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Eilenberger theory for nuclear magnetic relaxation rate in superconducting vortex lattice state
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On the basis of the Eilenberger theory, spatial variation of the local NMR relaxation rate T −1
1 is quantitatively

estimated in the vortex lattice state, to clarify the differences between the s-wave and the d-wave superconductors.
We study the temperature and the magnetic field dependencies of T −1

1 inside and outside of the vortex core,
including influences of nonmagnetic impurity scatterings in the Born limit and in the unitary limit. These results
are helpful to detect detailed characters of local electronic structures in the vortex lattice states via site-selective
NMR experiments.
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I. INTRODUCTION

In the vortex states of type-II superconductors, a kind
of Andreev bound state is formed around the vortex core.
The bound state has informative structures in the spatial and
the energy dependencies, which are different from simple
normal states. The structures of the bound state are sensitive to
properties of superconductors, such as the pairing symmetry,
Fermi surface anisotropy, and multiband superconductivity.
Therefore, we can know these properties by the observation of
physical quantities reflecting the local electronic structures in
the vortex states. Among many experimental methods for the
purpose, scanning tunneling microscopy (STM) is a powerful
methods to directly observe the local electronic structure [1–3].
However, STM is a method sensitive to the surface condition,
and the number of observable materials is restricted.

On the other hand, site-selective NMR experiment is also a
method to observe the local electronic structures in the vortex
states [4–7]. Since the NMR observation is free from the
surface condition, it can be a complementary method to the
STM observation. The method of the site-selective NMR is as
follows. In the vortex lattice, the internal magnetic field B(r)
has spatial variation as shown in the inset of Fig. 1. And the
resonance line shape of the NMR given by P (B) = ∫

δ(B −
B(r))dr becomes the broad one called the Redfield pattern. As
presented in Fig. 1, among the resonance line shape, the signal
from the higher (lower) field comes from the inside (outside)
of the vortex core. The signal at the peak of the resonance
line shape is from the saddle-point position of the internal
fields, i.e., midpoint r = 0.5ax between nearest-neighbor (NN)
vortices. Thus, we can observe the information of local nuclear
spin relaxation rate T −1

1 (r), tuning the frequency among the
resonance line shape. Usually T −1

1 is measured only at the
peak of the resonance line shape. However, if the observation of
T −1

1 is performed at different frequencies within the resonance
line shape, we can extract rich information about the local
electronic states in the vortex states. Thus, the site-selective
NMR is expected to play an important role in the study of
exotic superconductors through the vortex state properties. In
order to establish analysis methods by the site-selective NMR,
we need to perform quantitative theoretical calculations for the
quantities corresponding to the observation.
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In the uniform states without vortices, it is known that
the low-temperature behaviors of T −1

1 reflect the energy
dependence of the density of states (DOS), N (E), for low-
energy excited states within the superconducting gap [8].
For example, in full-gap s-wave superconductors, T −1

1 has
exponential T dependence at low T since N (E) = 0; i.e.,
low-energy states do not exist within the gap. On the other
hand, in the dx2−y2 -wave superconductors with line nodes of
the pairing function, T −1

1 has power-law dependence ∝T 3,
since N (E) ∝ E. When N (E = 0) is finite in the presence
of the impurity scatterings, T −1

1 ∝ T . At higher T below the
superconducting transition temperature Tc, the T dependence
of T −1

1 reflects the anisotropy of the pairing function on
the Fermi surface. In the s-wave pairing, T −1

1 shows a
large Hebel-Slichter peak below Tc [9]. On the other hand,
the Hebel-Slichter peak is absent in the d-wave pairing.
Therefore, the T dependencies of T −1

1 is an important method
to determine the pairing symmetry of new superconductors.
However, usually the NMR observation in a superconductor
is performed under the vortex state. We have to be careful to
the fact that the behaviors of T −1

1 may be different from those
of the uniform state. Further, the spatial dependence can be
detected by the site-selective NMR. Thus, it is expected that
we correctly estimate the behaviors of T −1

1 (r), considering the
contribution of the vortices.

