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We present first-principles calculations of the coupling of quasiparticles to spin fluctuations in iron selenide
and discuss which types of superconducting instabilities this coupling gives rise to. We find that strong
antiferromagnetic stripe-phase spin fluctuations lead to large coupling constants for superconducting gaps with
s± symmetry, but these coupling constants are significantly reduced by other spin fluctuations with small wave
vectors. An accurate description of this competition and an inclusion of band-structure and Stoner parameter
renormalization effects lead to a value of the coupling constant for an s±-symmetric gap which can produce a
superconducting transition temperature consistent with experimental measurements.
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Introduction. The discovery of superconductivity in iron-
based compounds with transition temperatures higher than
50 K in 2008 [1] has generated considerable interest in recent
years and led to intense research activity. These materials con-
sist of iron atoms with additional pnictogen or chalcogen atoms
located above and below the plane of the iron atoms. Additional
intercalating layers give rise to various families of iron-based
compounds, such as the 1111, 122, 111 families [2]. Iron
selenide (FeSe) belongs to the structurally simplest family, the
11 family, which does not contain a spacer layer between the
iron selenium layer and exhibits superconductivity with tran-
sition temperatures up to 37 K under pressure [3,4]. Recently,
there has also been considerable interest in the properties
of FeSe monolayers where superconductivity with transition
temperatures exceeding 60 K has been reported [5,6].

An important question in these materials is the nature of
the microscopic pairing mechanism and the symmetry of the
superconducting gap. As in the cuprates, superconductivity
typically emerges in the iron-based compounds when an
antiferromagnetic parent state is doped. This observation led to
the proposal [7] that spin fluctuations (paramagnons) could act
as the superconducting glue in these materials [7]. However,
in contrast to the cuprates, the iron-based materials generally
have multiple Fermi surfaces with several electron pockets at
the M point of the Brillouin zone (corresponding to the unit
cell containing two iron atoms) and multiple hole pockets at the
� point. Mazin et al. suggested that spin-fluctuation-mediated
scattering of Cooper pairs between electron pockets and hole
pockets gives rise to an s±-symmetric superconducting gap [7],
which has a constant absolute magnitude but switches sign
between electron and hole pockets. The sign-changing gap was
predicted to give rise to a resonance in the neutron-scattering
spectrum [8], which was subsequently observed in several
experiments [9,10].

Many theoretical approaches have been developed to study
spin-fluctuation-mediated superconductivity in the iron-based
compounds. In purely empirical approaches, both the elec-
tronic band structure and the interacting spin susceptibility are
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parametrized using experimental data (such as angle-resolved
photoemission, nuclear magnetic resonance, and neutron-
scattering results) [11,12]. In another approach [13,14], a
theoretical band structure from a density-functional theory
(DFT) calculation is used to parametrize a tight-binding
Hamiltonian with added interaction parameters (such as the
Hubbard U or Hund J ) adjusted to reproduce experimental
findings. Then, superconducting properties of the resulting
Hamiltonian are studied.

Although the aforementioned theories have been very
instructive, their applications have been limited by the avail-
ability of concrete experimental data needed to determine
their input parameters. Hence, there is a need for a fully
first-principles theory without empirical parameters. We have
recently developed such an ab initio theory [15] for the spin-
fluctuation-electron coupling based on the work of Kukkonen
and Overhauser [16] and Zhu and Overhauser [17] on the
homogeneous electron gas.

In this Rapid Communication, we apply our first-principles
theory of the electron-spin-fluctuation coupling to iron se-
lenide, the structurally simplest iron-based superconductor. We
reveal a complex interplay between different spin fluctuations.
In agreement with experiment, superconductivity depends
sensitively on the height of the selenium atoms relative to
the iron atom plane. In the vicinity of a transition to an
antiferromagnetic stripe phase, superconductivity with an
s±-symmetric gap function becomes favorable.

Methods. The superconducting order parameter, the gap
function, is typically expressed as �(k) = |�|g(k) with
g(k) describing the symmetry of the gap function [18].
To investigate which types of superconducting instabilities
an effective spin-fluctuation-mediated electron-electron
interaction VSF gives rise to, we compute the
electron-spin-fluctuation coupling strength for different
symmetry functions g(k) according to [18]

λ[g] = −DF

×
∑

nk,n′k′ g(k)VSF (nk,n′k′)g(k′)δ(εnk − εF )δ(εn′k′ − εF )[∑
nk g2(k)δ(εnk − εF )

]2 ,

(1)

1098-0121/2015/91(2)/020502(5) 020502-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.91.020502


