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Signatures of thermally excited vortices in a superconductor with competing orders
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Experimental evidence for the existence of a fluctuating charge-density wave order in the pseudogap regime of
YBa2Cu3O6+x has renewed interest in its interplay with superconductivity. Here, we consider the problem within
a nonlinear sigma model, which was recently proposed to describe the apparent competition between the two order
parameters. In particular, we use a saddle-point approximation to calculate the properties of superconducting
vortex excitations within such a model. In addition, we analytically calculate a collection of experimentally
observable quantities, which probe both the superconducting and charge-density wave fluctuations, and identify
expected signatures of thermally excited vortices. Specifically, we find that the magnetization and Nernst signal
decay rapidly with temperature for a range of temperatures above the Kosterlitz-Thouless transition, while the
x-ray structure factor increases in the same temperature range. At higher temperatures, the system enters a regime
of Gaussian fluctuations where vortices are no longer well defined, and as a result the magnetization, Nernst
signal, and x-ray structure factor all decrease moderately with temperature.
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I. INTRODUCTION

Over the past two decades, a large number of experiments
have produced evidence that the pseudogap state of the cuprate
high-temperature superconductors exhibits fluctuations to-
wards various types of order [1]. In particular, recent x-ray
scattering [2–12] and nuclear magnetic resonance [13–15]
experiments indicate that the pseudogap regime of underdoped
YBa2Cu3O6+x is characterized by a local charge-density
wave (CDW) order. The situation concerning the nature of
superconducting (SC) fluctuations in the same compound is
less clear. On the one hand, c-axis infrared spectroscopy
[16] has found signatures of a precursor SC state, which
onsets close in temperature to the CDW signal. In addition,
high-field torque magnetometry [17] has detected fluctuation
diamagnetism up to high temperatures. On the other hand, a
different magnetometry measurement [18] found diamagnetic
response, consistent with Gaussian SC fluctuations, only in
a narrow range above the critical temperature, Tc. The same
conclusion was reached based on a measurement of the Nernst
effect [19].

In any event, all available data point to the fact that
the strength of the CDW fluctuations is anticorrelated with
superconductivity. Specifically, the intensity of the CDW
scattering peak grows as the system is cooled towards Tc,
and then decreases upon entering the SC phase. Furthermore,
the CDW signal is enhanced when a magnetic field is used to
quench superconductivity. Finally, optical excitation of apical
oxygen vibrations promotes transient superconducting signa-
tures [20,21], resembling similar results in La2−xBaxCuO4,
where they were attributed to the melting of stripe order.
Motivated by these findings Hayward et al. [22,23] have
recently proposed a phenomenological nonlinear sigma model
(NLSM), which formulates the competition between fluctuat-
ing SC and CDW order parameters. Similar models emerge
also from more microscopic considerations [24–27]. Using
Monte Carlo simulations of their model, Hayward et al.
calculated the temperature dependence of the x-ray structure
factor and of the diamagnetic susceptibility, and compared
them to data from experiments on YBa2Cu3O6+x .

The purpose of the present paper is to analytically study the
properties and expected experimental signatures of thermally
excited SC vortices, within the NLSM of Ref. [22]. In con-
ventional BCS superconductors the core of the vortex consists
of the normal metallic state. Consequently, the energy needed
to create the core is of the order of the Fermi energy, thus
making thermally excited vortices highly unlikely. However,
this need not be the case when superconductivity competes
with another state of comparable energy, as assumed in the
NLSM. Such “cheap” vortices are required if one attempts
to explain the diamagnetic and Nernst signals of underdoped
cuprates within a vortex picture [28,29]. Experimentally, the
checkerboard halos observed around vortices in a magnetic
field [30] give evidence that the vortex core may actually
harbor local CDW order.

