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Vortex chains due to nonpairwise interactions and field-induced phase transitions between states
with different broken symmetry in superconductors with competing order parameters
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We study superconductors with two order components and phase separation driven by intercomponent density-
density interaction, focusing on the phase where only one condensate has nonzero ground-state density and
a competing order parameter exists only in vortex cores. We demonstrate there that multibody intervortex
interactions can be strongly nonpairwise, leading to some unusual vortex patterns in an external field, such as
vortex pairs and vortex chains. We demonstrate that in an external magnetic field such a system undergoes a
field-driven phase transition from (broken) U (1) to (broken) U (1) × U (1) symmetries when a subdominant order
parameter in the vortex cores acquires global coherence. Observation of these characteristic ordering patterns in
surface probes may signal the presence of a subdominant condensate in the vortex core.
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I. INTRODUCTION

The unusual magnetic response that originates in multiscale
intervortex interactions recently attracted substantial interest
in the framework of multicomponent superconductivity. The
interest was sparked by the observations of vortex aggregates
in the two-band superconductor MgB2 [1–5], multiband iron
pnictides Ba(Fe1−xCox)2As2 [6,7] and Ba1−xKxFe2As2 [8], as
well as in spin triplet Sr2RuO4 [9,10]. There the existence of
multiple coherence lengths may lead to multiscale physics that
can account for observation of vortex aggregates. On the other
hand, models of multicomponent superconductivity featuring
biquadratic density-density interaction are currently discussed
in the context of superconductors with pair density wave order
[11,12], and most recently in the context of interface super-
conductors such as SrTiO3/LaAlO3 [13]. Here we investigate
the properties of topological defects in an immiscible phase
of a two component model, where there is strong biquadratic
interaction that penalizes coexistence of both superconducting
condensates. We show that it features unusual multiscale
physics of the vortex matter where nonpairwise interactions are
important. This is modeled by a theory of two complex fields
that have a U (1) × U (1) symmetry. In the phase-separated
regime, that occurs for strong biquadratic interaction, the
ground-state spontaneously breaks only one of the U (1) of
the symmetry of the theory.

In two-component superconductors, when both conden-
sates have nonzero ground-state density, nonmonotonic inter-
actions can occur, due to competing intervortex interactions
with different length scales [14–16]. This typically leads
to formation of vortex clusters surrounded by macroscopic
regions of the Meissner state [17]. Because it features prop-
erties of both type-1 and type-2 superconductors, this regime
is termed type-1.5. It is a subject of ongoing studies, both
experimental on MgB2 [1,2,4,5] and more recently in Sr2RuO4

[10] and theoretical studies of Ginzburg-Landau [15,16,18],
microscopic [19], and effective point-particle [20,21] models.

Here we show that unusual multiscale interaction arises
in models of two-component superconductors with strong
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intercomponent biquadratic coupling that is repulsive. The
biquadratic interaction penalizes coexistence of both conden-
sates and above a given critical coupling they cannot coexist,
so that one is completely suppressed. However, in the cores
of vortices, this interaction is effectively much weaker and the
suppressed component can locally condense. We demonstrate
that the condensation in vortex cores leads to new unusual
multiscale, nonmonotonic interactions between vortex matter,
where nonpairwise forces are important [22]. Because it
originates in multiple condensates with a particular hierarchy
of the physical length scales, it is somewhat akin to the type-1.5
regime, but with the substantial difference here that only one
condensate has nonzero ground-state density.

Below we study the two-component Ginzburg-Landau
model where intercomponent density-density interaction can
be strong enough to completely suppress one of the con-
densates, in the ground-state. We characterize the different
possible ground-state phases of that model and the associated
length scales. Finally, we numerically investigate the prop-
erties of vortices within the phase above a critical density-
density coupling, where both components cannot coexist.
There we demonstrate the existence of the above mentioned
regime where intervortex interactions are nonmonotonic, and
where multibody forces are important. Unlike the type-
1.5 regime where vortices typically aggregate into clusters
[15,16,18], vortices here tend to form chains and irregular
structures. Unlike chains forming in multiscale systems with
long-range repulsive interaction [26–30], chains here originate
in nonpairwise intervortex forces.

