Coexistence of localized and itinerant electrons in $BaFe_2X_3$ (X = S and Se) revealed by photoemission spectroscopy

D. Ootsuki,¹ N. L. Saini,² F. Du,^{3,4} Y. Hirata,³ K. Ohgushi,^{3,5} Y. Ueda,^{3,6} and T. Mizokawa^{1,2,7}

¹Department of Physics, University of Tokyo, Kashiwa, Chiba 277-8561, Japan

²Department of Physics, Universitá di Roma La Sapienza, Piazzale Aldo Moro 2, 00185 Roma, Italy

³Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan

⁴Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University,

Changchun, 130012, People's Republic of China

⁵Department of Physics, Tohoku University, Sendai, Miyagi 980-8578, Japan

⁶Toyota Physical and Chemical Research Institute, Nagakute, Aichi 480-1192, Japan

⁷Department of Complexity Science and Engineering, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan

(Received 14 November 2014; revised manuscript received 6 January 2015; published 13 January 2015)

We report a photoemission study at room temperature on $BaFe_2X_3$ (X = S and Se) and $CsFe_2Se_3$ in which two-leg ladders are formed by the Fe sites. The Fe 2*p* core-level peaks of $BaFe_2X_3$ are broad and exhibit two components, indicating that itinerant and localized Fe 3*d* sites coexist similar to $K_xFe_{2-y}Se_2$. The Fe 2*p* core-level peak of $CsFe_2Se_3$ is rather sharp and is accompanied by a charge-transfer satellite. The insulating ground state of $CsFe_2Se_3$ can be viewed as a Fe²⁺ Mott insulator in spite of the formal valence of +2.5. The itinerant versus localized behaviors can be associated with the stability of chalcogen *p* holes in the two-leg ladder structure.

DOI: 10.1103/PhysRevB.91.014505

PACS number(s): 74.25.Jb, 74.70.Xa, 79.60.-i, 74.81.-g

I. INTRODUCTION

The coexistence of itinerant superconducting phase and localized antiferromagnetic phase in $K_x Fe_{2-y} Se_2$ [1–4] sheds light on the intervening coupling between the electron correlation effect and the lattice effect. When the Fe 3d electrons are localized and form the antiferromagnetic insulating state with high-spin Fe^{2+} , the insulating phase tends to expand due to Fe-Fe bond length increase and applies a kind of pressure to the remaining metallic region [5]. The antiferromagnetic insulating phase in $K_x Fe_{2-y} Se_2$ is identified as $K_2 Fe_4 Se_5$ with Fe vacancy order [2,3]. On the other hand, the superconducting phase is likely to be FeSe, which is under the pressure from the expanded and insulating K₂Fe₄Se₅. In the insulating K₂Fe₄Se₅ phase, the four Fe sites with square geometry form a ferromagnetic block, which couples antiferromagnetically with neighboring blocks [3]. The transfer integrals between the neighboring blocks are reduced due to the Fe vacancy, and the Mott insulating state is realized. In the XPS study on $K_x Fe_{2-v}Se_2$, two components of the Fe $2p_{3/2}$ peak are assigned to the coexisting superconducting and insulating phases in the superconducting $K_x Fe_{2-y}Se_2$, while in insulating $K_x Fe_{2-y}Se_2$, the Fe $2p_{3/2}$ peak consists of a single component [6]. The charge-transfer energy from Se 4p to Fe 3d is estimated to be 2.3 eV, which is smaller than the repulsive Coulomb interaction between the Fe 3d electrons of 3.5 eV [6]. Therefore, the insulating K₂Fe₄Se₅ phase with high-spin Fe²⁺ can be regarded as a Mott insulating state of charge-transfer type instead of Mott-Hubbard type, and the Se 4p orbitals should be taken into account to explain the magnetic interactions between the Fe spins.