RAPID COMMUNICATIONS

LISCHNER, BAZHIROV, MACDONALD, COHEN, AND LOUIE PHYSICAL REVIEW B 91, 020502(R) (2015)

where εF denotes the Fermi energy and DF is the density of
states per spin at the Fermi energy. We define VSF (nk,n′k′)
as the matrix element of the spin-fluctuation-mediated
interaction for the scattering of the spin-singlet Cooper pair
(nk ↑ ,n − k ↓) to (n′k′ ↑ ,n′ − k′ ↓) (with n denoting a
band and k a k point in the Brillouin zone). We follow
the standard convention [18] and normalize g(k) such that
DF = ∑

nk g2(k)δ(εnk − εF ).
The effective spin-fluctuation-mediated interaction is ob-

tained using a recently developed first-principles formal-
ism [15,19] based on the work of Kukkonen and Over-
hauser [16] and Zhu and Overhauser [17] for the homogeneous
electron gas. In this approach, the effective interaction is
expressed as the sum of a bare Coulomb interaction, a con-
tribution arising from charge fluctuations and a contribution
arising from spin fluctuations, which is given by

VSF (r,r ′,ω)

= 3
∫

d r1

∫
d r2Ixc(r,r1)χS(r1,r2,ω)Ixc(r2,r ′), (2)

with Ixc(r,r ′) = δ2Exc/[δm(r)δm(r ′)] (Exc is the exchange-
correlation energy, and m(r) is the spin density). Also,
χS(r,r ′,ω) denotes the interacting spin susceptibility of a non-
magnetic system, which is obtained by solving the Dyson-like
equation of time-dependent density-functional theory [20],

χS(r,r ′,ω) = χ0(r,r ′,ω) +
∫

d r1

∫
d r2χ0(r,r1,ω)

× Ixc(r1,r2)χS(r2,r ′,ω), (3)

with χ0 denoting the noninteracting susceptibility.
The physically appealing effective spin-fluctuation-

mediated interaction of Overhauser et al. can be put on
a firm theoretical footing by an analysis of Feynman dia-
grams [21,22]. Although this theory neglects certain diagrams
corresponding to nonlinear polarization processes, it should
be valid in the vicinity of the Fermi surface and thus describe
superconducting properties accurately.

Computational details. To obtain a mean-field theory
starting point for the calculation of the spin-fluctuation-
mediated interaction, we carry out density-functional the-
ory calculations in a plane-wave basis using the Quantum
ESPRESSO program package [23]. We employ the local-density
approximation (LDA) (Perdew-Zunger parametrization) and
norm-conserving pseudopotentials with a 55-Ry energy cutoff.
For iron, the nonlinear core correction is used. We use
experimental lattice constants (a = 3.77, c = 5.52 Å) [24] of
the tetragonal phase. We have carefully verified that our band
structures and magnetic phase diagrams agree with all-electron
results [25,26].

We then compute the noninteracting susceptibilities on a
32 × 32 × 1 k-point grid in the Brillouin zone using 50 empty
states and a plane-wave cutoff of 45 Ry. For this, we use the
BERKELEYGW program package [27]. Next, we compute the
interacting spin susceptibilities. Within the local-density ap-
proximation, we need to evaluate ILSDA

xc (r,r ′) = f [n(r)]δ(r −
r ′) with n(r) being the ground-state density (including the core
contribution) and f (n) is obtained analytically by computing
the second derivative of the exchange-correlation energy with
respect to the spin density. Finally, the Fermi surface averages
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FIG. 1. (Color online) (a) Magnetic moment per iron atom in
the stripe antiferromagnetic phase (red filled dots), checkerboard
antiferromagnetic phase (blue empty dots), and ferromagnetic phase
(magenta diamonds) as a function of the height of the selenium atoms
above (and below) the plane of the iron atoms. (b) DFT-LDA band
structure of iron selenide at the experimental selenium height (dashed
blue lines) and the renormalized band structure (solid red lines) where
all energies have been divided by a factor of 3 [29].

in Eq. (1) are evaluated using a Lorentzian representation of
the δ function [δη(ω) = 1/π × η/(ω2 + η2)] with η = 0.1 eV.

