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Bloch band dynamics of a Josephson junction in an inductive environment
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We have measured the current-voltage characteristics of a Josephson junction with tunable Josephson energy
EJ embedded in an inductive environment provided by a chain of SQUIDs. Such an environment induces
localization of the charge on the junction, which results in an enhancement of the zero-bias resistance of the
circuit. We explain this result quantitatively in terms of the Bloch band dynamics of the localized charge. This
dynamics is governed by charge diffusion in the lowest Bloch band of the Josephson junction as well as by
Landau-Zener transitions out of the lowest band into the higher bands. In addition, the frequencies corresponding
to the self-resonant modes of the SQUID array exceed the Josephson energy EJ of the tunable junction, which
results in a renormalization of EJ , and, as a consequence, an increase of the effective bandwidth of the lowest
Bloch band.

DOI: 10.1103/PhysRevB.91.014507 PACS number(s): 74.50.+r, 74.81.Fa, 85.25.Cp

I. INTRODUCTION

Superconductors provide the unique possibility to create
dissipationless macroscopic electrical quantum circuits that
are characterized by the dynamics of a well-defined single de-
gree of freedom, the superconducting phase. This is due to the
macroscopic coherence of the superconducting wave function
[1]. In Josephson junction (JJ) circuits, the phase difference ϕ̂

between the two superconductors forming the junction and N̂

the number of Cooper pairs that tunnel through the junction
are quantum conjugate variables satisfying [ϕ̂,N̂ ] = i. The
relative strength of the fluctuations is proportional to the
square root of the ratio of the charging energy EC and
the Josephson energy EJ , �ϕ/�N ∼ √

EC/EJ . Therefore,
the Josephson effect in circuits containing large Josephson
junctions (EJ � EC) enables the control of a well-defined
dissipationless phase state. This feature allowed the realization
of the metrological Volt standard using networks of JJs [2].

Decreasing the junction size into the submicron region
decreases the ratio EJ /EC and, as a consequence the quantum
fluctuations of the phase, �ϕ, start to play a dominant role.
Large quantum phase fluctuations can produce �ϕ ≈ 2π

windings, a phenomenon known as quantum phase slips. Since
increasing phase fluctuations implies decreasing fluctuations
of its conjugate variable, the charge, the resulting well-defined
charge state is expected to yield insulating behavior of the
junction. However, such a state is not easily observed for a
single Josephson junction, which is typically measured in a
superconducting low-impedance environment. The associated
charge relaxation time τq is too short to preserve the well-
defined charge state on the measurement time scales.

The relevance of Josephson junction circuits with a well-
defined charge state has been pointed out in pioneering articles
by Averin, Likharev, and Zorin [3,4]. Indeed, Josephson
junctions with a well-defined charge should sustain Bloch
oscillations, consisting of voltage oscillations [5] on the
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junction due to a periodic motion of the charge in the lowest
Bloch band. These Bloch oscillations are dual to the standard
Josephson oscillations. Therefore, they could be used in
principle in quantum metrology to realize a current standard,
analogous to the way Josephson oscillations are used to realize
a voltage standard.

A possible strategy to obtain long charge relaxation
times consists of integrating a highly resistive element with
resistance R near the junction in order to increase the charge
relaxation time τq = RC enabling the realization of a Coulomb
blockade state. However, the introduction of a dissipative
element in the circuit introduces heating effects along with
Johnson-Nyquist noise making it difficult to reach the quantum
limit of minimum charge fluctuations [6].

The first experiments used single Josephson junctions
with on-chip, highly resistive environments [3,7] in order to
observe Bloch oscillations. Later, Josephson junction chains
in the resistive state have been used to create an environment
resistive enough to observe the so-called Bloch nose [8,9].
More recently, longer chains have been studied [10] and the
zero-bias resistance has been interpreted in terms of quantum
phase slips. In the limit of dominating charging energy, the
zero-bias resistance can be understood in terms of depinning
of charges in the chain [11].

Alternatively, nanowires have been suggested as super-
conducting elements sustaining phase slips. Due to the low
dimensionality of these wires, phase slips occur easily [12],
thereby reducing the fluctuations of the charge. Inspired
by Ref. [13], several experiments were performed using
superconducting nanowires probing the dual physics of these
systems such as coherent quantum phase slips in a device dual
to the Cooper pair box [14], a quantum phase-slip interference
device dual to a superconducting quantum interference device
(SQUID) [15,16], and attempts to measure Bloch oscillations
and dual Shapiro steps [6,17].