As for previous theoretical works on the site-selective
NMR, the T dependence of T −1

1 (r) was calculated in the
vortex lattice state by the Bogoliubov–de Gennes theory on
the tight-binding atomic lattice model [10]. This calculation
was performed near the quantum limit for vortex bound
states, and studied only the clean limit, neglecting impurity
scatterings. In the quantum limit � ∼ EF (EF is the Fermi
energy and � is the superconducting gap), the discretized
energy levels of the vortex bound state become eminent.
However, most of superconductors in solid states are far
from the quantum limit, and within a condition � � EF,
where the quasiclassical Eilenberger theory can be safely
applicable [11]. By the Eilenberger theory, calculations of
T −1

1 (r) were done for the single vortex case in the chiral p-
wave superconductors [12]. Since the quantitative calculation
in the whole field range Hc1 < H < Hc2 in the vortex lattice
state were performed by the Eilenberger theory [13–17],
the quantitative estimate of T −1

1 is also expected by the
calculation in the vortex lattice state, including the H

dependence.
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FIG. 1. (Color online) A figure to explain site-selective NMR.
The Redfield pattern of the resonance line shape of the NMR, P (B),
in the clean limit for the s-wave pairing. H = 0.02B0, T = 0.1Tc.
This comes from the internal field distribution B(r) presented in the
inset. In the inset, dashed line indicates a unit cell of the vortex lattice
in our calculations. Arrow indicates radius r (0 � r � 0.5ax) from
the vortex center along the NN vortex direction, where we study the
spatial dependence of T −1

1 in Fig. 2. B at each position r/ax = 0.1,
. . . , 0.5 is pointed in the main panel of P (B). ax is the intervortex
distance, and ay is equal to

√
3/2ax .

The purpose of this work is to quantitatively estimate the
local relaxation rate T −1

1 (r) in the vortex lattice state, using the
Eilenberger theory and the linear response theory. The T and
H dependencies of T −1

1 (r) are examined mainly at two typical
positions: at the vortex center, and at the midpoint between
NN vortices. The latter position represents the outside of the
vortex core. We also study influences of nonmagnetic impurity
scattering in the Born limit and in the unitary limit. As for the
H dependence, we compare results of (T1T )−1 in this work
with those of the Knight shift studied in a previous work [17]
in order to study the local Korringa relation. In these behaviors
of T −1

1 (r), we study characteristic natures depending on the
pairing symmetry, as we study two pairing cases of the s wave
and the dx2−y2 wave.

This paper is organized as follows. After the introduction,
we explain our formulation of Eilenberger theory for the vortex
state, and calculation method for T −1

1 in Sec. II. In Sec. III,
we study the spatial dependence of T −1

1 (r), and influences of
the nonmagnetic impurity scatterings on the T dependence of
T −1

1 (r) in the vortex lattice states. In Sec. IV, we discuss the
H dependence of T −1

1 (r), and make comparison with that of
the Knight shift, in the relation to the zero-energy DOS. The
last section is devoted to summary.

II. FORMULATION

A. Self-consistent Eilenberger theory

We calculate the spatial structure of vortices in the vortex
lattice state by quasiclassical Eilenberger theory, including
impurity scatterings [15–17]. We use the quasiclassical Eilen-
berger theory, where the variation of the atomic scale is inte-
grated out in order to focus on the spatial structure in the order
of the superconducting coherence length ξ . For simplicity, we
consider the spin-singlet pairing on the two-dimensional cylin-
drical Fermi surface, k = (kx,ky) = kF(cos θk, sin θk), and the

Fermi velocity vF = vF0k/kF. To obtain quasiclassical Green’s
functions g(iωn,k,r), f (iωn,k,r), f †(iωn,k,r) in the vortex
lattice state, we solve the Riccati equation derived from the
Eilenberger equation:{

ωn + iμB(r) + 1

τ
〈g〉k + v · [∇ + iA(r)]

}
f

=
(

�̃(r,k) + 1

τ
〈f 〉k

)
g,

(1){
ωn + iμB(r) + 1

τ
〈g〉k − v · [∇ − iA(r)]

}
f †

=
(

�̃∗(r,k) + 1

τ
〈f †〉k

)
g,

where g = (1 − ff †)1/2, μ = μBB0/πkBTc, and v = vF/vF0.
〈· · · 〉k indicates the Fermi surface average. μB is a renormal-
ized Bohr magneton for the Zeeman energy. The order param-
eter is �̃(r,k) = �(r)φ(k) with the pairing function φ(k) =√