To make progress towards our goal we consider the NLSM
in the limit of a large number, N , of fluctuating fields, and
construct an effective theory for the SC vortices by integrating
out the CDW degrees of freedom. Using the resulting theory
we estimate the vortex core radius and core energy, from
which we determine the density of thermally excited vortices.
This allows us to identify the temperature range above the
transition temperature over which vortices remain well defined
and the physics is dominated by SC phase fluctuations. In this
temperature range we calculate the magnetization, Mz, and
the transverse thermoelectric transport coefficient, αyx , which
is related to the Nernst signal [31]. We find that both decay
rapidly with temperature in a manner that is governed by the
vortex core energy, while, on the other hand, the proliferation
of vortices leads to a rise of the x-ray structure factor, SCDW.
As the temperature is increased further the system crosses
over to a regime where the vortices are no longer well defined,
amplitude fluctuations become important, and the fluctuations
are nearly Gaussian. In this regime Mz and αyx continue
to decrease, albeit in a more moderate fashion, and SCDW

also becomes a decreasing function of temperature, thereby
implying the existence of a peak.

The paper is organized as follows. In Sec. II we present the
model, consider its large-N limit, and identify the various
temperature regimes which emerge. The derivation of an
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effective theory for the SC field is presented in Sec. III,
which also contains a calculation of the vortex core energy
and core size, as well as a numerical solution of the vortex
structure. Section IV discusses the expected diamagnetic and
Nernst signals in different temperature regimes, while Sec. V
describes the maximum in the x-ray structure factor as a
function of temperature. We conclude with a discussion of
the relation to experiments in Sec. VI.

II. THE MODEL AND ITS LARGE-N EFFECTIVE THEORY

Hayward et al. [22] considered a real 6-dimensional order
parameter, equivalent to a complex SC field � = n1 + in2 and
two complex CDW fields, �x = n3 + in4 and �y = n5 + in6.
In this paper we would like to use a saddle-point approximation
for the CDW fields, which is formally justified when their
number is large. Thus, we analyze a system described by
a complex SC field {ψ,ψ∗}, and N − 2 real CDW fields
{nα}, where α = 1 . . . N − 2. For the sake of simplicity we
disregard quartic and anisotropic CDW terms, which appear
in the Hamiltonian of Ref. [22], and analyze the more basic
form

H = ρs

2

∫
d2r

{
|∇ψ |2 +

N−2∑
α=1

[
λ(∇nα)2 + gn2

α

]}
. (1)

Here ρs is the stiffness of the SC order, λρs is the corresponding
quantity for the CDW components, and gρs is the energy
density penalty for CDW ordering. Central to the model is
the assumption that some type of order (SC or CDW) is
always locally present, in the sense of its amplitude, but that
the different order parameters compete, as expressed by the
constraint [32]

|ψ |2 +
N−2∑
α=1

n2
α = N. (2)

Physically, the magnitude of the multicomponent order pa-
rameter, or conversely ρs , decrease to zero at a high enough
temperature where there is no local order at all. However,
our treatment is relevant for much lower temperatures where
the order parameter magnitude is finite. In this regime we
assume that the model parameters are temperature inde-
pendent. While reasonable, a detailed justification of this
assumption must be based on the underlying microscopic
details, and therefore goes beyond the scope of the present
study.

A free energy functional F [ψ∗,ψ] for the SC field is
obtained by integrating out the CDW fields

e−βF =
∫

Dnαδ

(
|ψ |2 +

N−2∑
α=1

n2
α − N

)
e−βH

=
∫

DnαDσ̄ e−βH+i
∫

d2r σ̄ (|ψ |2+∑
α n2

α−N), (3)

where β = 1/T . In the limit N → ∞ we carry out the integra-
tion over nα while assuming that the Lagrange multiplier field
σ̄ , which enforces the constraint, is fixed at its saddle-point

configuration σ̄ = iσ . As a result

βF = N − 2

2
Tr ln

[
1

2
βρs(−λ∇2 + g) + σ

]
+

∫
d2r

[
1

2
βρs |∇ψ |2 + σ

(|ψ |2 − N
)]

, (4)

where σ is determined by the saddle-point equation

δ βF

δσ (r)
= N − 2

2
Tr

[(
1

2
βρs(−λ∇2 + g) + σ

)−1

δr

]
+ |ψ |2 − N = 0, (5)

with δr an operator, whose functional form is

δr(r′,r′′) = δ(r′ − r)δ(r′′ − r). (6)

The most likely SC configurations, those that minimize the free
energy, are determined by the second saddle-point equation

δ βF

δψ∗ = −1

2
βρs∇2ψ + σψ = 0. (7)