Another possible strategy to obtain long charge relaxation
times is the additional integration of a large inductance
close to the junction [18–21]. Indeed, in the resulting RLC

circuit, the charge relaxation time will be dominated by
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τq = L/R, as soon as L/R � RC. Hence the use of a highly
inductive environment enables one to achieve long charge
relaxation times with small resistance R, thus avoiding the
aforementioned heating effects. Experiments performed in
the group of Devoret at Yale, probing the quantum states
of the so-called fluxonium qubit, demonstrated that charge
fluctuations on a small junction can be reduced by embedding
it in a highly inductive environment [19,22].

In this article we present an experimental study and a
quantitative analysis of the zero-bias resistance induced by
Bloch band dynamics of the charge on a tunable Josephson
junction included in an inductive environment. The Bloch
bands result from coherent quantum phase slips occurring on
the tunable junctions. The dynamics of the system is related
with the presence of the series inductance that plays the role
of an effective mass. We demonstrate that this configuration
allows the observation of charge localization.

From the measurements we infer that the dynamics of the
charge is a combination of thermal hopping in the lowest
Bloch band and Landau-Zener processes causing interband
transitions. In addition, we account for the effects of the zero
point motion of the electromagnetic modes in the JJ chain and
show that they result in a renormalization of the Josephson
coupling energy EJ , and hence in an increase of the bandwidth
of the lowest Bloch band of the tunable junction.

II. SINGLE JUNCTION IN AN INDUCTIVE
ENVIRONMENT

Before presenting and discussing the experimental results,
it is useful to briefly recall the theory of a single Josephson
junction in an inductive environment [3,18]. The circuit is
presented in Fig. 1(a). It contains a junction with a capacitance
C, such that the charging energy is given by EC = e2/2C, and
a Josephson energy EJ . The junction is coupled to a series
inductance L. The single junction is described by the standard
Hamiltonian

H = Q2

2C
− EJ cos ϕ. (1)

The eigenfunctions are Bloch states and the energy spectrum
is described by Bloch bands as a function of the corresponding
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FIG. 1. (Color online) (a) Circuit diagram of a voltage-biased
Josephson junction in an inductive environment. (b) Wave-function
localized in the effective potential U0 (q) of the lowest Bloch band
(black continuous line). The second band is indicated by the black
dashed line. The red horizontal line corresponds to the lowest energy
level. The graph corresponds to the parameters used in the experiment
with a flux frustration of f = 0.494.

quasicharge q. If the ratio EJ /EC is small, the bands are almost
parabolic with a width

�0 ∼ EC (2)

and with gaps Egap ∼ EJ . If EJ /EC is large, the bands are
sinusoidal with a width �0 ≈ (E3

J EC)1/4e−√
8EJ /EC and with

gaps Egap ∼ �ωp, where ωp = √
8EJ EC/� is the junction’s

plasma frequency. As long as LZ transitions between the bands
can be ignored, the behavior of the junction is completely
governed by the properties of the lowest band. Outside the
parameter range EJ � EC , the bands are not sinusoidal and
the dependence of the lowest band U0 on the quasicharge q is
given by

U0 (q) =
∞∑

k=1

νk cos (kπq/e). (3)

The nonsinusoidal nature of the bands is reflected by the sum-
mation over higher harmonics with index k, which corresponds
to the quantum phase-slip processes in the junction where
the phase winds by an amount 2πk. The energies νk are the
amplitudes for these multiple windings to occur. By embed-
ding the Josephson junction in an inductive environment, it
is possible to induce dynamics of the quasicharge q in the
lowest band. The characteristic kinetic energy is then given by
EL = [�0/(2π )]2/2L, where �0 is the superconducting flux
quantum. The full Hamiltonian for the corresponding circuit,
shown in Fig. 1(a) for a voltage-biased configuration, is given
by [13,18,23]

H = −
(

�
2

2L

)
∂2

∂q2
+ U0 (q) − Vbiasq. (4)

The inductance plays the role of the mass of a fictitious particle
with coordinate q, moving within the potential energy U0(q)
[18]. We denote �0 the barrier height separating the minima
of the potential U0(q). In the tight-binding limit, EL � �0,
at vanishing voltage bias Vbias = 0, we can use the harmonic
approximation for the potential U0 (q) � q2/(2Cq) where the
effective capacitance is defined as C−1

q = (∂2U0/∂q2)q=0 [3].
In this case, the ground-state wave function is a Gaussian
whose width is equal to �q2 = (e2/π )RQ/

√
L/Cq with RQ =

h/(4e2) � 6.45 k
. The ground-state energy equals �ωq/2,
where

ωq = 1/
√

LCq (5)

is the associated dual plasma frequency.
In our experiment we can change the ratio EJ /EC of the

Josephson junction in situ for a given inductance L, thus
changing the barrier height �0, and explore in particular the
regime �0 > �ωq/2 where a localized charge state is expected
to appear; see Fig. 1(b). We have measured the zero-bias
resistance as a function of the ratio EJ /EC and analyze the
result in terms of a possible charge localization.