2(k2
x − k2

y)/k2
F for the dx2−y2 -wave pairing, or φ(k) = 1 for

the s-wave pairing. r is the center-of-mass coordinate of the
pair. In our calculations, length, temperature, and magnetic
field are, respectively, measured in units of ξ0, Tc, and B0.
Here, ξ0 = �vF0/2πkBTc, and B0 = φ0/2πξ 2

0 with the flux
quantum φ0. Tc is the superconducting transition temperature
in the clean limit at a zero magnetic field. The energy E, pair
potential �, and Matsubara frequency ωn are in units of πkBTc.
In the following, we set � = kB = 1.

As magnetic fields are applied to the z axis, the vector
potential is given by A(r) = 1

2 H × r + a(r) in the symmetric
gauge, where H = (0,0,H ) is a uniform flux density, and a(r)
is related to the internal field B(r) = (0,0,B(r)) = H + ∇ ×
a(r). As shown in the inset of Fig. 1, the unit cell of the vortex
lattice is given by r = s1(u1 − u2) + s2u2 with −0.5 � si �
0.5 (i = 1,2), u1 = (ax,0,0), u2 = (ax/2,ay,0), and axayH =
φ0. ay/ax = √

3/2 for the triangular vortex lattice.
Impurity scattering is treated by the t-matrix approxi-

mation [15,17–23], assuming s-wave nonmagnetic impurity
scattering. Thus, 1/τ in Eq. (1) is given by

1

τ
= 1/τ0

cos2 δ0 + (〈g〉2
k + 〈f 〉k〈f †〉k

)
sin2 δ0

, (2)

where δ0 = tan−1(πN0u0), and u0 is the potential of impurity
strength. N0 is the DOS at the Fermi energy in the normal
state. τ0 is a scattering time of the normal state, and given
by 1/τ0 = nsN0u

2
0/(1 + π2N2

0 u2
0), where ns is the number

density of impurities. In this paper, we use a unit of time as
�/2πkBTcτ0 → 1/τ0. We consider two limits of the impurity
scatterings; i.e., δ0 → 0 in the Born limit, and δ0 → π/2 in the
unitary limit.

To determine the pair potential �(r) and the quasiclassical
Green’s functions self-consistently, we calculate �(r) by the
gap equation

�(r) = g0N0T
∑

0<ωn�ωcut

〈φ∗(k)(f + f †∗)〉k, (3)

where (g0N0)−1 = ln T + 2T
∑

0<ωn�ωcut
ω−1

n , and we use
ωcut = 20kBTc. For the self-consistent calculation of the vector
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potential for the internal field B(r), we use the relation

∇ × (∇ × A) = ∇ × Mpara(r) − 2T

κ2

∑
0<ωn

〈vIm{g}〉k, (4)

where the paramagnetic moment Mpara(r) = (0,0,Mpara(r))
and

Mpara(r) = M0

⎛
⎝B(r)

H
− 2T

μH

∑
0<ωn

〈Im{g}〉k

⎞
⎠ (5)

with the paramagnetic moment in the normal state, M0 =
(μ/κ)2H . The Ginzburg-Landau parameter is given by κ =
B0/πkBTc

√
8πN0. In our calculations, we use κ = 30 as a

typical type-II superconductor. As for the paramagnetic effect,
we use μ = 0.01 in order to estimate the paramagnetic moment
induced by the applied magnetic field. In this small μ, the
effects of the paramagnetic pair-breaking are negligible [16].

We iterate calculations of Eqs. (1)–(5) in Matsubara
frequency ωn until we obtain the self-consistent results of
A(r), �(r), and the quasiclassical Green’s functions. Thus, we
determine the spatial structure of A(r) and �(r) in the vortex
lattice state.