Recently, another insulating Fe selenide $BaFe_2Se_3$ has been attracting much attention due to the specific quasi-onedimensional crystal structure with Pnma space group as well as the block-type antiferromagnetic state similar to $K_2Fe_4Se_5$ [7–13]. In addition, $BaFe_2Se_3$ is predicted to be a new type of multiferroic system with magnetic and ferrielectric orders in a recent theoretical work [14], which certainly enhances the interest in the title system. In BaFe₂Se₃, FeSe₄ tetrahedra share their edges and form a two-leg ladder of Fe sites as shown in Fig. 1(a). The magnetic structure of $BaFe_2Se_3$ is similar to K₂Fe₄Se₅ in that four Fe spins in the two-leg ladder form a ferromagnetic block and the neighboring blocks are antiferromagnetically coupled as illustrated in Fig. 1. The two-leg ladder is distorted with shorter Fe-Fe bonds (ferromagnetic and antiferromagnetic) and longer Fe-Fe bonds (ferromagnetic and antiferromagnetic) along the ladder direction. The magnetic structure is consistent with the theoretical prediction [15]. Néel temperature reported in the literatures varies from 240 K [9] to 255 K [7,8,11]. Also the magnetic moment of BaFe₂Se₃ ranges from 2.1 μ_B [9] to 2.8 μ_B [7,11], depending on the growth condition, and is smaller to the value expected for high-spin Fe^{2+} . Interestingly, resistivity also depends on the growth condition. Lei et al. reported that resistivity exhibits activation-type temperature dependence with band gap of 0.18 eV [8]. On the other hand, one-dimensional variable range hopping was reported by Nambu et al., indicating that some carriers are localized due to strong scattering effect in the quasi-one-dimensional structure [11]. In addition, coexistence of itinerant and localized electrons was recently indicated by the resonant inelastic x-ray scattering study by Monney et al. [12]. This observation suggests that the itinerant electrons introduced by small Fe vacancy or some other effects would be responsible for the reduction of the magnetic moment and the variable range-hopping behavior of the resistivity [11]. In contrast to BaFe₂Se₃, CsFe₂Se₃ with formal Fe valence of +2.5 is much more insulating [16]. Interestingly, Fei *et al.* have revealed that all the Fe sites have the same local environment in CsFe₂Se₃ by means of Mössbauer spectroscopy [16]. Below 177 K, Fe spins in the two-leg ladder of CsFe₂Se₃ order antiferromagnetically along the rung and ferromagnetically along the leg with magnetic moment of $\sim 1.8 \,\mu_B$. Usually, Mott insulators with integer number of valence are expected to be more insulating than the mixed valence systems. The

FIG. 1. (Color online) (a) Crystal structure of $BaFe_2Se_3$ visualized using the software package Vesta [18]. (b) Schematic drawing for the magnetic structure and the lattice distortion for $BaFe_2Se_3$.

situation of the two-leg ladder Fe chalcogenides is opposite to this expectation, and $CsFe_2Se_3$ with formal Fe valence of +2.5 is more insulating than integer valence $BaFe_2Se_3$ and $BaFe_2S_3$ [16]. Such puzzling mismatch between the formal valence and the transport behavior indicates unusual electronic states of the title system.

In the present work, we study fundamental electronic structures of BaFe₂Se₃, BaFe₂S₃, and CsFe₂Se₃ above their Néel temperatures by means of x-ray photoemission spectroscopy (XPS) and ultraviolet photoemission spectroscopy(UPS) at room temperature. The broad Fe 2p XPS peaks of BaFe₂Se₃ and BaFe₂S₃ indicate coexistence of localized and itinerant electrons. On the other hand, the Fe 2p XPS peak of CsFe₂Se₃ is relatively sharp, suggesting that Fe valence is homogeneous in spite of the expectation of a mixed valence state. The apparent contradiction between the valence state and the Fe 2p peak width can be reconciled by taking account of the Se 4p or S 3p holes.

II. EXPERIMENTS

The single crystals of BaFe₂Se₃, BaFe₂S₃, and CsFe₂Se₃ were grown as reported in the literatures [11,16]. We cleaved the single crystals at room temperature (300 K) under the ultrahigh vacuum for the XPS and UPS measurements. The XPS measurement was carried out at 300 K using JPS9200 analyzer. Mg K α (1253.6 eV) was used as an x-ray source. The total energy resolution was set to ~1.0 eV. The binding energy was calibrated using the Au 4*f* core level of the gold reference sample. The UPS measurement was performed using SES100 analyzer and a He I (21.2 eV) source. The total energy resolution was set to ~30 meV and the Fermi level was determined using the Fermi edge of the gold reference sample.