III. SYSTEM

The experiments were performed on the circuit shown in
Fig. 2. In order to realize a Josephson junction with tunable
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FIG. 2. (Color online) Experimental circuit showing the voltage-
biased tunable Josephson junction (printed in red) connected to
a Josephson junction chain with N junctions. Each junction is a
SQUID loop. The tunable junction and the chain are protected from
spurious high-frequency noise by the parallel arrangement of the
shunt capacitance Csh = 200 pF and the resistance R = 3 k
.

�0, we designed it in the form of a SQUID such that the
ratio EJ /EC ∝ | cos(π�/�0)|, where � is the magnetic flux
threading the SQUID loop. For future use we define the flux
frustration parameter f = �/�0.

The Al/AlOx/Al SQUIDs are fabricated using two-angle
shadow evaporation of aluminum on a silicon substrate with
100 nm of silicon oxide. The two aluminum layers have a
thickness of 20 nm and 40 nm. The junction area inferred
from SEM images is 0.07 μm2 and the lattice parameter of the
SQUID chain is 350 nm.

The junction capacitance is estimated from the design to
be C = 6.9 fF such that EC/h = 2.8 GHz. At f = 0 the
Josephson energy of the tunable junction is EJ /h = 29 GHz.

The series inductance consists of a linear chain of N

SQUIDs, each characterized by a Josephson inductance LSQ =
10 nH for an applied magnetic field that corresponds to
f = 0.5 for the tunable junction. The inductance LSQ was
estimated from resistance measurements at T = 1.5 K. This
chain provides therefore a total inductance of L = NLSQ. This
inductance is also flux dependent. The SQUID loops forming
the chain are 1.6 times smaller than the SQUID loop forming
the tunable junction. The inductance of the chain L changes
only by 10 % in the small flux frustration range f = [0.46,0.5]
where the tunable junction is probed, so that in first order it can
be considered as constant. We fabricated chains containing a
different number N of junctions N = 28, 38, 48, 68, 88, and
108 [24]. The capacitance of the SQUIDs in the chain is equal
to the one forming the tunable junction. The capacitance to
ground of the islands between the SQUIDs is estimated to
be C0 � CSQ/75. The sample is shunted by a homemade
NbT i/Al2O3/NbT i parallel capacitor Csh = 200 pF. This
shunt capacitor, together with a resistance R = 3 k
, provides
a low-pass filter with a cutoff frequency of about 60 MHz, thus
protecting the junction and its inductive environment from
spurious noise above this frequency. The measurements were
carried out in a two-point configuration using high-frequency
filters in the form of thermocoax cables. We measure the I -V
characteristics of the array comprising the single junction and
the inductive Josephson chain, as depicted in Fig. 2. In the
small region at f = [0.46,0.5], where we will analyze our
data, the circuit is effectively voltage biased. The sample is
kept at the base temperature of about 50 mK of our dilution
refrigerator [25].

IV. EXPERIMENTAL RESULTS AND QUALITATIVE
DISCUSSION

We start our discussion by focusing on the results obtained
for the single junction in series with the 48 junction chain
as an example to illustrate the results. Figure 3(a) shows the
zero-bias resistance of this circuit as a function of the flux
frustration parameter f .

First of all we note that the resistance is a few k
 for
zero frustration. We attribute this finite resistance value to the

FIG. 3. (Color online) (a) Measured zero-bias resistance as a
function of flux frustration parameter f for a tunable junction
connected to a 48-junction Josephson junction chain (black). The gray
curve corresponds to a Josephson junction chain with 49 junctions
but without the tunable junction. The inset shows the dependence of
the zero-bias resistance of chains with tunable junctions as a function
of N for f = 0. (b) Current-voltage characteristics of the tunable
junction taken at f = 0.42 and f = 0.5. These flux values are marked
in (a) by the two arrows. The inset shows the corresponding I -V
characteristics for the uniform chain. (c) Zero-bias resistance as a
function of temperature for f = 0.5.
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occurrence of residual incoherent quantum phase slips in the
junctions forming the chain. We can estimate the rate [26] for a
phase winding by ±2π for a given junction as �±

qps = Ae−B±
,

where

A = 12
√

6π
ωp

2π

√
�U

�ωp

, B± = 36

5

�U±

�ωp

(6)

and where we neglected the change of the barrier height due
to the current bias in the prefactor. Here, �U ∼ 2EJ − �ωp/2
and �U± ∼ 2EJ − �ωp/2 ± πI�/2e is the effective barrier
for tunneling of the phase of the junction by ∓2π . Since
the temperature is lower than the plasma frequency ωp/2π =
25.4 GHz, thermal activation can be ignored. Quantum phase
slips give rise to a voltage