B. Nuclear relaxation rate

Next, using the self-consistently obtained A(r) and �(r),
we calculate the quasiclassical Green’s functions and the
self-energies in real energy E ± iη instead of iωn. We
solve Eilenberger equation (1) with iωn → E ± iη to obtain
g(E ± iη,k,r), f (E ± iη,k,r), f †(E ± iη,k,r). η is a small
parameter, and we use η = 0.01 in our numerical calculation.
From the quasiclassical Green’s functions, we obtain the
self-energy 1

τ
〈g〉k, 1

τ
〈f 〉k, 1

τ
〈f †〉k in the real energy. These

calculations are iterated until we obtain self-consistent results
for the quasi-classical Green’s functions in real E. The local
DOS N (E,r) is given by N (E,r) = 〈Re{g(E + iη,k,r)}〉k.

The equation to estimate the nuclear relaxation rate T −1
1 is

derived by the linear response theory [12,24], and given by

[T1(T )T ]−1

[T1(T̃c)T̃c]−1
= [T1gg(T )T ]−1 + [T1ff (T )T ]−1

[T1(T̃c)T̃c]−1

=
∫ ∞

−∞

Wgg(E,r) + Wff (E,r)

4T cosh2(E/2T )
dE, (6)

where

Wgg(E,r) = 〈a22
↓↓(E,k,r)〉k〈a11

↑↑(−E,k,r)〉k,
(7)

Wff (E,r) = −〈a21
↓↑(E,k,r)〉k〈a12

↑↓(−E,k,r)〉k,

with

a11
↑↑(E,k,r) = 1

2π
[g(E + iη,k,r) − g(E − iη,k,r)],

a22
↓↓(E,k,r) = 1

2π
[ḡ(E + iη,k,r) − ḡ(E − iη,k,r)],

(8)

a12
↑↓(E,k,r) = i

2π
[f (E + iη,k,r) − f (E − iη,k,r)],

a21
↓↑(E,k,r) = i

2π
[f †(E + iη,k,r) − f †(E − iη,k,r)],

and ḡ(E,k,r) = g(−E,k,r), T̃c(<Tc) is superconducting tran-
sition temperature at a finite magnetic field, while Tc is
transition temperature at a zero field in the clean limit.
(T1ggT )−1 is the contribution in (T1T )−1 from the term Wgg ,
and (T1ff T )−1 is the contribution from the coherence term
Wff . Substituting self-consistently obtained quasiclassical
Green’s functions to Eq. (8), we numerically calculate local
(T1T )−1.

III. T DEPENDENCE

A. s-wave pairing

First, we study the T dependence of the local nuclear
relaxation rate T −1

1 in the clean limit. We present T −1
1 as a

function of T at some positions on a line between NN vortices
for the s-wave pairing in Fig. 2(a). At the midpoint r = 0.5ax in
the s-wave pairing, T −1

1 shows exponential-like T dependence
at low T , and has a Hebel-Slichter peak below T̃c. There
are similar behaviors to those at a zero field. Approaching
the vortex center with decreasing r , the Hebel-Slichter peak
is smeared. Further approaching the vortex core, we see the
enhancement in the middle T region. While this enhancement
resembles the Hebel-Slichter peak at r = 0.5ax , the origin
is different. The Hebel-Slichter peak mainly comes from the
enhancement of the coherence term T −1

1ff . However, the peak
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FIG. 2. (Color online) (a) Spatial variation of local T −1
1 for the

s-wave pairing in the clean limit. We show the T dependence of
T −1

1 (T )/T −1
1 (T̃c) at radius r/ax = 0.1, . . . , 0.5 from the vortex center

along the NN direction in Fig. 1. H = 0.02B0 and T = 0.1Tc. The
inset shows a density plot of the spatial structure of local T −1

1 in the
clean limit for the s-wave pairing. (b) The same as (a), but for the
dx2−y2 -wave pairing. We also show a dashed line for (T/T̃c)3.
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at r = 0.1ax appears by the enhancement of T −1
1gg without

contributions of T −1
1ff . At the vortex core, T −1

1gg becomes larger
at lower T than Tc, because larger DOS appears at lower
energies within the superconducting gap. With approaching the
vortex center, the peak temperature of T −1

1 is shifted to lower
T , since the peak energy of the low-energy DOS decreases,
approaching the zero energy at the center. The inset in Fig. 2
presents the spatial structure of T −1

1 at low T . There we see
that T −1

1 is largely enhanced inside the vortex core, reflecting
low-energy excitations due to the vortex bound states. Thus,
we can extract the information of the vortex bound state
through the spatial-dependence of T −1

1 by tuning the resonance
frequency as in Fig. 1 in the site-selective NMR measurement.