Below the mean-field transition temperature, TMF, Eqs. (5), (7)
acquire a uniform solution ψ(r) = ψ0, σ = 0 with

|ψ0|2 = N

(
1 − T

TMF

)
(8)

and

ρs

TMF
= N − 2

Nλ
Tr[(−∇2 + g/λ)−1δr]

= N − 2

Nλ

∫
d2p

(2π )2

1

p2 + g/λ

� N − 2

4πNλ

{
ln(32λ/ga2) : λ/ga2 � 1,

4πλ/ga2 + O(λ2) : λ/ga2 	 1.
(9)

Here, and wherever is needed in the following, we regularize
the theory by putting it on a square lattice with lattice
constant a. This amounts to replacing the Laplacian by its
discrete version p2 → [4 − 2 cos(pxa) − 2 cos(pya)]/a2 and
extending the momentum integration over the first Brillouin
zone |px,y | < π/a.

Beyond the mean-field approximation TMF is only a
crossover temperature, below which the most likely value of
ψ(r) assumes a finite amplitude. However, phase fluctuations,
particularly in the form of vortices, prevent ordering down to a
lower Berezinskii-Kosterlitz-Thouless [33] temperature TBKT.
TBKT itself can be estimated using Monte Carlo results [34] for
the XY model on a square lattice, which when applied with
our model gives TBKT ≈ 0.9ρs |ψ0|2. Combined with Eq. (8)
this implies TMF/TBKT = 1 + TMF/0.9ρsN and therefore the
existence of a phase-fluctuation regime, provided that our
results hold down to N = 6.

Therefore, it is possible to construct a schematic phase
diagram, Fig. 1, in which we identify three temperature
regions: (i) A high-temperature regime, T > TMF, approxi-
mately described by Gaussian fluctuations in both the SC and
CDW fields; (ii) a superconducting phase-fluctuation regime,
TBKT < T < TMF, with thermally excited vortices; and (iii) a
SC phase for T < TBKT. Equation (9) indicates that for our
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FIG. 1. (Color online) Phase diagram as a function of λ and
temperature, T , obtained by extending our large-N results down
to N = 6. Here, ga2 = 0.3, but the general features are similar
also for other values. At low temperatures, T < TBKT, the system is
superconducting, while Gaussian fluctuations approximately describe
the high-temperature regime, T > TMF. Above TBKT the system
enters a phase-fluctuation regime, with well-defined vortices up to
an intermediate temperature, depicted by the dotted line. We define
this curve as the temperature where nf r2

0 ≈ 0.5, and approximate it
using Eqs. (27) and (31).

case of interest, λ/ga2 > 1, TMF grows approximately linearly
with λ and depends only weakly on g. Thus, the size of the
phase-fluctuation regime, (ii), is also expected to increase with
λ. We note, however, that as the temperature is increased
in this region, thermally excited vortices become denser
and cease to be distinct objects. Consequently, significant
amplitude fluctuations, associated with abundant vortex cores,
are expected already at temperatures below TMF. A more
stringent definition of the phase-fluctuation regime would
therefore require that the distance between thermally excited
vortices be strictly larger than their size; i.e., nf < r−2

0 . Even
so, we still find that the extent of this regime grows with λ, as
depicted by the dotted line in Fig. 1.

III. THE VORTEX CORE

A. Effective Ginzburg-Landau theory and the vortex core size

In the SC phase-fluctuation regime, observables, such as
the magnetization Mz and transverse thermoelectric transport
coefficient αyx , depend on the density nf of thermally excited
vortices [29,35–37]. This density, in turn, is set by the energy
εc and the linear size r0 of the vortex core [38]. Thus, in order to
calculate observables in this temperature regime, one must first
know the temperature dependence of the vortex core energy
and size.