V = h(�+
qps − �−

qps)/2e. (7)

Linearizing (7) with respect to the bias current I we find V =
RqpsI with the following estimate for the zero-bias resistance:

Rqps � RQ

36π

5

�qps

ωp

, (8)

where �qps = 2A exp ( 36
5

�U
�ωp

). Using the parameters of the
experiment, we find a residual resistance per junction of
Rqps ≈ 10 
.

This zero-bias resistance at small values of the frustration
changes linearly with the number N of the junctions [see inset
of Fig. 3(a)]. From the experimental N dependence we extract
a resistance of 59 
 per junction which is of the same order of
magnitude as the theoretical estimate.

The Josephson junction chain is a highly refractive material
so that photons can only propagate slowly. This raises the
question of whether or not the processes ocurring on the single
junction are influenced by all the junctions in the Josephson
junction chain or not. We therefore estimate the horizon, that
is the distance which photons can propagate within the time
scales of phase and charge tunneling processes on the single
junction. The relevant time scales on which this processes
happen are given by �tϕ = �/(2eVbias) for the phase tunneling
and �tq = 2e/I for charge tunneling [27]. We use Vbias =
20 μV and I = 10 pA [see Fig. 3(b)] which yields �tϕ =
16 ps and �tq = 32 ns.

The phase velocity (in units of junctions per sec-
ond) can be estimated as vp = ω/k = N/(2π

√
LSQC0) ≈

1013 junctions/s. This results in a horizon for the phase
tunneling of ≈160 junctions and ≈3 × 105 junctions for the
charge tunneling so that in both cases the entire Josephson
junction chain contributes to the electromagnetic environment
of the junction.

Upon increasing the frustration f on the tunable junction,
we observe a significant increase of the zero-bias resistance Rm

up to 4 M
 reached for the maximal frustration f = 0.5 [black
curve in Fig. 3(a)]. As the SQUIDs in the Josephson junction
chain have smaller surface their resistance remains almost
unchanged. For comparison we plot the zero-bias resistance of
a uniform Josephson junction chain [gray curve in Fig. 3(a)].
In this work we concentrate on the resistance peak around
f = 0.5 of the larger SQUID. This flux bias corresponds
to a situation where phase slips predominantly occur on the
single junction and the junction chains act like an inductance.

The second peak in the zero-bias resistance at higher flux
frustraton corresponds to the situation where phase slips occur
on the SQUIDs in the junction chain. This regime will not be
discussed in the paper. Figure 3(b) shows the current-voltage
characteristics, taken at the two flux frustrations corresponding
to the onset of the resistance increase [f = 0.42, left arrow
in Fig. 3(a)] and at its maximum [f = 0.5, right arrow in
Fig. 3(a)]. The inset show the I -V characteristics of the
uniform chain at the same flux biases. We understand this
resistance increase by three orders of magnitude as a result
of the enhanced charge localization within the first Bloch
band. As the flux frustration f is increased, the ratio EJ /EC

of the junction decreases, thereby increasing the width �0

of the lowest Bloch band. As soon as the bandwidth �0

exceeds the kinetic energy EL due to the inductance, the
charge becomes more and more localized. More precisely,
in this limit the dual plasma frequency becomes ωq/2 < �0/�

and localized states can form in the minima of the lowest band
U0(q). We estimate the barrier height of the potential U0(q)
to be �0/h ≈ 2.4 GHz and the dual plasma frequency to be
ωq/2π = 4 GHz. An estimation of the ratio �0/EL = 0.6 for
our quantum phase-slip junction results in a situation where
only one level, with energy �ωq/2, is located in the potential
U0(q); see Fig. 1(b).

At higher voltages, the I -V characteristic for f = 0.5
shows a current peak that we attribute to the existence of
electromagnetic modes in the chain at higher frequencies
[28,29]. The effect of these modes on the behavior found at
low bias will be discussed in detail in Sec. VI. For voltage
biases much larger than the plasma frequency of the JJ
chain Vbias � �ωSQ/2e photons can no longer be emitted to
the environment so that the incoherent charge tunneling is
suppressed and a zero current state is observed.