Results. Figure 1(a) shows the magnetic moments of various
magnetic phases of FeSe as a function of the selenium
height, which has been identified as a crucial parameter
for the occurrence of superconductivity in this system and
other iron-based compounds [28]. At low selenium heights,
the system is nonmagnetic. As the height is increased, a
transition to an antiferromagnetic stripe phase occurs. At even
higher Se heights, an antiferromagnetic checkerboard phase
also has a lower energy than the nonmagnetic state, and a
moment develops. Finally, at Se heights larger than 1.4 Å
a ferromagnetic moment is observed. Note that bulk FeSe
is experimentally known to be nonmagnetic [3], whereas a
recent angle-resolved photoemission spectroscopy (ARPES)
experiment reported indications that multilayer FeSe is in a
stripe phase state [29].
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FIG. 2. (Color online) Real parts of the static noninteracting [(a),
(c), and (e)] and interacting [(b), (d), and (f)] spin susceptibilities of
iron selenide for selenium heights of 1.10 Å [(a) and (b)], 1.15 Å
[(c) and (d)], and 1.20 Å [(e) and (f)]. Shown is the G = G′ = 0
component of the susceptibility matrix in Fourier space.

Figure 1(b) shows the DFT-LDA band structure of FeSe at
the experimental selenium height of 1.47 Å [24]. We observe
three hole pockets in the vicinity of the � point and two
electron pockets near the M point (note that a Brillouin zone
corresponding to a unit cell containing two iron atoms is
used). Although DFT-LDA band structures agree qualitatively
with experimental ARPES measurements for many iron-based
compounds, the effective masses of the electron and hole
pockets near the Fermi level are typically underestimated by
a factor of 2 or 3 [30,31]. A similar finding was reported
in a recent ARPES experiment on FeSe multilayers [29].
In Fig. 1(b) we also show the renormalized band structure
obtained by dividing all DFT-LDA energies by a factor of 3. We
note that a recent Shubnikov–de Haas oscillation measurement
reported significantly reduced Fermi surfaces [32]. Further
experimental work is necessary to fully resolve this issue.

Figure 2 shows the real part of the DFT-LDA static noninter-
acting and interacting spin susceptibilities at three Se heights
in the vicinity of the transition from the nonmagnetic phase to
the antiferromagnetic stripe phase. At the smallest Se height
(1.10 Å), we observe strong features in the noninteracting
susceptibility near q = 0. In the interacting spin susceptibility,
these features are strongly enhanced indicating that at these
wave vectors the Stoner condition, which states that magnetism
occurs if Ixcχ0(q) (in matrix notation) has eigenvalues equal
to unity, is almost fulfilled.

At a selenium height of 1.15 Å [see Figs. 2(b) and 2(c)],
another feature at q = (1/2,1/2,0) 2π

a
emerges in addition to

the structure near q = 0 in the noninteracting susceptibility.
This feature results from spin fluctuations with a stripe phase
character. When interactions are included, this new feature,
however, becomes weaker.

Finally, at a selenium height of 1.20 Å [see Figs. 2(e)
and 2(f)], the system is very close to the transition to the
antiferromagnetic stripe phase, see Fig. 1(a). Now, the peak
at q = (1/2,1/2,0) 2π

a
becomes very strong and is further en-

hanced when interactions are included. Again, the divergence
of the interacting spin susceptibility indicates that the Stoner
criterion is almost fulfilled signaling the onset of a transition
to a stripe phase.

To gain further insight, we fit our results to a model where
off-diagonal elements of the noninteracting susceptibilities in
a plane-wave basis are neglected (neglecting the so-called
local-field effects). We then adjust the Stoner parameter Ixc,
which now is a single number, until the model reproduces
the diagonal elements of the previously computed interacting
spin susceptibility. In this way, we extract Ixc = 0.43 eV (per
Fe atom), which agrees very well with the Stoner parameter
for bcc iron Ixc = 0.46 eV [33]. In addition, we find that the
same value of Ixc can be used for all selenium heights that
were studied. This indicates that the Stoner parameter is only
weakly dependent on the crystalline environment.

Next, we compute the electron-spin-fluctuation coupling
strength and evaluate λ[g] for the lowest-order symmetry
functions g(k) of the tetragonal crystal. Specifically, we
compute the coupling strength for s-wave [g(k) = 1],
s± [g(k) ∝ cos(kx) + cos(ky)], dx2 − y2 [g(k) ∝ cos(kx) −
cos(ky)], and dxy [g(k) ∝ sin(kx) sin(ky)] symmetries.
Figure 3(a) shows our results for the various coupling
strengths as a function of the selenium height. In the singlet
channel, the spin-fluctuation-mediated interaction between
electrons is repulsive and therefore the coupling strength
for s-wave symmetry is always negative. The vicinity to a
magnetic phase transition gives rise to an almost singular
spin-fluctuation-mediated interaction and large negative
coupling constants λs � −1. This repulsion arising from
magnetic interactions is much larger than the repulsion from
the screened Coulomb interactions in standard metals, where
λs = −μ ≈ −0.2 [34]. Note that this repulsion must also be
overcome by other pairing mechanisms, such as phonons.