II. THE MODEL

The Ginzburg-Landau model we consider here is a theory
two complex fields ψ1 and ψ2 standing for two superconduct-
ing condensates. They interact together by their coupling to the
vector potential of the magnetic field B = ∇ × A, through the
kinetic term D ≡ ∇ + ieA:

F = B2

2
+

∑
a=1,2

{
1

2
|Dψa|2 + αa|ψa|2 + 1

2
βa|ψa|4

}

+ γ |ψ1|2|ψ2|2. (1)
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FIG. 1. (Color online) Ground-state properties of the model. (a) and (b) Display ground-state densities and length scales [computed from
the eigenvalues of the Hessian matrix (3)] when the intracondensate couplings are not equal: α1 = −5, α2 = −4.8. β1 = β2 = 1 and e = 0.8.
Depending on the strength of the biquadratic coupling γ , the ground-state corresponds to either the A phase or the B phase, as defined in
Eqs. (4) and (5). One of the length scales ξ+ diverges at the critical value γ� that separates both phases, while the other one ξ− is always finite.

Moreover, the condensates are directly coupled together by a
biquadratic (density-density) interaction potential term when
γ �= 0 and because the biquadratic interaction is repulsive,
γ > 0. For generic values of the parameters of the potential,
α, β and γ , the theory has a U (1) × U (1) symmetry [31].

Depending on the relation between the parameters of the
potential, two qualitatively different superconducting phases
can be identified. These are determined by the ground-state
properties of the theory. Since the potential depends on the
fields moduli only, the ground-state is the state with constant
densities of the superconducting condensates |ψa| = ua and
where the vector potential is a pure gauge (A = ∇χ for
arbitrary χ ) that can consistently chosen to be zero. The
extrema of the potential are given by ∂V/∂|ψa| = 0 and the
ground-state densities ua satisfy

2
(
α1 + β1u

2
1 + γ u2

2

)
u1 = 0,

2
(
α2 + β2u

2
2 + γ u2

1

)
u2 = 0. (2)

For the extrema to be stable (minima), the eigenvalues of the
Hessian matrix H = ∂2V/∂|ψa|∂|ψb| must be positive. Here
the Hessian matrix reads

H = 2

(
α1 + 3β1u

2
1 + γ u2

2 2γ u1u2

2γ u1u2 α2 + 3β2u
2
2 + γ u2

1

)
. (3)

Apart from the normal state (u1 = u2 = 0), there are two
qualitatively different solutions of (2): The A phase (miscible)
for which both condensates have nonzero ground-state density
(u1,u2 �= 0), and the B phase (immiscible) for which only one
condensate has nonzero ground-state density: either u1 �= 0
and u2 = 0 or u1 = 0 and u2 �= 0. Assuming that αa < 0 and
βa > 0, the qualitatively different stable phases determined by
(2) and (3) are

A phase:
(
u2

1,u
2
2

) =
(

α2γ − α1β2

β1β2 − γ 2
,
α1γ − α2β1

β1β2 − γ 2

)
(4)

if β1β2 > γ 2 ,α2γ − α1β2 > 0, and α1γ − α2β1 > 0 .

B phase:
(
u2

1,u
2
2

) =
(−α1

β1
,0

)
or

(
0,

−α2

β2

)
(5)

if α2β1 − α1γ > 0 or α1β2 − α2γ > 0 .

Clearly to understand properties of the B phase it is enough
to consider only the first case where u1 �= 0 and u2 = 0, as the
case u2 �= 0 and u1 = 0 can straightforwardly be obtained from
the first one. Note that we disregard the possibility of having
one positive αa . For both αa > 0, the ground-state is the normal
state u1 = u2 = 0. The ground-state in the A phase sponta-
neously breaks the U (1) × U (1) symmetry. In the B phase
only one of the U (1) is spontaneously broken while the other,
associated with the suppressed condensate, remains unbroken.