To see the influences of the magnetic field at the position
outside of the core, in Fig. 3(a) we present the T dependence
of (T1T )−1 at the midpoint r = 0.5ax . The midpoint r = 0.5ax

is a significant position because the frequency of the internal
field at the midpoint corresponds to the peak frequency of
the Redfield pattern in Fig. 1. There, for H → 0, T −1

1 has
exponential T dependence at low T . In the presence of low
H , (T1T )−1 is not largely changed at low T in the scale of
vertical axis in Fig. 3(a). At higher T there appears a Hebel-
Slichter peak below T̃c at low H . With raising H , we see the
suppression of the Hebel-Slichter peak. At high H = 0.42B0

in Fig. 3(a), on lowering T , (T1T )−1 monotonically decreases
without the Hebel-Slichter peak. The suppression of the Hebel-
Slichter peak by increasing magnetic fields was observed in
NMR experiments [25–27]. In Fig. 3(b), a line presents the H

dependence of the Hebel-Slichter peak’s height in the clean
limit. With increasing H , the peak height rapidly decreases,
and the height is 1.2 times the normal-state value at H =
0.1Hc2.

To discuss the reason of the suppression for the Hebel-
Slichter peak, in Figs. 3(c) and 3(d) we present (T1ggT )−1 and
(T1ff T )−1, respectively. These are decompositions of (T1T )−1

to the contributions of Wgg and Wff in Eq. (7). In the T

dependence of (T1ggT )−1, the small peak below T̃c at H = 0
is due to a peak at the gap edge in the DOS. With increasing
H , (T1ggT )−1 below T̃c is suppressed. The main contribution
to the Hebel-Slichter peak comes from the coherence term
(T1ff T )−1 in Fig. 3(d). This contribution is also decreased by
an increase of H . The decrease of (T1ggT )−1 and (T1ff T )−1

below T̃c is related to the smearing of the gap edge in the
DOS, as shown in Fig. 3(e). There, we see that the gap edge
in the local DOS is gradually smeared with increasing H .
The smearing is eminent even at low fields, while the local
zero-energy DOS is still small there. The zero-energy DOS
at midpoint comes from a small tail of the vortex bound state
penetrating from the vortex core.

In the s-wave pairing, behaviors of T −1
1 are not seriously

affected by the impurity scatterings at the midpoint, suggesting
a remnant of the Anderson theorem [28] for the nonmagnetic
impurity scattering at H = 0. Thus, the Hebel-Slichter peak
appears as in the clean limit. Square points in Fig. 3(b) show
the H dependence of the peak height in the presence of
impurity scatterings in the Born limit. There, we see similar
H dependencies to those in the clean limit. The peak height
in the unitary limit also shows similar behavior (not shown in
the figure).
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FIG. 3. (Color online) (a) T dependence of (T1T )−1 at the
midpoint r = 0.5ax for the s-wave pairing in the clean limit,
where Hc2 = 0.56B0 at T = 0.1Tc. We plot renormalized value
[T1(T )T ]−1/[T1(T̃c)T̃c]−1 at H/B0 = 0, 0.02, 0.06, 0.10, 0.42.
(b) Height of the Hebel-Slichter peak as a function of H/Hc2. We
plot maximum value of [T1(T )T ]−1/[T1(T̃c)T̃c]−1. Solid line indicates
the case of the clean limit. Square points are for the Born limit with
1/τ0 = 0.2, where Hc2 = 0.69B0 at T = 0.1Tc. (c) T dependence of
the contribution (T1ggT )−1 from the Wgg term among (T1T )−1 in (a).
(d) T dependence of the contribution (T1ff T )−1 from the coherence
term Wgg . (e) Local DOS N (E,r) at the midpoint at H/B0 = 0, 0.02,
0.06, 0.10, 0.42 in the s-wave pairing. T = 0.85T̃c.

