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Macroscopic drift current in the inverse Faraday effect
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The inverse Faraday effect (IFE) describes the spontaneous magnetization of a conducting or dielectric medium
due to irradiation with a circularly polarized electromagnetic wave. The effect has recently been discussed in the
context of laser-induced magnetic switching of solids. We analyze analytically the electron dynamics induced by
a circularly polarized laser beam within the framework of plasma theory. A macroscopic drift current is obtained,
which circulates around the perimeter of the laser beam. The magnetic moment due to this macroscopic current
has an opposite sign and half of the magnitude of the magnetic moment that is generated directly by the IFE.
This constitutes an important contribution of angular momentum transferred from the wave to the medium and a
classical mechanism for the light-induced generation of magnetic fields.
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Experiments have shown that the magnetic order in solids
can be controlled by light [1], an effect that has become known
as all-optical switching (AOS). While the details leading to
AOS are still not fully understood, the inverse Faraday effect
(IFE) (see Ref. [2] and references therein) can be expected to
play a major role [3]. The IFE is characterized by the chirality-
dependent magnetization generated by a circularly polarized
electromagnetic wave. In solid-state magnetism, AOS was
believed to be a material-specific effect, occurring only in
specific rare-earth transition metal compounds [4]. However,
recent experiments have demonstrated AOS in a much broader
range of magnetic materials [5]. The phenomenon thus seems
to be a general feature of light-matter interaction in the case
of circularly polarized electromagnetic waves.

Plasma theory has generally proven to be very efficient
to study light-matter interaction in metals. It was recently
used to describe the IFE [6,7] in metallic particles and has
been successfully applied to various other aspects of the
interaction between electromagnetic waves and metals [8].
The assumption of a free electron gas is a simple but powerful
model for a metal [9]. In this Rapid Communication we employ
single-particle plasma theory to derive a microscopic picture of
the IFE. Our results hold, of course, for electron plasmas, but
the free electron model may be also used to describe the IFE in
metals, especially for high frequencies of the electromagnetic
wave [10]. According to the textbook by Landau and Lifshitz
[10] this holds typically for ultraviolet light or for x-rays.
Insofar the application of our theory to the irradiation of
metals with visible light is, of course, some approximation
when we consider, e.g., AOS. Nevertheless, we think that
our findings will be interesting for people who investigate
the effect of circularly polarized light on solids, especially for
the community discussing AOS.

As an immediate result one obtains that electrons exhibit a
gyrating motion in the electric field of the circularly polarized
wave, which leads to a magnetic moment Mg . By tracking
the time-averaged motion of free electrons in the field of a
collimated circularly polarized electromagnetic wave we find
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that in addition to these microscopic currents, a macroscopic
drift current develops, which circulates at the periphery of the
irradiated area. This macroscopic electric current generates a
further magnetic moment, Md . The angular momentum of
this additional drift current has not been considered so far and
it may provide an ingredient in the open question of the balance
of angular momentum in AOS processes.

A circularly polarized electromagnetic wave propagating
in the z direction can be written in the usual way, E(t) =
E0 exp(−iωt), where i is the imaginary unit, E0 is the
amplitude vector, and ω = 2πν is the angular frequency of
the wave of frequency ν. Here we have set the phase of the
wave to zero without loss of generality. Only the real part of
E(t) has a physical meaning. We omit the information that
the imaginary component is discarded unless a clarification is
necessary. Unlike a linearly polarized wave, E0 is a complex
vector in the case of a circularly polarized plane wave:

E0 =
⎛
⎝ E⊥

±iE⊥
0

⎞
⎠, (1)

where (+) and (−) stand for left and right circular polarization,
respectively, E⊥ is the real-valued amplitude of the electric
field and the wave propagates in the z direction. The amplitude
E±

0 of a circularly polarized wave has some specific properties:

i E0 × E∗
0 = ±2E2

⊥ k̂ = ±|E0|2 · k̂, (2)

where k̂ is a unit vector parallel to the wave’s propagation
direction, the asterisk ∗ denotes complex conjugation, and
|E0|2 = E0 · E∗

0. The factor two in Eq. (2) is easily understood
by considering that for linearly polarized waves the square
of the amplitudes is proportional to the intensity of an
electromagnetic wave. Here we have a circularly polarized
wave, which can be decomposed into two orthogonal, linearly
polarized, phase-shifted waves, each with amplitude E⊥.

