have a linear relationship. Therefore, the physical properties
of the perfectly disordered structure can be estimated by
linear extrapolation. However, extra consideration is required
to compare the estimated physical properties such as the band
gap with experimental data.
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