III. RESULTS AND DISCUSSION

Figure 2 shows the Fe 2p XPS spectra of BaFe₂Se₃, BaFe₂S₃, and CsFe₂Se₃ taken at 300 K, which are compared with those of superconducting and nonsuperconducting $K_xFe_{2-y}Se_2$ [6]. In nonsuperconducting $K_xFe_{2-y}Se_2$, the chemical composition is close to $K_2Fe_4Se_5$ with Fe^{2+} and its ground state is a charge-transfer-type Mott insulator. The sharp Fe 2p peak of CsFe₂Se₃ is very similar to that of

FIG. 2. (Color online) Fe 2p XPS of BaFe₂ X_3 (X = S and Se) compared with CsFe₂Se₃ and K_xFe_{2-y}Se₂ (metallic and insulating) [6]. The solid curves indicate the results of curve fitting for BaFe₂S₃ and BaFe₂Se₃.

nonsuperconducting $K_x Fe_{2-y} Se_2$ or the Fe^{2+} Mott insulator. This XPS result indicates that CsFe₂Se₃ would be a Mott insulator with Fe²⁺, which is actually consistent with the Mössbauer study [16]. If all the Fe sites in CsFe₂Se₃ take the high-spin Fe^{2+} configuration, the extra positive charge (+0.5 per Fe) should be located at the Se sites. On the other hand, in superconducting $K_x Fe_{2-v} Se_2$, itinerant Fe 3d electrons coexist with the localized Fe 3d electrons in the Mott insulating phase. The Fe 2p lineshape of BaFe₂Se₃ and BaFe₂S₃ is very similar to that of superconducting $K_x Fe_{2-y}Se_2$, indicating coexistence of itinerant and localized electrons. In the case of superconducting $K_x Fe_{2-y}Se_2$, the coexistence of the localized and itinerant electronic states is governed by the spatial distribution of the Fe vacancy. On the other hand, BaFe₂Se₃ and BaFe₂S₃ have no Fe vacancy, which can reduce transfer integrals between neighboring Fe sites and cause the Mott localization. Instead, in the two-leg ladder structure of $BaFe_2Se_3$ and $BaFe_2S_3$, the electronic interaction between neighboring Fe sites can be controlled by the Se 4p or S 3pholes, which are indicated by the mismatch between the formal valence and the transport behavior. Here, one can speculate that the Fe 3d electrons with the Fe^{2+} high-spin configuration and the Se 4p (or S 3p) holes are localized in CsFe₂Se₃, whereas they are partially delocalized in BaFe₂Se₃ and BaFe₂S₃.

The Fe $2p_{3/2}$ and Fe $2p_{1/2}$ peaks can be decomposed into the two components, which are derived from the itinerant and localized parts. In Fig. 2, the results of Mahan's line shape fitting are indicated by the solid curves for BaFe₂Se₃

FIG. 3. (Color online) Fe 2p XPS of CsFe₂Se₃ (dots) compared with the result of cluster model calculation. The dotted curve indicates the background due to the secondary electrons.

and BaFe₂S₃. The itinerant component has lower binding energy due to the stronger screening effect. The intensity ratio between the itinerant and localized components is 3.0 : 5.0 for BaFe₂Se₃ and 2.3 : 5.0 for BaFe₂S₃, respectively. The relative intensity of the "itinerant" component is much larger in BaFe₂Se₃ and BaFe₂S₃ than that in K_xFe_{2-y}Se₂. The energy splitting between the two components is ~0.8 eV for BaFe₂Se₃ and BaFe₂S₃, which is comparable to the value for K_xFe_{2-y}Se₂.

Figure 3 shows the Fe 2p XPS of CsFe₂Se₃ compared with the result of the configuration interaction calculation on an FeSe₄ cluster model [17]. The Fe $2p_{3/2}$ peak of CsFe₂Se₃ (located around 708 eV) is accompanied by a broad satellite structure (located around 714 eV), which can be assigned to the charge-transfer satellite. The energy position and the intensity of the charge-transfer satellite can be analyzed using the configuration-interaction calculation on the tetrahedral $FeSe_4$ cluster model [6]. The ground state is assumed to take the high-spin d^6 state mixed with the d^7L , d^8L^2 , d^9L^3 , and $d^{10}L^4$ states where L represents a hole in the Se 4p ligand orbitals. The excitation energy from d^6 to d^7L corresponds to the charge-transfer energy Δ . The excitation energy from d^7L to $d^{8}L^{2}$ is given by $\Delta + U$, where U represents the Coulomb interaction between the Fe 3d electrons. The transfer integrals between the $d^n L^m$ and $d^{n+1} L^{m+1}$ are described by $(pd\sigma)$ and $(pd\pi)$, where the ratio $(pd\sigma)/(pd\pi)$ is fixed at -2.16. The final states are spanned by the cd^6 , cd^7L , cd^8L^2 , cd^9L^3 , and $cd^{10}L^4$ states, where c denotes a hole of the Fe 2p core level. The Coulomb interaction Q between the Fe 2p hole and the Fe 3d electron is expressed as Q, which is fixed at U/0.8. With $\Delta = 2.0$ eV, U = 3.5 eV, and $(pd\sigma) = -1.2$ eV, the calculated spectrum can reproduce the Fe 2p XPS result as indicated by the solid curve in Fig. 3. Δ is smaller than U, indicating that CsFe₂Se₃ is a Mott insulator of charge-transfer type instead of Mott-Hubbard type.