In order to estimate the vortex core size it is useful to
construct a Ginzburg-Landau type theory for small values of
ψ , which is applicable near the transition temperature TMF,
or, as in our case, at lower temperatures, but near the vortex
center. When ψ is small it is possible to write the free energy
F explicitly by expanding Eq. (4), and simultaneously solving
the saddle-point equation (5). For convenience, we define 
0

and 
1 by

1
2βρsλ(
0 + 
1) = 1

2βρsg + σ, (10)

where 
0 ∼ O(1) and 
1 ∼ O(|ψ |2/N). We also introduce
the operator K

K = (−∇2 + 
0)−1, (11)

in terms of which the saddle-point equation (5) takes the form

N − 2

βρsλ
Tr[(K−1 + 
1)−1δr] = N − |ψ |2. (12)


0 itself is set by the zeroth-order expansion of this equation
in |ψ |2/N ,

N − 2

βρsλ
Tr[Kδr] = N − 2

βρsλ

∫
d2p

(2π )2

1

p2 + 
0
= N. (13)

Regularizing the integral on the lattice we obtain for T < TMF


0 = 32

a2
exp

(
−4πNλ

N − 2

ρs

T

)
. (14)

To first order in |ψ |2/N , Eq. (12) implies the relation

N − 2

βρsλ
Tr [K
1Kδr] = |ψ |2, (15)

whose Fourier transform reads


1(q)
∫

d2p

(2π )2

1

p2 + 
0

1

(p + q)2 + 
0
= βρsλ

N − 2
|ψ |2(q),

(16)

leading for small q to


1 = 4πβρsλ

N − 2

(

0 − 1

6
∇2

)
|ψ |2. (17)

In terms of 
0, 
1, and K , the free energy, Eq. (4), is written
as

βF = N − 2

2
Tr ln

[
1

2
βρsλ(K−1 + 
1)

]
+ 1

2
βρs

∫
d2r

× [|∇ψ |2 + (λ
0 + λ
1 − g)(|ψ |2 − N )]. (18)

Expanding the trace in orders of 
1,

Tr ln
[

1
2βρsλ(K−1 + 
1)

]
= Tr ln

[
1
2βρsλK−1

] + Tr[K
1]

− 1
2 Tr[K
1K
1] + · · · , (19)

and using Eqs. (13) and (17) we finally obtain a Ginzburg-
Landau type free energy for ψ ,

F = 1

2
ρs

∫
d2r

×
[
|∇ψ |2 + (λ
0 − g)|ψ |2 + 2πβρsλ

2

N − 2

0|ψ |4

]
, (20)

where we have neglected gradients in the quartic term.
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The theory described by Eq. (20) has a mean-field transition
when λ
0 − g = 0, which is consistent with Eq. (9). In
addition, the linear size r0 of the vortex core in such a theory
is roughly given by

r−2
0 ∼ −(λ
0 − g). (21)

According to Eq. (14), at low temperatures, 
0 is exponentially
small, and r−2

0 ∼ g is independent of temperature.

B. Condensation energy and vortex core energy

The vortex core energy roughly scales as

εc ∼ Ur2
0 , (22)

where U is the condensation energy density, i.e., the difference
in free energy density between a state where SC is uniformly
condensed, ψ(r) = ψ0 and a state which is uniformly non-SC,
ψ(r) = 0. From Eq. (4) it follows that for the SC saddle-point
solution, ψ(r) = ψ0, σ = 0, the free energy density is

F [ψ(r) = ψ0]

L2
= (N − 2)T

2L2
Tr ln[−λ∇2 + g], (23)

with L2 the system area. When ψ(r) = 0, σ assumes a different
value, σ = βρs(λ
0 − g)/2, with 
0 given by Eq. (14).
Substitution into Eq. (4) leads to

F [ψ(r) = 0]

L2
= (N − 2)T

2L2
Tr ln[−λ∇2 + λ
0]

− 1

2
ρs(λ
0 − g)N. (24)

Combining the two results we find that the condensation energy
density is given by

U = {F [ψ(r) = 0] − F [ψ(r) = ψ0]}/L2

= (N − 2)T

2L2
Tr[ln(−λ∇2 + λ
0) − ln(−λ∇2 + g)]

− 1

2
ρs(λ
0 − g)N. (25)

As noted above, 
0 → 0 at low temperatures. Therefore,
in this limit U behaves according to

U ≈ 1

2
ρsgN − (N − 2)T

2

∫
d2p

(2π )2
ln

[
p2 + g/λ

p2

]
. (26)

In the same temperature regime, one finds from Eq. (21) that
r−2

0 ≈ g. Consequently, the main temperature dependence of
εc originates from U , which decreases linearly with T :

εc

ρs

∼ N

2

(
1 − b

T

ρs

)
, (27)

where

b = N − 2

2N

∫
d2p

(2π )2
ln

[
p2 + g/λ

p2

]
= ρs

TMF
+ N − 2

4πNλ
.