In the high-frequency limit, the response of the electrons
in a dielectric or metallic material to an electromagnetic wave
corresponds to that of a free charge [10]. The fundamental
equation of motion of a nonrelativistic electron with mass m

1098-0121/2015/91(2)/020411(4) 020411-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.91.020411


RAPID COMMUNICATIONS
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and charge e is thus

dv

dt
= e

m
Re {E0 exp(−iωt)} . (3)

In the electric field of a circularly polarized electromagnetic
wave, the motion of the charge results from two superimposed
sinusoidal and orthogonal oscillations of equal amplitude,
phase-shifted by π/2. Using the complex amplitude according
to Eq. (1) yields

vx = ∓ e

mω
Ey, vy = ± e

mω
Ex, (4)

if a dynamic equilibrium is assumed, the Lorentz force of the
magnetic field of the wave and the emission of electromagnetic
waves by an accelerated electron are neglected, and if,
moreover, the initial value conditions are chosen so that any
velocity component parallel to the z direction, i.e., parallel
to k, is discarded. The rotating field of a circularly polarized
electromagnetic wave hence results in a circular motion of
the electrons around the k axis. In the following we omit
the symbol Re when discussing the equations of motion; i.e.,
we always consider only the real part of the electric field.
The velocity components describing this gyration fulfill the
equation

m
d

dt
v⊥ = ev⊥ × �, (5)

where v⊥(t) is the instantaneous vector component of the
velocity perpendicular to k̂ with d|v⊥(t)|/dt = 0 in the
dynamic equilibrium. In Eq. (5) the gyrovector

� = − mω

2eE2
⊥

(i E0 × E∗
0) (6)

has been introduced, which is either parallel or antiparallel to
k, depending on the chirality [cf. Eq. (2)]. Equation (5) has the
same form as a Lorentzian force, which evidences a similarity
between the IFE and the influence of a static magnetic field.
But there are important differences. The rotation frequency of
the Larmor precession is proportional to the flux density, while
the gyro orbits induced by the IFE have the rotation frequency
ω = 2πν of the wave, irrespective of the wave’s amplitude.
Moreover, the Larmor radius is inversely proportional to the
strength of the magnetic field, whereas the radius r of the
electromagnetic gyro orbits is proportional to the wave’s
amplitude:

r = e

mω2
E⊥. (7)

Finally, the velocity v⊥ of the circular motion induced by the
circularly magnetized electromagnetic waves is

|v⊥| = eE⊥
mω

. (8)

These differences between the dynamics of electrons in a
magnetic field on one side and the IFE-induced motion on
the other make it impossible to assign an unambiguous value
to an effective magnetic field that could mimic the IFE. We
conclude that, in spite of some qualitative similarities, the
IFE cannot be described in a simplified way by means of a
magnetic field. This does not mean that there is no magnetic
field involved at all in the process. According to Biot-Savart’s

law, the electrons rotating on gyro orbits generate a magnetic
field that, summed over all contributing charges, amounts to
a macroscopic field. But this magnetic field is the result of
the electromagnetic wave-induced electron dynamics and not
a field causing the primary electron motion.

The magnetic moment μ associated with the circular motion
of an electron is the current [I = eω/(2π )] multiplied with the
area that it circumnavigates A = πr2. The moment is oriented
along the rotation axis, i.e., along k̂ in this case. With Eqs. (7),
(8), and (2), one obtains

μ = ev2
⊥

2ω
k̂ = e3

4m2ω3
(i E0 × E∗

0). (9)

With the plasma frequency ωp = (e2ne/ε0m)(1/2) (ε0 is the
vacuum permittivity and ne the electron density) the above
equation can be rewritten

μ = eε0ω
2
p

4mneω3
(i E0 × E∗

0). (10)

The total magnetization M is obtained by multiplying Eq. (9)
with the density ne of the conduction electrons. The IFE-
induced magnetization M = neμ is thus

M = eε0ω
2
p

4mω3
(i E0 × E∗

0). (11)

This result, obtained from single-particle motion (see Ref. [11]
and references therein), is identical to that derived from a
magnetohydrodynamical approximation [2,12,13]. It appears
that the IFE can be described entirely within the theory of
classical electrodynamics of continuous media. Our treatment,
however, only accounts for the orbital angular momentum of
the electronic system acquired by the electromagnetic wave.
A quantum-mechanical study will be required to consider
possible contributions of light-induced changes of the spin
angular momentum, as outlined, e.g., by Popova et al. [14].
Consequently, we neglect the influence of related changes via
spin-orbit coupling. These changes are considerably smaller
than the changes due to the modification of the orbital angular
momentum.