B. dx2− y2 -wave pairing

In Fig. 2(b), we present T −1
1 as a function of T at some

positions for the dx2−y2 -wave pairing in the clean limit. The
behaviors at r/ax = 0.3, 0.4, 0.5 outside of the vortex core
are similar to those at H = 0. At low T range, T −1

1 ∝ T 3 at
a zero field as shown by the dashed line in the Fig. 2(b). A
difference from the s-wave pairing is the existence of nodes
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FIG. 4. (Color online) T dependence of (T1T )−1 for the dx2−y2 -
wave pairing at the midpoint r = 0.5ax between NN vortices. (a) We
plot [T1(T )T ]−1/[T1(T̃c)T̃c]−1 at H/B0 = 0.02, 0.10, 0.18, 0.26 in
the clean limit, where Hc2 = 0.60B0 at T = 0.1Tc. (b) T dependence
of [T1(T )T ]−1/[T1(T̃c)T̃c]−1 at H = 0.02B0 in the Born limit and the
unitary limit with 1/τ0 = 0.1. We also plot (T1T )−1 in the clean limit
for comparison.

in the d-wave pairing function φ(k), where the sign of φ(k)
changes along the Fermi surface. Since anomalous Green’s
functions have the same sign change as in φ(k), the Fermi
surface average 〈f 〉k = 〈f †〉k = 0 so that the coherence term
Wff = 0 and the Hebel-Slichter peak vanishes. At low T , T −1

1
shows power-law behavior due to the line nodes in the d-wave
pairing.

Near the vortex core r = 0.1ax in Fig. 2(b), we see the
enhancement of T −1

1 , reflecting low-energy excitations of the
vortex bound states as in the s-wave pairing. The spatial
variation of (T1T )−1 at low T is presented in the inset panel
of Fig. 2(b). There, the rapid relaxation regions localized
around vortex cores have fourfold shape. This reflects the
fourfold symmetry of the pairing function and the intervortex
interference of low-energy electronic states extending to
outside of the vortex core [14]. Due to the fourfold shape of the
vortex core, the triangular vortex lattice at low H is deformed
to the square vortex lattice at high H . Thus, we perform our
calculations also in the square vortex lattice case [17], and
confirm that results for the T and H dependence of T −1

1 do
not seriously depend on the shape of the vortex lattice at the
midpoint and the vortex core. Therefore, we present results
only for the triangular vortex lattice case in this paper. In
Fig. 4(a), we present the T dependence of T −1

1 at some H .
The low-T behavior of (T1T )−1 ∝ T 2 at a zero field changes
to that (T1T )−1 reduces to a finite value due to the residual DOS
under magnetic fields. In the dx2−y2 -wave pairing, low-energy
excitations at the vortex core easily extend toward the outside
of the core by the node of the pairing function [14]. The
residual values of (T1T )−1 at low T increase with H . The
increase is visible in Fig. 4(a) even at low H in the d-wave
pairing, while it is very small in Fig. 3(a) in the s-wave pairing.

To discuss influences of the impurity scatterings in the
vortex state for the dx2−y2 -wave pairing, we show the T

dependence of (T1T )−1 at the midpoint between NN vortices
in Fig. 4(b). There, we plot the T dependence of (T1T )−1

at a low field H = 0.02B0 in the Born limit and the unitary
limit in addition to the clean limit. By the impurity scattering,
the upper critical field is suppressed to Hc2 = 0.35B0 from
0.60B0 of the clean limit at T = 0.1Tc. At low T , the residual
values of (T1T )−1 are increased by the impurity scatterings.
Particularly in the unitary limit, (T1T )−1 is remarkably
increased and (T1T )−1 is reduced to be a constant at the low T

range. Actually, this tendency is observed in NMR and NQR
experiments [29].

IV. H DEPENDENCE

In this section, we study the H dependence of residual value
of (T1T )−1 at low T for the s-wave and the d-wave pairings. In
the low temperature limit, (T1T )−1 in Eq. (6) is proportional
to square of the zero-energy DOS N (E = 0) in the uniform
state. On the other hand, it is known that the Knight shift M of
the paramagnetic susceptibility is proportional to N (E = 0).
Thus, we expect the Korringa relation (T1T )−1 ∝ M2, which
is usually considered in the normal states [30,31]. From the
Korringa relation,

(T1T )−1/2 ∼ M ∼ N (E = 0), (9)

where each quantity is renormalized by the normal-state value.
We examine this relation locally in the H dependence in the
vortex states.