The valence-band XPS spectra of $BaFe_2Se_3$, $BaFe_2S_3$, and $CsFe_2Se_3$ taken at 300 K are displayed in Fig. 4(a)

FIG. 4. (Color online) (a) Valence-band XPS of $BaFe_2X_3$ (X = S and Se) compared with CsFe_2Se_3 and K_xFe_2-_ySe_2 (metallic and insulating) [6]. (b) UPS of $BaFe_2X_3$ (X = S and Se) compared with CsFe_2Se_3.

and are compared with those of superconducting and nonsuperconducting $K_x Fe_{2-y}Se_2$ [6]. Besides the shallow core levels such as Ba 5*p*, Cs 5*p*, and K 3*p*, the valence-band structures of the five systems are similar to one another. The spectral weight near the Fermi level increases in going from CsFe₂Se₃ to BaFe₂Se₃ to BaFe₂S₃, consistent with their transport properties [8,10,11,16].

Figure 4(b) shows the UPS spectra of BaFe₂Se₃, BaFe₂S₃, and CsFe₂Se₃ taken at 300 K. BaFe₂S₃ with the highest conductivity shows the tail of the spectral weight up to the Fermi level while BaFe₂Se₃ has the finite band gap of \sim 0.2 eV. The magnitude of the band gap observed in BaFe₂Se₃ is more or less consistent with the activation energies obtained from temperature dependence of resistivity by Lei *et al.* [8]. CsFe₂Se₃ exhibits the largest band gap of \sim 0.8 eV, consistent with the charge-transfer-type Mott insulator deduced from the Fe 2*p* XPS result.

The apparently homogeneous Fe valence and the relatively large band gap in CsFe₂Se₃ can be explained based on the idea of ligand hole. The smallness of the charge-transfer energy for the Fe²⁺ state indicates that if Fe³⁺ exists in CsFe₂Se₃, it should take the d^6L configuration instead of d^5 . In this ligand hole picture, the two-leg ladder in CsFe₂Se₃ accommodates the d^6 -like and d^6L -like sites. Assuming that the d^6 -like and d^6L -like sites are aligned along the rung, the Se 4*p* hole should be located at the Se sites sandwiched by the two legs. This situation is schematically shown in Fig. 5 where all the Fe sites take the high-spin Fe²⁺ configuration and the S 4*p* holes are localized at the Se sites on the rungs. In this scenario, the Se 4*p* holes and the Fe 3*d* electrons are partially delocalized in BaFe₂Se₃ and BaFe₂S₃ and may cause

FIG. 5. (Color online) Crystal structure and possible Se 4p hole distribution for CsFe₂Se₃ visualized using the software package Vesta [18].

the lattice (and magnetic) instability. In the low-temperature phase with the lattice distortion and the block-type magnetic order, the Se 4p holes and the Fe 3d electrons would be localized in the antiferromagnetic dimer with the Fe²⁺ high-spin configuration, and they are rather "itinerant" in the ferromagnetic dimer. Here, the Se 4p holes and the Fe 3d electrons in the ferromagnetic dimer are "itinerant" in a sense that they occupy a kind of molecular orbital.

IV. CONCLUSION

In conclusion, we have studied the electronic structures of $BaFe_2X_3$ (X = S and Se) and CsFe_2Se_3 using photoemission spectroscopy. The Fe 2p core-level peaks consist of the two components in BaFe₂ X_3 , indicating that the itinerant and localized Fe 3d electrons coexist. The Fe 2p and valence-band spectra suggest that the itinerant Fe 3d electrons are more strongly confined in BaFe₂Se₃ than in BaFe₂S₃. On the other hand, the Fe 2p core-level peak of CsFe₂Se₃ exhibit the single component accompanied with the charge-transfer satellite. The insulating ground state of CsFe₂Se₃ can be viewed as a charge-transfer-type Mott insulator with localized Se 4pholes. In BaFe₂ X_3 (X = S and Se), the Se 4p or S 3p holes are partially delocalized and may cause the coexistence of the itinerant and localized Fe 3d electrons. In future, the relationship between the chalcogen p holes, the lattice distortions, and the magnetic interactions should be further studied using various experimental and theoretical approaches.