Figure 3(a) shows that d-wave coupling constants are quite
small but can be positive and thus give rise to superconduc-
tivity at sufficiently low temperatures. Most interestingly, we
observe that the s±-coupling constant is large and negative for
small selenium heights but quickly increases and eventually
becomes positive near the transition to a stripe phase reaching
values of approximately unity. We expect that this value of the
s±-coupling constant is reduced by the other contributions to
the effective interaction (such as the bare Coulomb interaction
and the charge fluctuation-mediated interaction) only by a
small amount as these contributions are much more isotropic
and thus produce small values when integrated against the
anisotropic g(k) in Eq. (1).

Figure 3(b) shows the contributions to the total s±-coupling
strength from all q points in the Brillouin zone at a selenium
height of 1.20 Å. We observe significant cancellations between
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FIG. 3. (Color online) (a) Electron-spin-fluctuation coupling
constant for various gap symmetries as a function of the selenium
height. Positive coupling constants indicate that the system may
undergo a transition to a superconducting phase at sufficiently low
temperatures. (b) Contributions to the total electron-spin-fluctuation
coupling constant for an s±-symmetric gap from the q points in the
Brillouin zone at a selenium height of 1.20 Å. (c) Positive and negative
contributions to λ[s±] as a function of the selenium height.

positive and negative contributions. Figure 3(c) shows the total
positive and total negative contributions to the s±-coupling
strength as a function of the selenium height. Although the
negative contributions remain relatively constant, the positive
contributions increase rapidly as stripe phase spin fluctuations
become enhanced. These spin fluctuations scatter electrons
from the hole pockets at the � point to the electron pockets
near the M point. In the s± scenario, the superconducting

order parameter switches sign between the � and the M

points, and therefore such scattering events are favorable
for the emergence of superconductivity. On the other hand,
spin fluctuations with wave vectors in the vicinity of the �

point scatter Cooper pairs only from electron pockets to other
electron pockets or from hole pockets to other hole pockets.
Their contribution to the s±-coupling constant is negative.
Suppression of such fluctuations (for example, by application
of pressure) could provide a path towards higher transition
temperatures [4,12].

Finally, we discuss corrections to the presented first-
principles framework that arise from the lack of self-
consistency in our calculations. Specifically, the noninteracting
spin susceptibility should be computed from a quasiparticle
band structure including renormalization effects arising from
many-electron interactions instead of the mean-field DFT-
LDA band structure. Although such renormalization effects are
reproduced by “beyond-DFT” approaches, such as GW the-
ory [35] or dynamical mean-field theory [25], good agreement
with experimental ARPES measurements can be obtained by
simply dividing all DFT-LDA band energies by a factor α, i.e.,
ξnk = εnk − εF → ξ ′

nk = ξnk/α. Based on a recent ARPES
experiment on FeSe multilayers [29], we use α = 3, see
Fig. 1(b). This rescaling of the band energies renormalizes
the noninteracting susceptibility according to χ ′

0 = αχ0 and
the density of states at the Fermi level D′

F = αDF .
In addition to the electronic band structure, the Stoner

parameter is renormalized in the vicinity of a magnetic phase
transition where spin fluctuations are significant [36,37]. To
include this effect, we also rescale the Stoner parameter
according to I ′

xc = Ixc/β. We use β = 4.17, which repro-
duces the experimental magnetic moment and critical doping
strength in LaOFeAs [38] (note that β = α × s with s = 1.39
being the rescaling parameter for Ixc neglecting band-structure
renormalization effects).

We now compute the coupling constant for the s±-
symmetric gap in FeSe at the experimental selenium height
employing a renormalized band structure and Stoner param-
eter. This yields λ[s±] = 0.30. Including the effect of charge
fluctuations results in a slightly reduced value of λ[s±] = 0.28.
A crude estimate of the superconducting transition temperature
Tc = ωSF e−1/λ[s±] (where we use ωSF = 15 meV, a typical
energy scale for spin fluctuations in iron-based compounds[9])
yields Tc = 5 K consistent with the experimental transition
temperature of 8 K in FeSe [3,4] (note that allowing g(k) to be
a sum of symmetry functions further increases λ [18] and our
calculation therefore provides a lower bound for the transition
temperature). In the current Rapid Communication, we have
not considered the effect of phonons which was recently shown
to be significant in the FeSe monolayer [39]. Future work is
needed to investigate the interplay of spin fluctuations and
phonons in iron-based superconductors.

Note added: After submission of the present Rapid Com-
munication, a similar calculation on spin-fluctuation-mediated
superconductivity in iron selenide was published [40].
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