A. At a midpoint

First we consider the H dependence of (T1T )−1/2 at the
midpoint between NN vortices, which is presented by solid
lines in Fig. 5 for the clean limit, the Born limit, and the
unitary limit. In the clean limit, compared to the dx2−y2 -wave
pairing case in Fig. 5(b), (T1T )−1/2 is smaller in the s-wave
pairing in Fig. 5(a). There, the slope as a function of H is
smaller at low H , and shows rapid increase near Hc2 in the
s-wave pairing.

In the s-wave pairing in Fig. 5(a), the nonmagnetic impurity
scatterings do not seriously change (T1T )−1 in the low H

range, indicating the remnant of the Anderson theorem [28]
in the s-wave superconductor. At higher fields H > 0.5Hc2,
the contributions of the impurity scatterings appear even in
the s-wave pairing, and enhance (T1T )−1. On the other hand,
in the dx2−y2 -wave pairing, the contributions of the impurity
scatterings to enhance (T1T )−1 are eminent in all field ranges
from H = 0 to Hc2. Compared to the Born limit with the same
1/τ0, (T1T )−1 in the unitary limit is larger, and it remains finite
even at H → 0.

The above-mentioned behaviors of (T1T )−1 are related
to the local DOS and the Knight shift. From the spatial
variation of paramagnetic moment Mpara(r) in Eq. (5), we
obtain the distribution P (M) = ∫

δ(M − Mpara(r))dr. The T

and H dependencies of P (M) were reported in Ref. [17].
There, we found that Mpara(r) is minimum or near minimum
at the midpoint in many cases of H and T . Since the minimum
of Mpara(r) corresponds to the minimum edge Mmin of P (M),
we plot the H dependence of Mmin by the dashed lines in
Fig. 5. There, we see that the local Korringa relation in
Eq. (9) is roughly satisfied, since the H dependencies of
(T1T )−1 and Mmin show similar behaviors. A typical difference
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FIG. 5. (Color online) Solid lines indicate the H dependence of
[T1(T )T ]−1/2/[T1(T̃c)T̃c]−1/2 at the midpoint between NN vortices. In
addition to the clean limit 1/τ0 = 0, we present the Born limit and the
unitary limit of the nonmagnetic impurity scattering with 1/τ0 = 0.1.
Dashed lines indicate the minimum of the paramagnetic moment,
Mmin, in the vortex lattice state. T = 0.1Tc. (a) s-wave pairing.
(b) dx2−y2 -wave pairing.

between the s-wave and the d-wave pairing appears in the
H dependence of N (E = 0); i.e., N (E = 0) ∝ H for the
s-wave pairing, and N (E = 0) ∝ H 1/2 for the d-wave pairing
at low H range [16,32]. Also in the Knight shift spectrum, the
weighted center Mχ of P (M), which is the spatial average of
Mpara(r), follows these relations [17]. However, if the outside
of the vortex core is selectively observed such as Mmin, the H

dependence is largely deviated from the H or H 1/2 relations.

B. At a vortex center

Next, we study (T1T )−1/2 at the vortex center. There, T −1
1

monotonically increases on lowering T , because of the low-
energy quasiparticles confined inside the vortex core. In Fig. 6,
we plot (T1T )−1/2 at the vortex center as a function of H/Hc2

in the clean limit, the Born limit, and the unitary limit. With
decreasing H , (T1T )−1 is enhanced at the vortex center. There,
enhanced (T1T )−1/2 at low H is about 10 times larger than the
normal-state value in the clean limit.

In the s-wave pairing case in Fig. 6(a), the impurity
scatterings make (T1T )−1 smaller even at low fields at the
vortex center, while the changes by the impurity scatterings
are not seen at the midpoint in Fig. 5(a). This indicates
that the Anderson theorem [28] is broken at the vortex core
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FIG. 6. (Color online) Solid lines indicate the H dependence of
[T1(T )T ]−1/2/[T1(T̃c)T̃c]−1/2 at the vortex center. We present three
cases: the clean limit of 1/τ0 = 0, the Born limit, and the unitary
limit for the nonmagnetic impurity scattering of 1/τ0 = 0.1. Dashed
lines present the paramagnetic moment Mmax at the vortex center.
T = 0.1Tc. (a) s-wave pairing. (b) dx2−y2 -wave pairing.