In Fig. 3(c), the temperature dependence of the zero-bias
resistance is shown for f = 0.5. We see that with decreasing
temperature T , the zero-bias resistance increases, down to
a temperature of about 80 mK. At lower temperatures, R0

saturates. The effect of finite temperatures is to induce thermal
fluctuations kicking the charge particle out of the minima. The
gradual decrease of R0 with increasing T is therefore expected:
charge localization is more pronounced at lower temperatures.
The low-temperature saturation is most probably a result of
the existence of a finite environment noise temperature of
about 80 mK. We estimated that quantum tunneling can still
be ignored at this temperature. Similar findings were reported
in Ref. [6].

V. CHARGE DIFFUSION

In order to account for the dependence of the measured
zero-bias resistance on the flux frustration parameter f , we
start by analyzing the simplest possible model describing
the dynamics of the quasicharge q, assuming its dynamics
to be restricted to the lowest charge band. This amounts to
ignoring Landau-Zener transitions. We will come back to
this assumption in Sec. VII below. For now we consider the
limit of low voltage bias and low temperature, eV,kBT < �0.
We include the effect of a small tilt due to finite bias; see
Fig. 4. Classically, the charge will be localized in one of the
minima of the band. This would give rise to a zero current
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FIG. 4. (Color online) Escape rates �+ and �− for the fictitious
quasicharge particle moving in a tilted washboard potential. PZ

denotes the Landau-Zener probability for the quasicharge particle
to undergo an interband transition.

state. However, driven by thermal or quantum fluctuations, the
particle can hop between neighboring minima. In the presence
of a finite bias voltage, the rate �− for hopping from right
to left differs from �+ corresponding to hopping from left
to right, giving rise to a finite current I = 2e(�+ − �−). We
calculate the rates �± using Kramers’s classical result [30]
for the escape of a particle from a potential well. We assume
thermal activation to be dominant as the temperature is in
the same orders of magnitude as the dual plasma frequency
ωq/2π = 4 GHz so that the rates �± can be expressed
as

�± = ωq

2π
e−E±/kBT . (9)

Here we used the attempt frequency ωA = ωq , and E± =
�0 ∓ eV denote the barrier heights for tunneling to the left
and the right of the well in the presence of the tilt V (see also
Fig. 4). We recall that the parameter �0 depends on the ratio
EJ /EC of the tunable junction that is varied in situ through
the flux frustration parameter f .

FIG. 5. (Color online) Zero-bias resistance R0 as a function of the
parameter EJ /EC for the chain with N = 48: experimental results
(data points) and fit (solid line) based on Eq. (10).

TABLE I. Fitting parameters and errors for all measured chains.
α is the multiplicative factor in front of �0 used when fitting with
Eq. (10).

N α ωfit
q /EC ωq/EC

28 1.7 ± 0.1 0.61 ± 0.02 1.17
38 4.1 ± 0.1 7.0 ± 0.4 1.01
48 4.6 ± 0.2 1.7 ± 0.5 0.99
68 5.4 ± 0.2 17 ± 4 0.84
88 6.3 ± 0.2 52 ± 12 0.74
108 5.5 ± 0.2 22 ± 7 0.67

The current flowing through the system is I = V/R0, and
linearizing the rates with respect to a small bias voltage V

results in

R0 = RQ

kBT

�ωq

e�0/kBT . (10)

In Fig. 5, the measured zero-bias resistance Rm is shown as
a function of frustration and the corresponding ratio EJ /EC

for the N = 48 junction chain, together with a fit based on
Eq. (10). Similar fits have been performed for all the measured
chains. These fits enable us to compare the behavior of the fitted
exponent �fit

0 as a function of the ratio EJ /EC with the theo-
retically expected one �0, determined by solving the Mathieu
equation corresponding to Hamiltonian (4) using the system’s
parameters. From the fits we find that the actual values of the
exponent and the prefactor differ greatly from the expected
one. Specifically, we find that good fits can be obtained using
a barrier height �fit

0 = α�0 that is α times higher than the
expected value �0. In Table I, we list the multiplicative factors
α for the other samples together with the prefactor ωfit

q obtained
by fitting and the corresponding prefactor expected from
theory ωq . Note that the factor α is an almost monotonically
increasing function of the chain length N . We obtain values
ranging from α = 1.7 to α = 6.3. As will be argued in the
following, we can attribute this discrepancy between the exper-
imentally found exponent and the theoretically expected one
to two phenomena: (i) the renormalization of the Josephson
coupling energy of the tunable junction due to electromagnetic
modes propagating along the chain and (ii) the effect of inter-
band transitions (Landau-Zener processes) that dominate the
charge dynamics whenever the gap ∼EJ separating the lowest
two charge bands becomes too small compared to the charac-
teristic energy of the dynamics of the quasicharge. This will
happen when the flux bias on the single junction approaches
f = 0.5.