In this work we are primarily interested in the properties of
the B phase (5), in the vicinity of the phase transition between
A and B phases. A convenient parametrization to understand
this transition is to investigate the role of the biquadratic
coupling γ . As shown in Fig. 1, for fixed values of αa and
βa , the biquadratic coupling γ can be used to parametrize
the transition between the two phases. The length scales ξ±
are defined from the eigenvalues m2

± of the Hessian (3) as

ξ± = 1/m∓, while the penetration depth is λ = 1/e
√

u2
1 + u2

2.
Here m2

+ stands for the largest eigenvalue of the Hessian and
m2

− the smallest. The relation between the Hessian matrix and
the length scales can be heuristically understood as follows.
The Hessian matrix contains the information about the stability
of the ground-state and thus how it recovers from a small
perturbation. It is important to understand that ξ± corresponds
to hybridized modes and cannot be attributed to a given
condensate separately. That is, m2

± are the decay rates of
a linear combination of ψ1 and ψ2. Long-range intervortex
interaction is controlled by the masses of normal modes. The
linearized theory yields the following long-range intervortex
interaction [16]:

V = qλK0(r/λ) − q−K0(r/ξ−) − q+K0(r/ξ+), (6)

where K0 is the modified Bessel function of the second kind
and the coefficients qλ and q± are determined by nonlinearities.
Here the first term describes the repulsion driven by current-
current and magnetic interactions, while the second and third
terms describe the density-fields-driven interactions.

Single component superconductors are classified into type-
1/type-2 when the penetration depth λ is smaller/larger than
the coherence length ξ . From this, the vortex interactions
are attractive in type-1 because long-range interaction is
mediated by core-core interactions. On the other hand, it is
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repulsive for type-2, due to current-current interactions that
range with λ. In two-component superconductors, such a
classification is not directly applicable because of the existence
of multiple length scales ξ±. In particular, if the penetration
depth is an intermediate length scale ξ− < λ < ξ+, it, under
certain conditions, leads to nonmonotonic interactions that are
long-range attractive and short-range repulsive [14,16]. This
can result in the formation of vortex clusters surrounded by
macroscopic regions of the Meissner state [17]. This phase
is coined type-1.5 and observation of clusters were reported
from measurements in clean MgB2 [1,1,2] and in Sr2RuO4

[10] samples.
When increasing γ , toward the critical value γ� = α2β1/α1

that separates A and B phases, the disparity in densities
becomes more important. This is accompanied with the
increase of the largest length scale ξ+. At γ� this length
scale diverges, while all the other length scales remain finite.
In the A phase, where both condensates have nonzero ground-
state density, elementary topological excitations are vortices
with winding in either condensate. These carry a fraction of
the flux quantum, but finiteness of the energy imposes that they
form a bound state that has phase winding in both condensates
and that carries integer flux quantum. The most simple version
of such a bound state is to have vortices in both condensates
and that they superimpose. However, solutions where vortices
do not coincide can exist and be preferred energetically.
It has recently been argued that such topological defects,
characterized by an additional topological invariant, could be
realized in interface superconductors, such as SrTiO3/LaAlO3

[13]. If λ is not the smallest length scale (i.e., not a type-1
regime), then there always exists a regime, in the vicinity of
γ�, where the penetration depth is an intermediate length scale:
ξ− < λ < ξ+. In the A phase this length scale hierarchy is
known to be a necessary condition for the nonmonotonic vortex
interaction [15]. Clearly this is realized close to γ�, see Fig. 1.

III. EVIDENCES FOR STRONG NONPAIRWISE
INTERVORTEX FORCES

Here our main interest are the properties of the B phase,
in particular in the vicinity of γ�. In contrast to the above
mentioned type-1.5 regime of the A phase, the topological
excitations in the B phase are vortices that have core in ψ1 only.
Away from vortex cores, the fields recover their ground-state
values and thus only ψ1 can contribute to the flux quantization.

To investigate the properties of topological excitations and
their interactions, we numerically minimize the free energy
(1) within a finite element framework [32]. That is, for a given
choice of parameters, a starting configuration with desired
winding is created and the energy is then minimized with a
nonlinear conjugate gradient algorithm. For detailed discus-
sion on the numerical methods, see for example Appendix in
Ref. [33]. In the B phase only the condensate ψ1 has nonzero
ground-state density and thus only ψ1 has vortex excitations.
Since the component ψ1 vanishes at the vortex core, it can be
beneficial for the suppressed component ψ2 to assume nonzero
density in the cores of vortices. A similar mechanism of
condensation in vortex cores was also discussed in the context
of cosmic strings [34]. Minimizing the free energy (1) for an
initial configuration carrying a single flux quantum relaxes to