(28)

C. Numerical solution of the vortex structure

Although the above analytical estimate yields the general
behavior of εc as a function of T , it cannot give εc in absolute
values, since we do not know the correct proportionality
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FIG. 2. (Color online) (a) Amplitude of the SC field, ψ , as a func-
tion of the distance from a vortex core, for T = 0.1,0.2, . . . ,0.9TMF,
obtained by numerically solving Eqs. (5) and (7) in polar coordinates.
Here we take N = 6, λ = 1, and ga2 = 0.03, where a is a short
distance cutoff. (b) Squares: Vortex core energies, εc, for the vortices
depicted in (a). Solid curve: The core energy calculated using
Eqs. (21) and (25), where a numerical proportionality constant was
selected, such that the curve agrees with the numerical solution.

constant which enters Eq. (22). In order to bridge this gap
and check the validity range of the estimate, Eq. (27), we have
calculated the vortex structure and energy numerically. The
vortex configuration was obtained by solving the saddle-point
equations, (5) and (7), while imposing a phase winding
ψ(r) = f (r)eiθ , where r is the position relative to the vortex
center, r = |r|, and θ is its angle with respect to the x axis. For
the solution we have used polar coordinates and discretized
the radial coordinate r in units of a short distance cutoff a.
Figure 2(a) shows the amplitude f (r) as a function of the
distance from the vortex center, for a number of temperatures
below TMF. In the calculation we have set N = 6, ga2 = 0.03,
and λ = 1, which give TMF ≈ 2.7ρs .

The vortex core energy was calculated by plugging the
vortex solution into Eq. (4), subtracting from it the free energy
of the uniform solution and the kinetic energy contribution
ρs/2

∫
d2rf (r)2/r2 of the superflow around the vortex core.

The squares in Fig. 2(b) depict the core energies for the vortex
structures shown in Fig. 2(a), while the solid line gives the
analytical εc calculated on the lattice using Eqs. (21) and (25),
multiplied by a constant in order to account for the unknown
proportionality in Eq. (22). We have found an agreement
between the analytical and numerical values for εc over a
wide range of parameters using a proportionality constant in
the range 6.5–8.

IV. DIAMAGNETISM AND NERNST EFFECT

Knowing the structure of a vortex, its core energy, and size,
it is now possible to calculate the temperature dependence of
the magnetization Mz and transverse thermoelectric transport
coefficient αyx in the phase-fluctuation regime. It has been
shown [29,35–37], within a Debye-Hückle theory for the
thermally excited vortices, that

Mz = − T B

φ2
0nf

, (29)
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where φo = hc/2e is the flux quantum, B the magnetic field,
and nf is the density of thermally excited vortices. Similarly,
αyx , which relates the linear response of an electric current J e

y

to a transverse thermal gradient ∂xT via je
y = αyx(−∂xT ), is

given, in the Debye-Hückle regime, by [29]

αyx = − cεcB

φ2
0T nf

= εc

T

cMz

T
. (30)

The Debye-Hückle approximation is applicable in the range
of temperatures above, but not too close to TBKT, and at the
same time low enough such that the distance between vortices
is larger than their size. In this regime, and in the limit of
small magnetic field, B → 0, the density of thermally excited
vortices is [38]

nf � 2r−2
0 e−2εc/T . (31)

In principle, the εc that one should use to determine nf is
the renormalized core energy, which includes also the effect
of fluctuations at short distances below the Debye-Hückle
screening length. However, outside the critical regime close
to TBKT the renormalized εc is roughly of the same order as its
bare value. Since both Mz and αyx are inversely proportional
to nf , which exhibits an Arrhenius behavior, they both decay
strongly with temperature. We take such a behavior as a
signature of thermally excited vortices. It is important to note,
though, that these features are not expected to appear so clearly
in simulation because of finite-size effects.