VI. RENORMALIZATION OF THE BANDWIDTH

It is well known that the Josephson coupling energy EJ

of a Josephson junction connected to an external circuit is
suppressed down to a value E∗

J by the quantum fluctuations
induced by the corresponding environment [31–33]. As a
consequence, the bandwidth �∗

0 found for the lowest charge
band will be larger than the bare width �0. Referring again
to the measurement circuit as shown in Fig. 2, we first note
that the junction is well protected from high-frequency noise
originating from the external leads by thermocoax and the RC
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FIG. 6. (Color online) Dispersion of the propagating modes on
Josephson junction chains with a finite capacitance to ground
C0/CSQ = 1/50.

filter down to 60 MHz [25]. Since the resistance measurements
were performed at flux frustration parameters f corresponding
to a bare Josephson coupling energy in the GHz range, we
suppose that the external noise does not account for any
renormalization of EJ . However, the chain providing the
inductance is directly coupled to the tunable junction. The
fact that the islands realize a finite capacitance C0 to ground
leads to the appearance of dispersive electromagnetic modes
in the chain [20,34,35], with a dispersion relation given by

ωk = ωp

√
1 − cos k

1 − cos k + C0/2CSQ

,

where k = 2πn/N are the discrete wave vectors of these
modes. Here we assumed periodic boundary conditions as we
do not know the exact boundary conditions in our experiment.
The dispersion relation is shown in Fig. 6. It consists of a
linear part, ωk = ω0k for small k vectors, with k <

√
C0/CSQ.

Here ω0 = 1/
√

LC0. The frequency ωl of the lowest mode is
inversely proportional to the chain length N . For the longest
chains measured, this frequency is estimated to be about 40%
of the chain’s plasma frequency ωp. For larger wave vectors,
the dispersion relation saturates at the plasma frequency ωp. In
units of temperature, the frequency range between ωl and ωp

covered by the modes corresponds to a range between 300 mK
and 1 K. Since the temperature at which the experiment is
performed is lower than 300 mK, a zero-temperature treatment
of the modes is adequate. The equivalent voltage range is
between 30 μV and 100 μV, which corresponds to the range
where the current peak is found in the I -V characteristic, see
Fig. 3(b), thereby providing indirect evidence for the existence
of the modes. In this relatively high bias voltage range, Cooper
pair transfer in the small junction is possible as the modes of
the chain provide the necessary dissipation.

In the limit of small voltage biases, as it is argued in
the Appendix, the modes induce zero point quantum phase
fluctuations at the end of the chain that couple to the
small junction. They add to the phase difference ϕ across
the junction, thereby renormalizing the Josephson coupling
energy EJ of the tunable junction [36] down to a value E∗

J ,

FIG. 7. Dependence of the ratio �∗
0/�0 of the tunable junction’s

renormalized bandwidth and the bare bandwidth as a function of (a)
frustration for a chain length of N = 48 and (b) chain length for a
frustration f = 0.46.

given by

E∗
J = EJ exp

{
− 1

N

∑
k

e2

�

√
L

2C(k)[1 − cos k]

}
. (11)

Using this result, we calculate the renormalized effective
bandwidth �∗

0, corresponding to the spectrum of Hamiltonian
(1). Figure 7(a) shows the dependence of the ratio �∗

0/�0 as
a function of f , for the N = 48 junction chain. We see that
this ratio is larger than unity and a monotonically decreasing
function of f , reaching unity at f = 1/2, where the Josephson
coupling energy vanishes and the bandwidth attains its largest
possible value EC . The N dependence of the ratio �∗

0/�0 is
plotted in Fig. 7(b), for a fixed value of f = 0.46. Indeed, it
is a monotonically increasing function of N ; however, even
for N = 108 it does not exceed a value of about 1.7, and
therefore can account only in part for the observed discrepancy
discussed in Sec. V above. In the next section we will show that
Landau-Zener processes between the lowest charge band and
the higher ones may account for the rest of the discrepancy.