FIG. 2. (Color online) Vortex solutions in the B phase of Fig. 1,
for the coupling constant of the biquadratic interaction γ = 1.0.
The first column displays the magnetic field, while the second and
third columns show |ψ1|2 and |ψ2|2, respectively. The lines show
configurations carrying N = 1, 2, 3, and 4 flux quanta, respectively.
In the B phase, only ψ1 has nonzero ground-state density, because
the biquadratic coupling is too strong to allow coexistence of
both condensates. Thus only ψ1 forms vortices, while ψ2 is zero
everywhere except in vortex cores. As expected from the length scales
considerations, intervortex interaction is nonmonotonic and vortices
stand at a preferred distance, see second line. For a larger number of
flux quanta (third and fourth line), vortices form straight chains. This
contrasts with the two-body picture that would predict formation of
compact clusters. The chainlike structures thus signal existence of
strong nonpairwise forces between vortices. We should remark that
the simulations are performed on a domain that is large enough, so
that the vortices do not interact with boundaries. The plots show only
a small fraction of the numerical grid.

such a vortex state, see first line in Fig. 2. The condensate
ψ2 that lives inside the vortex cores is gradually suppressed
where the other condensate ψ1 recovers toward its ground-state
density. The rate at which ψ2 recovers is determined by the
fundamental length scales ξ± of the theory. Because the modes
are hybridized, the length scales associated with the recovery
of ψ1 and the decay of ψ2 are not independent.

In the B phase, in the vicinity of γ�, the length scales
satisfy the necessary condition for nonmonotonic interactions.
Indeed, as shown on the second line of Fig. 2, interactions
between two vortices can also be nonmonotonic in the B
phase, even if only one condensate has nonzero ground-state
density. There, in agreement with the linear theory (6), pairwise
interaction between vortices is long-range attractive due to
the largest hybridized density mode and short-range repulsive
due to current-current interactions. It results in a preferred
distance at which vortices minimize their interaction energy
by forming a vortex pair. Based on these observations, natural
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expectation from the two-body interactions is that states with
more than two vortices will form compact clusters inside which
vortices tend to have triangular arrangement [17]. However,
because it is a nonlinear problem, interactions between vortices
can become more complicated, beyond the linear approxi-
mation. In particular, from studies of point particle effective
models [35], it follows that strong nonpairwise interactions
can dramatically affect structure formation, resulting in stripe,
gossamer, and glass phases.

The configurations for few isolated vortices displayed in
Fig. 2 show chain organization of vortices. This indicates
that there are nonmonotonic interactions, but also that there
are strong multibody forces. Indeed the two-body picture
would naively lead us to conclude that many vortices would
organize in a compact cluster. Because theory (1) is completely
isotropic, the linelike organization can originate only in com-
plicated interactions. This poses the question of the response
of the system to an external field. At an elevated external
field, vortex matter usually forms lattices (hexagonal, square,
etc). Since the low field results indicate strong nonpairwise
forces, the question arises if these have a substantial influence
at elevated fields. To sort this out, we investigate the response
in an external field H = Hzez, perpendicular to the plane.
For this, the Gibbs free energy G = F − B · H is minimized,
with requiring that ∇ × A = H on the boundary (see e.g.
discussion in Appendix of Ref. [33]). As shown in Fig. 3,
the typical response in an external field shows a long-living
irregular vortex structure. For example, similar simulations,
but in the A phase, show very regular square lattices [36]. We
show such a lattice in the Appendix.

FIG. 3. (Color online) The parameters are the same as in Fig. 2.
The panels on the first row display the magnetic field and the phase
difference ϕ12 = ϕ2 − ϕ1. The second line shows the densities |ψ1|2
and |ψ2|2, respectively. Note that this configuration is not a true
ground-state in the external field, but is a very stable state. Here the
tendency to form chains competes with finite size effects, resulting
in a very irregular pattern for vortices. Due to the presence of
multibody forces, obtaining true ground-state in the simulations of
magnetization processes for systems of these sizes turns out to be very
difficult. For a discussion of glassiness arising from the nonpairwise
forces see [35]. This suggests that the shown patterns should also be
physically representative for experimental situations in such systems.