At high temperatures, T > TMF, Mz is approximately given
by the N → ∞ limit applied also to the SC fields [22]. It is
also possible to carry out a similar N → ∞ calculation [39]
of αyx . The corresponding high-temperature results are given
by

Mz = − πT B

3φ2
0�

(32)

and

αyx = − πcB

6φ2
0�

= cMz

2T
, (33)

where � is a solution to the following saddle-point equation:

N − 2

βρs

∫
d2p

(2π )2

1

λp2 + g + �
+ 2

βρs

∫
d2p

(2π )2

1

p2 + �
= N.

(34)

Equations (32) and (33) are applicable as long as �a2 < 1.
In this regime, and for the case λ � 1 and ga2 < 1, Eq. (34)
gives

�a2 = 32

(
ga2

32λ

) N−2
N−2+2λ

TMF
T

. (35)

Therefore, we conclude that the rapid decay of both Mz

and αyx in the phase fluctuations regime should crossover
to a much slower decay as the temperature is increased
through TMF. Figure 3 demonstrate this point by showing −Mz

and −αyx for a square lattice with λ = 1 and ga2 = 0.03.
For these parameters TBKT ≈ 1.8ρs and TMF ≈ 2.7ρs . The
phase-fluctuation segment is based on Eqs. (29) and (30), while
the high-temperature segment is based on Eqs. (32) and (33).

101

102

103

−
M

z
φ

2 0/
B

a
2

100

101

102

103

104

−
α

y
x
φ

2 0/
cB

a
2

0

50

100

150

0 1 2 3 4 5

S
C

D
W

/a
2

T/ρs

0 1 2 3 4 5
0

2

4

6

8

10

ξ C
D

W
/a

T/ρs

0

2

4

6

8

10

0 1 2 3 4 5

−
R

=
(ξ

d
/ξ

C
D

W
)2

T/ρs

)b()a(

)d()c(

(e)

FIG. 3. (Color online) (a) Magnetization, (b) transverse thermo-
electric transport coefficient, (c) x-ray structure factor, (d) CDW
correlation length, and (e) the unitless ratio R, all as a function
of temperature. Solid lines are based on analytic calculations, as
explained in the main text, while the dashed lines are schematic
interpolations in the crossover regions, intended as guides to the eye.
These results were obtained for a square lattice of spacing a, N = 6,
λ = 1, and ga2 = 0.03.

To determine nf we use in Eq. (31) the temperature-dependent
εc as calculated in the previous section. We terminate the
phase-fluctuation segment when nf r2

0 ≈ 0.35, since at higher
temperatures the vortices are no longer distinct objects, and the
Debye-Hückle approximation is expected to fail. A schematic
guide to the eye is depicted by the dashed curves, which
interpolate the crossover between the phase-fluctuation and
Gaussian-fluctuation regimes.

V. X-RAY STRUCTURE FACTOR

Recent x-ray scattering experiments show a pronounced
maximum of the signal at certain incommensurate wave
vectors, as a function of temperature. Hayward et al. [22]
reproduced this maximum using Monte Carlo simulations of
their NLSM. In addition, they were also able to demonstrate
analytically that a maximum exists, by applying a 1/N

expansion to their model. Here we use our approach to
show that the signal increases with temperature in a range
of temperatures below TMF, and decreases above. To do so, we
calculate the CDW correlation function

Gαβ(r,r′) = 〈nα(r)nβ(r′)〉

= 1

Z

∫
DψDψ∗DnαDσ̄ nα(r)nβ(r′)

× e−βH+i
∫

d2r σ̄ (|ψ |2+∑
α n2

α−N), (36)
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within our saddle-point approximation, where the integral over
σ̄ is replaced by its saddle-point value, given by Eq. (5), for
each configuration of ψ .

Consider first low temperatures, T < TBKT, where essen-
tially there are no vortices. Ignoring SC amplitude fluctuations,
which are expected to be small, we approximately have
ψ(r) = ψ0, which gives σ = 0. Hence,

Gαβ(p) =
∫

d2r e−ip·rGαβ(r,0)

≈ δαβ

βρs(λp2 + g)
. (37)

The x-ray structure factor, SCDW, is obtained by taking the
p → 0 limit of Gαβ(p) with α = β; thus,