VII. CHARGE DIFFUSION IN THE PRESENCE OF
LANDAU-ZENER PROCESSES

In this section we extend the charge diffusion model
presented in Sec. V and include the effect of possible interband
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transitions ignored so far. The probability to pass from the
lowest charge band to the next one is given by [32]

PZ = exp

{
−π2

4

E2
gap

EC�ωx

}
, (12)

where Egap ∼ EJ is the gap separating the two bands and
ωx the relevant frequency associated with the dynamics of
the quasicharge. At zero voltage bias, this frequency will be
approximately given by the attempt frequency ωq at which
the quasicharge tries to escape by thermal activation from the
well formed by the minima of the lowest band. In presence
of dissipation, the Landau-Zener probability is determined by
coupling of the quasicharge with the external environment.
This can give rise to an effective gap appearing in Eq. (12)
[29,32]. We observe that Landau-Zener processes are flux
dependent. We take into account the dissipative corrections by
allowing ωx in Eq. (12) to be an independent fit parameter. The
probability to remain in the lowest band is given by 1 − PZ .
We then expect the measured resistance Rm to be given by the
weighted sum

Rm = (1 − PZ)R0 + PZRZ, (13)

where R0, the resistance associated with charge diffusion in the
lowest band [Eq. (10)], is now calculated with a multiplicative

FIG. 8. (Color online) Zero-bias resistance R0 as a function of the
parameter f for all the chains discussed in this work: experimental
results (data points); fit (solid line) based on Eq. (13). The dashed line
shows the contribution of Landau-Zener interband transitions along
PZRZ .

TABLE II. Fitting parameters and errors for all measured chains
for fits using Eq. (13).

N RZ (k
) ωx/EC ωfit
q /EC

28 84 ± 2 0.046 ± 0.001 0.535 ± 0.005
38 350 ± 10 0.020 ± 0.001 0.400 ± 0.010
48 3600 ± 200 0.005 ± 0.002 0.025 ± 0.005
68 170 ± 100 0.010 ± 0.003 0.120 ± 0.010
88 3000 ± 200 0.005 ± 0.001 0.100 ± 0.020
108 800 ± 50 0.017 ± 0.002 0.170 ± 0.030

factor α = 1 but taking into account the renormalized barrier
height �∗

0. RZ is a constant fit parameter, representing the
resistance associated with charge dynamics in the higher
bands. We assume RZ to be independent of the flux frustration
parameter. When calculating Egap in Eq. (12), we solve the
Mathieu equation associated with Hamiltonian (1) for the
single junction, using the renormalized Josephson energy E∗

J ,
Eq. (11). In Fig. 8 we show a fit of the data for all our chains
with Eq. (13). Table II shows the parameters used to obtain the
best fits.

A few remarks are in order at this point. Note that ωfit
q

has the tendency to decrease with the chain length, a fact
that is expected as the attempt frequency of the escaping
particle decreases with increasing particle mass, the mass
of the charge being given by the chain’s inductance. On the
other hand, the frequency ωfit

q and the fitted LZ frequency
ωx are systematically smaller than the frequency ωq (see
Tables I and II) associated with the curvature of the lowest
Bloch band. This indicates that the charge motion is possibly
overdamped [37]. Such overdamped motion could result from
a finite quality factor of the electromagnetic modes. Indeed,
microwave transmission experiments [38] done on a 200
Josephson junction chain with a similar ratio EJ /EC ≈ 10 as
in the experiment here have shown an internal quality factor of
about 100. We note that the fitting parameter RZ increases as a
function of N and takes a maximum value of RZ = 3500 
 for
N = 48. Above N = 48 it is difficult to conclude a systematic
behavior of RZ . A more detailed understanding of the behavior
of RZ requires a more detailed understanding of the processes
responsible for charge relaxation in the higher bands, which is
beyond the scope of the present paper.

In summary, as it can be seen in Fig. 8, the measured zero-
bias resistance as a function of the flux frustration parameter
shows three different behaviors. Close to f = 0.5, where
EJ � EC , Landau-Zener processes dominate. The measured
resistance has a peak, the form of which is entirely dominated
by the flux dependence of the Landau-Zener probability PZ .
Away from f = 0.5, the decrease of the resistance with f

becomes slower than the one predicted by PZ alone: the system
enters the regime where charge diffusion within the lowest
band dominates. Even farther away from f = 0.5, the charge
diffusion model breaks down. Here, the bandwidth becomes
smaller than the residual noise temperature of the system that
we estimate to be about 80 mK. This happens at f ≈ 0.47. The
charge is no longer localized and our model based on simple
escape rates underestimates the actual charge transfer rates.
Hence the fit overestimates the measured resistance.
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C0

n-1 n+1n
LSQ

C0 C0CSQ

LSQ LSQ LSQ

CSQ CSQ CSQ

FIG. 9. Josephson junction chain.