There is a tendency here to form chains, but this tendency
competes with the increased importance of current-current
interactions in the relatively dense vortex matter. Note that
the nonpairwise forces, when strong enough, typically pro-
mote metastable or long-living disordered states. Also, when
minimizing the Gibbs free energy with the condition that
∇ × A = H on the boundary, the interaction energy between
vortices is minimized not independently from the interaction
with the Meissner currents on the boundary. Such finite size
effects play as well a role in having imperfect lattices.

Observe that it was demonstrated earlier, that in type-1.5
systems multibody forces can aid formation of vortex chains
for dynamic and entropic reasons [17]. However, here the
nonpairwise forces are clearly much stronger, as chains form
as ground-state solutions in low fields, see Fig. 2. Note also
that the chains and vortex dimers forming here originate
in nonpairwise interactions and not because of pairwise
interactions with multiple repulsive length scales [26,27,37].
They should also not be confused with vortex chains predicted
for multilayer structures, where they originate in a stray field
that lead to long-range repulsive interaction [21,38].

IV. INDUCING STATE WITH DIFFERENT BROKEN
SYMMETRY BY APPLIED FIELD

For isolated vortices in ψ1, the other component ψ2

develops nonzero amplitude in the vortex core. However, as
shown in Fig. 2, ψ2 is asymptotically suppressed and thus it
has has no phase winding. As mentioned in the Introduction,
in this state the system breaks only one U (1) symmetry. In a
high external field there is a large density of vortices and on
average |ψ2| becomes nonzero. There the areas with nonzero
|ψ2| get interconnected across the whole system and thus
the system thus undergoes a phase transition to a state that
breaks the U (1) × U (1) symmetry. By saying that the system
breaks U (1) × U (1) symmetry in an external field we assume
a robust vortex structure, we do not consider here vortex
liquids. The interconnection of ψ2 across the whole sample
is signaled by a change in the phase winding pattern. If two
condensates have nonzero density, phase winding in only one
condensate gives a logarithmically divergent contribution to
the energy [39]. As a result, it is energetically beneficial for
the component ψ2 to form vortices as well. This is in strong
contrast with the results for isolated vortices. The breakdown
of the U (1) symmetry associated with the condensate ψ2,
and the corresponding formation of vortices, can be seen
from phase difference ϕ12 = ϕ2 − ϕ1 shown in the upper
right panel in Fig. 3. There the dipolelike structure of ϕ12

shows the existence of phase winding in both condensates but
around different points. This unambiguously signals that both
condensates have the same total phase winding and thus it is
U (1) × U (1) a symmetry-broken state.

V. METASTABLE MULTIQUANTA SOLUTIONS

When γ becomes large enough as compared to γ�, con-
densation of ψ2 in the vortex core becomes less important.
As a result, deeper in the B phase, individual vortices
show no condensation of ψ2 in the core [40]. Moreover,
deep into the B-phase, λ becomes the largest length scale,
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FIG. 4. (Color online) Metastable solution, deep into the B
phase. This is a localized configuration that carries four flux quanta,
for the same parameters as in Fig. 2 except that γ = 1.2. This object
carries multiple flux quanta, despite not being in a type-1 regime. It
is made of a large central region of the condensate ψ2 where ψ1 = 0,
embedded in a domain where ψ2 = 0. The magnetic flux is screened
by ψ1 outside the vortex, while ψ2 is responsible for screening inside.
As a result, the magnetic flux is localized on a cylindrical shell around
the vortex and resembles a pipe.