So far we have assumed a plane wave, neglecting any
variation perpendicular to the propagation direction. However,
in the case of circularly polarized waves this common model
is problematic. Due to its transverse translational invariance,
an infinitely extended circularly polarized plane wave carries
no angular momentum [15,16]. Rather than a counterintuitive
fact, this result should be interpreted as a sign that the model is
too simple in this case to capture essential aspects. It suffices
to account for a finite lateral size of the beam to restore
the well-known quantum mechanical relation between angular
momentum, energy, and frequency in the classical limit [15].
Without further discussing the complicated details of angular
momentum balance in the IFE, we refine our analysis based
on this knowledge by proceeding with a more realistic model
for the electromagnetic wave, i.e., a collimated beam of finite
waist w.

To determine the total magnetic moment generated by the
IFE we perform a volume integral of the magnetization M(r)
over the region irradiated by the laser spot. The profile of a
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Gaussian beam is

E0(r) =
⎛
⎝ E⊥(r)

±iE⊥(r)
0

⎞
⎠ =

⎛
⎝ 1

±i

0

⎞
⎠E0

⊥ exp

(−r2

w2

)
,

(12)

where r is the distance from the beam axis, w is the waist
of the beam, and E0

⊥ = E⊥(r = 0). If this position-dependent
amplitude E0(r) is plugged into Eq. (11), a volume integral
yields the total magnetic moment (z is the thickness; we
assume homogeneity along z, thereby restricting the analysis
to thin films):

Mg = eε0ω
2
p

4mω3

[
i E0(r = 0) × E∗

0(r = 0)
]

×
∫ z

z′=0

∫ ∞

r=0

∫ 2π

φ=0
r exp

(
−2r2

w2

)
drdφdz′

= w2πzeε0ω
2
p

8mω3

[
i E0(r = 0) × E∗

0(r = 0)
]

(13)

Note that the result is proportional to w2π , i.e., to the size
of the laser spot. Microscopically, the collimation of the
beam results in a local amplitude gradient perpendicular to
the wave’s propagation direction. It can be assumed that
electrons’ IFE-induced gyration radius is much smaller than
the characteristic length on which the amplitude changes:

χ = e|∇E⊥|
mω2

� 1. (14)

On the length scale of a gyro radius, the isolines of the field
amplitude are almost parallel. In the following we will show
that the central point of the gyro orbit, the guiding center [17],
moves (“drifts”) along these isolines on a time scale much
slower than ω−1.

Because the problem is radially symmetric we consider for
simplicity that the amplitude gradient is in the y direction. Then
the changes of the amplitude E⊥, linearized along the gyration
orbit with guiding center at ygc, yield a position-dependent
field according to

E(y) = Egc + (y − ygc)
dE⊥
dy

Egc

E⊥
, (15)

where Egc is the electric field at the guiding center. Note that
the electromagnetic wave is circularly polarized, everywhere
and at any time. But as electrons move along gyro orbits, they
periodically enter regions of larger and smaller amplitude.
These variations affect the overall motion, and, as we will
show, this results in a macroscopic drift current due to the
motion of the guiding centers, a current which circulates
around the finite perimeter of the laser beam. Small velocity
changes are accounted for by expanding v in a perturbation
series, where higher-order terms are corrections to the unper-
turbed motion v0. In the expansion v = v0 + v1 + v2 + · · ·
the smallness parameter is given by Eq. (14), meaning that the
order of magnitude of the addends in the perturbation series
decreases by a factor of χ with each index number. The goal is
to separate the orders of magnitudes of v, which is effectively
a separation of time scales. This will allow us to deduce that a
perturbation of the high-frequency motion can induce a slow

drift of the guiding center. The starting point is the equation
of motion,

d

dt
mvx = ±mωvy ± mω(y − ygc)

1

E⊥

dE⊥
dy

vy, (16)

d

dt
mvy = ∓mωvx ∓ mω(y − ygc)

1

E⊥

dE⊥
dy

vx, (17)

where the electric field components Ex , Ey have been written
in terms of v using Eq. (4). To study the drift motion, the
perturbation expansion of v is inserted and a time average 〈,〉
over several oscillation periods is performed. The zero-order
terms are harmonic oscillations and their time-averaged value
is zero. The remaining first-order terms are〈

dv1,x

dt

〉
= ±ω〈v1,y〉 ± ω

E⊥

dE⊥
dy

〈(y0 − ygc)v0,y〉, (18)