even in the s-wave pairing, reflecting the phase winding of
the vortex. The Anderson theorem is broken when 〈f 〉k is
suppressed compared to 〈g〉k. In the d-wave pairing, the
Anderson theorem is broken, since 〈f 〉k = 0 due to the sign
change of the pairing function φ(k). In the bulk s-wave
superconductor, 〈f 〉k is not canceled by the Fermi surface
average. However, around the vortex core, the phase factor of
f varies depending on k, because the phase factor of �(r)
changes along the quasiparticle trajectory of the k direction.
Therefore, 〈f 〉k is suppressed by the Fermi surface average,
and the Anderson theorem is broken. The suppression by the
impurity scatterings is larger in the Born limit, reflecting the
difference of low-energy states between the Born limit and
the unitary limit at the vortex core [21]. In the dx2−y2 -wave
pairing in Fig. 6(b), the weight of suppression by the impurity
scatterings is larger, compared to the s-wave pairing. (T1T )−1

in the unitary limit is smaller than that in the Born limit.
For comparison, by the dashed lines in Fig. 6 we also show

the H dependence of the paramagnetic moment Mpara(r) at the
vortex core, which is the maximum edge Mmax of P (M). In
the presence of impurity scatterings, we see the local Korringa
relation (T1T )−1/2 ∼ Mmax is well satisfied also at the vortex
center. On the other hand, in the clean limit we see the deviation
of (T1T )−1/2 from Mmax, while they both show similar H
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dependence. This is because the spectrum of N (E) has a sharp
peak near E = 0 in the clean limit. When N (E) has rapid
E dependence near E = 0, the local Korringa relation is not
necessarily satisfied, since the dependence of the integrand on
N (E) is different in the equations for (T1T )−1 and for M .

V. SUMMARY AND DISCUSSION

On the basis of Eilenberger theory, we performed a
quantitative estimate of the local NMR relaxation rate T −1

1 in
the vortex lattice state, focusing on the difference between the
s-wave and the dx2−y2 -wave pairing symmetries. We studied
the T and H dependence of (T1T )−1 in the spatial variation of
the vortex lattice, to know the characteristic behaviors at the
vortex core and outside of the core. For example, we showed
how the Hebel-Sclichter peak of (T1T )−1 in the s-wave pairing
is smeared by applying magnetic fields. We also investigated
influences of the nonmagnetic impurity scatterings both in the
Born limit and in the unitary limit. In the s-wave pairing, effects
of the nonmagnetic impurity scatterings are very weak outside
of the core, but the effects work well inside the vortex core
at low fields. On the other hand, (T1T )−1 in the dx2−y2 -wave
pairing is affected by the nonmagnetic impurity scatterings
both outside and inside the vortex core, where the impurity
effect is larger in the unitary limit than in the Born limit. At
low T , we compared the H dependence of (T1T )−1 and the
Knight shift of the paramagnetic moment to examine the local
Korringa relation. These H dependencies come from the local
electronic states reflecting the pairing symmetry.

The electronic structures in the vortex states were studied by
the Eilenberger theory also in multiband [33] and anisotropic
s-wave [34] superconductors. The site-selective NMR in these
superconductors is one of interesting topics, and belongs to fu-
ture works. In the multiband superconductor, zero-energy DOS
N (E = 0) as a function of H rapidly increases at low H by the
contributions of a band with small superconducting gap [33].
In the anisotropic s-wave superconductors, the H dependence
of N (E = 0) shows intermediate behavior between isotropic s-
wave and nodal d-wave superconductors [34]. As suggestions
from results in this paper, T −1

1gg in the site-selective NMR will
follow the characteristic H dependence of local N (E = 0)
also in multiband and anisotropic s-wave superconductors. We
note that the anisotropic s-wave gap without the sign change
is effectively changed to the isotropic gap by the nonmagnetic
impurity scatterings. This is reflected in T −1

1ff near Tc. Actually,
the Hebel-Slichter peak is enhanced in anisotropic s-wave
superconductors by the nonmagnetic impurity effect smearing
the gap anisotropy [35].

These results are helpful to analyze the results of the site-
selective NMR in order to study the local electronic structure
in the vortex state through the T and the H dependence and
the spatial variations.
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