and the interaction between vortices becomes long-range
repulsive. Since this follows from asymptotic analysis, this
holds sufficiently far from the vortex core. However, it does
not preclude more involved interactions at shorter ranges. We
computed vortex solutions as in Fig. 2, but deeper in the B
phase (γ = 1.2, 1.4, . . . ). There we find that indeed, isolated
vortices are preferred over vortex bound states. Nevertheless,
we could find a special kind of metastable bound states of
vortices. Namely, we found configuration carrying N flux
quanta whose energy E(N ) is larger than the one of N isolated
vortices: E(N ) > NE(N = 1). These configurations are thus
local minima of the energy functional and, for the parameters
which we considered, they differ by less than 5% from
isolated vortices. Such a metastable state is shown in Fig. 4.
Being obtained through energy minimization, it is stable to
small perturbations and depends on the starting configuration.
Namely, if the starting configuration is in the attractive basin
of the local minimum, it will converge to the local minimum.
Typically if the starting configuration consists of dense packing
of vortices, then it may lead to the metastable bound state.
The metastable state shown in Fig. 4 are lumps where ψ2 is
nonzero, despite that, from an energetic viewpoint it should be
suppressed. There the magnetic flux is screened by ψ1 outside
the vortex, while ψ2 is responsible for screening inside. As
a result, the magnetic flux is localized on a cylindrical shell
around the vortex and resembles a pipe. In different systems,
similar pipelike configurations can actually appear as true
stable states for the special case where α1 = α2 and β1 = β2.
This was recently investigated in a separate work [42]. Also
pipelike vortices were discussed in the Bogomol’nyi regime
of SU(2) theory where additionally γ = β1 = β2 [43]. There
the pipelike solutions feature both properties of vortices and
domain walls. The remarkable feature of the pipelike vortices
in this regime is that here the model does not have topological
domain walls solutions. This makes it distinct from the other
models that support metastable bound states of vortices due to
existence of a broken Z2 symmetry [42,44,45].

According to the asymptotics, intervortex interactions are
long-range repulsive. The attractive channel is activated only
at shorter range. This means that when there are many vortices,
relatively close to each other, they may form the bound
states similar to the one displayed in Fig. 4, because of the
“pressure” of other vortices. Such a situation is likely to occur

FIG. 5. (Color online) Solution in an external field for the same
parameters as in Fig. 3, but stronger biquadratic coupling γ = 1.5.
These parameters for the potential set the system deep into the B
phase where the penetration depth is the largest length scale. Thus
it should behave as an ordinary type-2 system. In such a regime,
preferred solutions are isolated Abrikosov vortices. However, there
also exist metastable states as the one shown in Fig. 4. The metastable
bound state of vortices appears as an inclusion of a domain where ψ2

condenses. Because these are surrounded by vortices exerting some
pressure, in practice they do not decay into ordinary vortices.

in an external field and it may result in coexistence of single
vortices and bound vortices. As shown in Fig. 5, this indeed
happens, despite that the parameters are deep into the B phase.
Note that the energy difference and the stability of bound
vortices depends on all parameters of the free energy. More
precisely, when the difference between αa is important then the
metastable solution does not form anymore in our simulations.
Thus, the coexistence of bound vortices and usual vortices is
not a universal feature and needs both condensates to have
parameters with rather similar values.

In our simulation of the model, the creation of the pipelike
metastable states was very history dependent. However, if they
are created at all, it may be very difficult to destroy them. That
is, if isolated, pipelike vortices are only metastable and may be
very sensitive to small perturbations that can trigger decay into
ordinary vortices. However, when surrounded by vortices, the
decay channel may be different. Indeed, because it is type-2,
vortices interact repulsively and they exert some pressure on
the lump whose decay may thus be more difficult. We show
in Fig. 5 that this is indeed the case that in an external field,
deep into the B phase, lumps coexist with vortices. Note that
because their creation depends on past configurations, slowly
ramping up the external field may make these more rare events.
Deeper in the B phase, pipelike bound states are unstable and
as shown in Fig. 6, there only usual vortices ψ1 exist and ψ2

never condenses (up to numerical accuracy).

VI. SUMMARY

In this paper we have investigated the physical prop-
erties of two-component Ginzburg-Landau models, with
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FIG. 6. (Color online) Solution in an external field for the same
parameters as in Fig. 3, but stronger biquadratic coupling γ = 1.6.
These parameters set the system deep into the B phase where the
penetration depth is no longer an intermediate length scale. Thus,
it behaves as an ordinary type-2 system. There vortices have no
condensation of ψ2 inside the core, as can be seen from the last
panel. Vortices in ψ1 behave as regular Abrikosov vortices and try to
arrange as a triangular lattice. Finite size effects and interaction with
Meissner current deform the lattice, so that it is not really triangular.
Note that since ψ2 is zero (up to numerical precision), the phase
difference ϕ12 is reduced to numerical noise.

inequivalent components, where biquadratic interactions pe-
nalize coexistence of both condensates. Above a critical
coupling γ�, the condensates cannot coexist and only one
preferred component can have nonzero ground-state density,
thus breaking only one of the U (1) symmetries. We have
demonstrated that in a sufficiently strong magnetic field the
second component nevertheless appears resulting in a phase
transition where the (second) U (1) symmetry is also broken.
This kind of phase transition is by no means restricted to
systems with U (1) symmetry. It should also exist in other
systems where different order parameters are localized at the
core of topological defects. Also we shown that under certain
conditions such systems may form metastable states carrying
multiple flux quanta distributed in a cylinder around the vortex
that resembles a pipe.