SCDW(T < TBKT) ≈ T

ρsg
, (38)

which grows linearly with temperature.
At higher temperatures, thermally excited vortices appear

in the system. In principle, one should average over such
vortex configurations, each with its corresponding saddle-
point solution, σ . Instead, we estimate their effect on SCDW

by ignoring their spatial distribution and considering only their
reduction of the average value of |ψ |2. Specifically, we replace
|ψ |2 in Eq. (5) by its spatial average,

|ψ |2 ≈ (
1 − 0.45 nf r2

0

)|ψ0|2, (39)

where the second term accounts for the vanishing ψ inside the
vortex cores. The numerical factor, 0.45, was extracted from
the numerical solutions of the vortex structure, which were
described above in Sec. III. Since SCDW is a long-wavelength
quantity we take the solution

σ̃ = gρs

2T

[(
ga2

32λ

)0.45nf r2
0 ( TMF

T
−1)

− 1

]
(40)

of the resulting saddle-point equation as an approximation for
all vortex configurations. This results in

SCDW ≈ T

ρsg + 2T σ̃
. (41)

Since σ̃ < 0, we find that SCDW curves upward for tempera-
tures above TBKT but sufficiently below TMF, such that vortices
are distinct objects.

Above TMF the fluctuations become approximately Gaus-
sian, and their effects can be obtained using the N → ∞
limit also on the SC order parameter, as is described by
Hayward et al. [22]. Accordingly, the x-ray structure factor
in the high-temperature phase is given by

SCDW(T > TMF) ≈ T

ρs(g + �)
, (42)

where, as before, � is the solution of Eq. (34). The three solid
segments in Fig. 3(c) depict SCDW in the low-temperature SC
phase, the phase-fluctuation regime, and the high-temperature
regime, as given respectively by Eqs. (38), (41), and (42).
We therefore conclude that the maximum in the structure
factor may be viewed to occur at the crossover from a phase-
fluctuation regime to a high-temperature, Gaussian-fluctuation
regime.

From the correlation function, Eq. (36), it is also possible
to extract the CDW correlation length, ξCDW. When σ is
approximately uniform, Gαβ(p) has a Lorentzian form, whose
width is defined to be ξ−1

CDW; i.e., Gαβ(p) ∼ (p2 + ξ−2
CDW)−1,

or ξ 2
CDW = λρsSCDW/T [see Fig. 3(d)]. Hayward et al. [23]

considered a dimensionless ratio between this correlation
length and another length scale, ξd , which can be extracted
from the diamagnetic magnetization by

ξ 2
d = −3φ2

0Mz

πT B
. (43)

In the Gaussian limit, this is simply the SC correlation length
while in the fluctuating-vortices regime it roughly measures
the distance between vortices. Using Monte Carlo simulations,
Hayward et al. showed that the dimensionless ratio

R(T ) = −
(

ξd

ξCDW

)2

(44)

decreases with temperature. Following our approach, we
plot R(T ) in Fig. 3(e), in the phase-fluctuation and high-
temperature regimes, with a schematic interpolation between
them. At high temperatures described by Gaussian fluctuations
one expects R(T → ∞) = 1/λ. The experimental results [18]
for R in Ref. [23] indicate that R < 1 in this limit, therefore
possibly implying λ > 1.

VI. DISCUSSION

The first question one must address when trying to apply our
results to the O(6) NLSM considered in Ref. [22] is whether
the saddle-point approximation, appropriate when N → ∞, is
applicable to a model with a finite number of CDW fields. In
the relevant model, there are four CDW fields, which do not,
in two dimensions, order at any finite temperature. Without
any CDW phases aside from a simple disordered phase, it
is reasonable to expect that the saddle-point approximation
captures the behavior of the CDW fields. Finite-N corrections
may, however, alter the numerical details of the solution,
which can introduce discrepancies between the simulations
and our results. On the other hand, our results would not be
applicable in the presence of long-range CDW order, which
may, in principle, occur in layered systems with strong enough
coupling between the layers.