VIII. CONCLUSIONS

Our transport measurements suggest the existence of a
localized charge state on a Josephson junction due to an
inductive environment. We could explain the measured zero-
bias resistance with a model combining charge diffusion within
the lowest Bloch band and Landau-Zener processes between
bands. In order to reduce the charge dynamics to the lowest
Bloch band, future experiments should study single Josephson
junctions with a larger Josephson coupling EJ , hence avoiding
Landau-Zener transitions. At the same time the inductance of
the environment should be increased to ensure a localized
charge state. Increasing the SQUID chain length to obtain a
larger inductance reduces the frequencies of the electromag-
netic modes and renormalization effects will start to play a
dominant role. Future experiments using the combination of a
tunable junction with a controllable SQUID chain constitute an
experimental test bed to explore the renormalization effects of
the electromagnetic environment on a small junction in a more
systematic way. The understanding of the interplay between
the charge dynamics and the electromagnetic environment
is also relevant for future applications where an inductive
environment could play an important role such as current
Shapiro steps in a superconducting phase-slip circuit [6,18]
or a quantum phase-slip qubit [23].
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APPENDIX: HARMONIC MODES OF A JOSEPHSON
JUNCTION CHAIN

In this Appendix we briefly review the quantum theory
of a harmonic Josephson junction chain. We consider a
Josephson junction chain, consisting of N junctions, each
with a capacitance CSQ and a Josephson coupling energy
EJ,ch. We denote the capacitance of the islands between the
junctions to ground by C0. In the harmonic limit, valid when
EJ,ch � EC = e2/2C, the junctions forming the chain behave
as inductances with inductance LSQ = (�/2e)2/EJ,ch each.
Then the chain is described by the circuit model shown in

Fig. 9. Its Hamiltonian can be written as

Hch = 1

2

∑
n,m

QnC
−1
nmQm + 1

2LSQ

(
�

2e

)2 ∑
n

(φn − φn+1)2,

(A1)
where Qn and φn denote the charge and the phase of the
nth island, respectively. These variables satisfy the canonical
commutation relation [Qn,φm] = −2ieδn,m. The matrix C−1

nm

is the inverse of the chain’s capacitance matrix

Cnm = (C0 + 2CSQ)δn,m − CSQδn+1,m − CSQδn−1,m.

We diagonalize the Hamiltonian (A1) with the help of the
following mode expansions for Q and φ:

φn = 1√
N

∑
k

√
2e2

C(k)�ωk

(ak + a
†
−k)eikn, (A2)

Qn = −ie√
N

∑
k

√
C(k)�ωk

2e2
(ak − a

†
−k)eikn. (A3)

Here, C(k) = C0 + 2CSQ(1 − cos k) is the discrete
Fourier transform of the capacitance matrix, C(k) =
(1/N)

∑
k eik(n−mCnm. The dispersion relation is given by

ωk = ωp

√
2(1 − cos k)

C0/CSQ + 2(1 − cos k)
, (A4)

with the plasma frequency ωp = 1/
√

LSQCSQ. We use pe-
riodic boundary conditions, which implies that k = 2πm/N

with m = ±1,2, . . . , ± N/2. The diagonal form of Hch reads

Hch =
∑

k

�ωk(a†
kak + 1/2). (A5)

The small Josephson junction is connected to one of the ends of
the chain, say the one corresponding to n = 0. As a result, the
phase difference φ across the the junction acquires a fluctuating
part, φ0, and its Josephson coupling energy can be written as
−EJ cos(φ + φ0). Upon averaging over the fluctuations φ0,
we obtain the junction’s effective Josephson energy U (φ) with
a renormalized Josephson coupling energy E∗

J ,

U (φ) = −EJ 〈cos(φ + φ0)〉Hch
= −E∗

J cos φ, (A6)

where E∗
J = EJ 〈cos φ0〉Hch

and the average 〈 〉Hch
is taken with

respect to the Hamiltonian Hch at zero temperature. Using
the fact that 〈cos φ0〉Hch

= exp{−〈φ2
0〉Hch

/2} and the mode
expansion (A2) to calculate 〈φ2

0〉Hch
, we finally obtain

E∗
J = EJ exp

{
− 1

N

∑
k

e2

�

√
L

2C(k)[1 − cos k]

}
. (A7)
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