Near the critical coupling γ� one of the coherence lengths
becomes the largest length scale. On the U (1) × U (1) side this
results in the situation where the system cannot be a type-2
superconductor but be either of type-1 or type-1.5. In the later
case one coherence length is larger and another is smaller than
the magnetic field’s penetration depth and the system vortices
form clusters.

Our main results pertain to the U (1) ground-state, where
both condensates are phase separated. There the simple picture
from the two-body interactions fails to account for the structure
of vortex bound states. Indeed, instead of forming vortex
clusters as suggests the two-body picture, vortex chains are
formed. Because the theory is fully isotropic, this can be
interpreted as the hallmark of strong nonpairwise forces. These
also affect the response in an external field, where there is a
clear tendency to form vortex chains. In a finite sample it

results in rather irregular (metastable) vortex patterns with
vortex dimers and vortex chains, as shown in Fig. 3. The
result should hold for a variety of multicomponent models with
competing order parameters. Thus observation of such vortex
patterns may serve as an experimental hint for the presence of
competing phases condensing in vortex cores. Interestingly
the rather disordered vortex patterns are quite similar to
those observed experimentally in iron-based superconductors
[6,7,9]. The richness of static and dynamic phases which can
form in systems with strong multibody forces [35,46] calls
for further investigation of vortex states in these models. In
samples with disorder the pattern formation will be affected
by pinning which also calls for the investigation of its role.
However, one can still expect substantial presence of vortex
pairs, in the presence of disorder.
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FIG. 7. (Color online) Vortex solutions in the A phase of the
phase diagram Fig. 1. There the coupling constant of the biquadratic
interaction is γ = 0.92. Displayed quantities are the same as in Fig. 2.
In the A phase, where both components have nonzero ground-state
densities, the biquadratic coupling makes it beneficial to split cores.
This induces long-range interaction between flux carrying defects
through dipole interactions. This interaction is responsible for the
binding of vortices.
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for Computing (SNIC) at National Supercomputer Center at
Linköping, Sweden.

APPENDIX: VORTEX MATTER IN THE A PHASE

In the main body of the paper we focus on vortex matter
in the B phase where the biquadratic interactions are strong
enough to segregate condensates. For completeness, in this
Appendix we provide additional materials that show the
behavior of vortex matter in the A phase for the model with
these parameters (although it is not directly related to the main
topic of the paper).

In the A phase, both condensates have nonzero ground-state
density. Thus, in order to have finite energy solutions both
components must wind the same number of times. However,
the cores do not necessarily have to overlap. Because of
the biquadratic interaction, if the penetration depth is large
enough, it is beneficial to split cores. As shown in Fig. 7, the
cores in ψ2 do not superimpose with those in ψ1. Core splitting
in single vortices induces a dipolar interaction through the
phase difference mode, that is long range. As can be seen in
Fig. 7, the long-range dipolar forces heavily affect multiple
vortex structure. This was discussed in slightly different
models in Refs. [13,36].

The long-range dipolar forces also heavily affect the
magnetization process and the lattice solutions that are formed
in high fields. Indeed, in the external field, vortices form
a checkerboard pattern of two interlaced square lattices, as
shown in Fig. 8.

FIG. 8. (Color online) Solution in an external field, for the
applied field corresponding to 301 flux quanta going through the
sample’s area. The parameters are the same as in Fig. 7 and displayed
quantities are the same as in Fig. 3. Vortices in each condensate
form square lattices that are translated from each other because of
the biquadratic interaction. This results in a checkerboard pattern.
Because of the disparity on ground-state densities, vortices in ψ2 carry
less flux than vortices in ψ1. As a result the “brighter spots” of the
magnetic field correspond to the vortices in ψ1. Note that the lattices
are not perfect because of finite-size effects due to the interaction
with Meissner currents and vortex entries at the boundaries.
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