ACKNOWLEDGMENTS

The authors thank Professors H. Takahashi, H. Okamura, and Y. Uwatoko for valuable discussions. This work was partially supported by Grants-in-Aid from the Japan Society of the Promotion of Science (JSPS) (Grant No. 25400356). D.O. acknowledges supports from the JSPS Research Fellowship for Young Scientists.

- [1] J. Guo, S. Jin, G. Wang, S. Wang, K. Zhu, T. Zhou, M. He, and X. Chen, Phys. Rev. B 82, 180520 (2010).
- [2] Z. Shermadini, A. Krzton-Maziopa, M. Bendele, R. Khasanov, H. Luetkens, K. Conder, E. Pomjakushina, S. Weyeneth, V. Pomjakushin, O. Bossen, and A. Amato, Phys. Rev. Lett. 106, 117602 (2011).
- [3] F. Ye, S. Chi, W. Bao, X. F. Wang, J. J. Ying, X. H. Chen, H. D. Wang, C. H. Dong, and M. Fang, Phys. Rev. Lett. **107**, 137003 (2011).
- [4] A. Ricci, N. Poccia, G. Campi, B. Joseph, G. Arrighetti, L. Barba, M. Reynolds, M. Burghammer, H. Takeya, Y. Mizuguchi, Y. Takano, M. Colapietro, N. L. Saini, and A. Bianconi, Phys. Rev. B 84, 060511 (2011).
- [5] M. Bendele, A. Barinov, B. Joseph, D. Innocenti, A. Iadecola, A. Bianconi, H. Takeya, Y. Mizuguchi, Y. Takano, T. Noji, T. Hatakeda, Y. Koike, M. Horio, A. Fujimori, D. Ootsuki, T. Mizokawa, and N. L. Saini, Sci. Rep. 4, 5592 (2014).
- [6] M. Oiwake, D. Ootsuki, T. Noji, T. Hatakeda, Y. Koike, M. Horio, A. Fujimori, N. L. Saini, and T. Mizokawa, Phys. Rev. B 88, 224517 (2013).
- [7] J. M. Caron, J. R. Neilson, D. C. Miller, A. Llobet, and T. M. McQueen, Phys. Rev. B 84, 180409 (2011).
- [8] H. Lei, H. Ryu, A. I. Frenkel, and C. Petrovic, Phys. Rev. B 84, 214511 (2011).
- [9] A. Krzton-Maziopa, E. Pomjakushina, V. Pomjakushin, D. Sheptyakov, D. Chernyshov, V. Svitlyk, and

K. Conder, J. Phys.: Condens. Matter **23**, 402201 (2011).

- [10] J. M. Caron, J. R. Neilson, D. C. Miller, K. Arpino, A. Llobet, and T. M. McQueen, Phys. Rev. B 85, 180405 (2012).
- [11] Y. Nambu, K. Ohgushi, S. Suzuki, F. Du, M. Avdeev, Y. Uwatoko, K. Munakata, H. Fukazawa, S. Chi, Y. Ueda, and T. J. Sato, Phys. Rev. B 85, 064413 (2012).
- [12] C. Monney, A. Uldry, K. J. Zhou, A. Krzton-Maziopa, E. Pomjakushina, V. N. Strocov, B. Delley, and T. Schmitt, Phys. Rev. B 88, 165103 (2013).
- [13] Q. Luo, A. Nicholson, J. Rincón, S. Liang, J. Riera, G. Alvarez, L. Wang, W. Ku, G. D. Samolyuk, A. Moreo, and E. Dagotto, Phys. Rev. B 87, 024404 (2013).
- [14] S. Dong, J.-M. Liu, and E. Dagotto, Phys. Rev. Lett. 113, 187204 (2014).
- [15] M. V. Medvedev, I. A. Nekrasov, and M. V. Sadovskii, JETP Lett. 95, 33 (2012).
- [16] F. Du, K. Ohgushi, Y. Nambu, T. Kawakami, M. Avdeev, Y. Hirata, Y. Watanabe, T. J. Sato, and Y. Ueda, Phys. Rev. B 85, 214436 (2012).
- [17] N. L. Saini, Y. Wakisaka, B. Joseph, A. Iadecola, S. Dalela, P. Srivastava, E. Magnano, M. Malvestuto, Y. Mizuguchi, Y. Takano, T. Mizokawa, and K. B. Garg, Phys. Rev. B 83, 052502 (2011).
- [18] K. Homma and F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011).