〈
dv1,y

dt

〉
= ∓ω〈v1,x〉 ∓ ω

E⊥

dE⊥
dy

〈(y0 − ygc)v0,x〉. (19)

The terms on the left-hand side are proportional to the change
in time of the first-order correction v1. The time derivatives
of first-order terms are de facto second-order terms, since
they describe changes in time of a motion that is already
much slower than v0. Hence, the time derivatives dv1/dt

are negligibly small compared to the individual terms on the
right-hand side, leading to

〈v1,y〉 = − 1

E⊥

dE⊥
dy

〈(y0 − ygc)v0,y〉, (20)

〈v1,x〉 = − 1

E⊥

dE⊥
dy

〈(y0 − ygc)v0,x〉. (21)

The term 〈(y0 − ygc)v0,y〉 is zero because in the unperturbed
gyromotion the oscillations of position and velocity along the y

axis are phase-shifted by π/2, yielding 〈v1,y〉 = 0. A constant
drift is obtained from Eq. (21),

〈v1,x〉 = − 1

E⊥

dE⊥
dy

〈(y0 − ygc)v0,x〉 = ± v2
⊥

2ωE⊥

dE⊥
dy

, (22)

where v⊥ =
√

v2
x + v2

y .1

Using v⊥ = eE⊥/(mω) yields

〈v1,x〉 = ± e2E⊥
2m2ω3

(
dE⊥
dy

)
. (23)

After transition from the local frame, where the amplitude
gradient was assumed to be along y, to the general case
where the amplitude decays with increasing r , the drift current
flows along the isolines of the field amplitude. In a radially
symmetric situation, the drift currents are thus azimuthal, along
the unit vector eφ , which is perpendicular to both the amplitude
gradient and the propagation direction. The corresponding

1Note that 〈ygcv0,x〉 can be neglected as ygc is almost constant on the
time scale τ � ω−1 of the time average 〈,〉, so that 〈(y0 − ygc)v0,x〉 =
〈y0(t)v0,x(t)〉 = ∓〈 1

ω
v0,x(t)v0,x(t)〉 = ∓v2

⊥/(2ω).
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FIG. 1. (Color online) Normalized Gaussian field amplitude
E(r) and normalized magnitude of the drift current density jφ(r)
as a function of the distance r from the center of the beam, measured
in units of the beam waist w. The current flows circularly around the
r = 0 axis with helicity-dependent sign.

current density is

jφ = ne〈vφ〉eφ = ±nee
3E⊥

2m2ω3

(
dE⊥
dr

)
eφ. (24)

The profile Eq. (12) yields a position-dependent current
density as shown in Fig. 1:

jφ(r) = ∓ nee
3

m2ω3w2

(
E0

⊥
)2

r exp

(
−2r2

w2

)
eφ (25)

Assuming homogeneity along the thickness z, an infinitesimal
current flows at radius r according to

d Iφ(r) = ∓nee
3
(
E0

⊥
)2

m2ω3w2
r exp

(
−2r2

w2

)
zdr · eφ (26)

This current generates an infinitesimal magnetic moment

dMd = ∓k̂ · r2π · znee
3
(
E0

⊥
)2

m2ω3w2
r exp

(
−2r2

w2

)
dr (27)

The index d recalls that this term is due to drift currents. The
total magnetic moment is

Md = ∓k̂
πznee

3
(
E0

⊥
)2

m2ω3w2

∫ ∞

r=0
r3 exp

(
−2r2

w2

)
dr

= ∓w2πznee
3

8m2ω3
k̂

(
E0

⊥
)2

= −w2πzeε0ω
2
p

16mω3

[
i E0(r = 0) × E∗

0(r = 0)
]

(28)

where Eq. (2) has been used. A comparison with the magnetic
moment of the microscopic currents Mg , according to
Eq. (13), yields Md = −Mg/2.

In conclusion, the circularly polarized laser beam has
a twofold effect in the IFE, as it generates two magnetic
moment components. These components are collinear, have
opposite sign, and differ by a factor of two. Since the system’s
angular momentum is proportional to its magnetic moment,
neglecting the drift current overestimates the IFE-induced
angular momentum by a factor of two. Hence, the angular
momentum transfer in AOS is much lower than one would
expect from a model that assumes translational invariance. This
finding could stimulate future studies, especially concerning
the open question of angular momentum transfer in the AOS.
While our study does not resolve immediately a controversy
in the literature, it provides valuable information on the
importance of the finite lateral size of a laser beam in
the IFE. We have also shown that, contrary to common
assumptions, the IFE cannot be described by an effective
field.
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