As alluded to in the Introduction, the question of whether
the cuprate high-temperature superconductors actually exhibit
significant thermal fluctuations in the form of vortices has
been under debate. Here, we would like to ask what are the
consequences of making such an assumption on the parameters
that enter the NLSM. Consider first the range of temperatures
above TBKT where one expects to find signatures of thermally
excited vortices. Our results indicate that this range grows
with λ. Experimentally, the large range of temperatures above
Tc in which there is a strong Nernst signal in a number of
underdoped cuprates has been advocated [31] as evidence for
the existence of thermally excited vortices in these systems.
Quantitatively, it was claimed [31] that phase fluctuations may
exist up to at least 3Tc in La2−xSrxCuO4 and up to almost
2Tc in Bi2Sr2CaCu2O8+δ . This implies that one would need to
take λ > 1 in order to account for the large phase fluctuation
regime. As we have noted above, experimental results for R(T )
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may indicate that λ > 1 in YBa2Cu3O6+x as well. On the other
hand, Hayward et al. [22] reproduced the x-ray structure factor
maximum as a function of temperature using λ = 1.

An additional point of comparison with experiments is the
value of εc at temperatures just above TBKT. For λ = 1 and
ga2 = 0.3 we find the ratio εc(T � TBKT)/TBKT ≈ 3, which
increases for larger λ. Analyzing Nernst measurements from
the point of view of vortex fluctuations, we have estimated
[29] that in La2−xSrxCuO4 εc/Tc ≈ 4–5, which is consistent
with λ > 1. Within the context of our calculation it seems that
εc/Tc cannot be any larger in the NLSM. However, an analysis
[40] of finite-frequency sheet conductivity in underdoped

Y1−xCaxBa2Cu3O7−δ films has concluded that εc/Tc ≈ 8. In
any event, it seems that εc is much smaller than its BCS value,
which is of the order of the Fermi energy. By construction, the
NLSM contains this piece of phenomenology, as its energetics
is set by ρs . However, to understand this fact one must consider
the microscopic details at the basis of the phenomenological
model.
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Gutowski, M. v. Zimmermann, E. M. Forgan, and S. M. Hayden,
Phys. Rev. Lett. 110, 137004 (2013).

[6] A. J. Achkar, X. Mao, C. McMahon, R. Sutarto, F. He, R. Liang,
D. A. Bonn, W. N. Hardy, and D. G. Hawthorn, Phys. Rev. Lett.
113, 107002 (2014).

[7] R. Comin, A. Frano, M. M. Yee, Y. Yoshida, H. Eisaki, E.
Schierle, E. Weschke, R. Sutarto, F. He, A. Soumyanarayanan,
Yang He, M. Le Tacon, I. S. Elfimov, J. E. Hoffman, G. A.
Sawatzky, B. Keimer, and A. Damascelli, Science 343, 390
(2014).

[8] E. H. da Silva Neto, P. Aynajian, A. Frano, R. Comin, E. Schierle,
E. Weschke, A. Gyenis, J. Wen, J. Schneeloch, Z. Xu, S. Ono,
G. Gu, M. Le Tacon, and A. Yazdani, Science 343, 393 (2014).

[9] M. Le Tacon, A. Bosak, S. M. Souliou, G. Dellea, T. Loew, R.
Heid, K.-P. Bohnen, G. Ghiringhelli, M. Krisch, and B. Keimer,
Nat. Phys. 10, 52 (2014).

[10] R. Comin, R. Sutarto, F. He, E. da Silva Neto, L. Chauviere, A.
Frano, R. Liang, W. N. Hardy, D. Bonn, Y. Yoshida, H. Eisaki,
J. E. Hoffman, B. Keimer, G. A. Sawatzky, and A. Damascelli,
arXiv:1402.5415.
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[16] A. Dubroka, M. Rössle, K. W. Kim, V. K. Malik, D. Munzar, D.
N. Basov, A. A. Schafgans, S. J. Moon, C. T. Lin, D. Haug, V.
Hinkov, B. Keimer, Th. Wolf, J. G. Storey, J. L. Tallon, and C.
Bernhard, Phys. Rev. Lett. 106, 047006 (2011).

[17] F. Yu, M. Hirschberger, T. Loew, G. Li, B. J. Lawson, T. Asaba,
J. B. Kemper, T. Liang, J. Porras, G. S. Boebinger, J. Singleton,
B. Keimer, L. Li, and N. P. Ong, arXiv:1402.7371.
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[27] M. Einenkel, H. Meier, C. Pépin, and K. B. Efetov, Phys. Rev.
B 90, 054511 (2014).

[28] P. A. Lee, N. Nagaosa, and X. Wen, Rev. Mod. Phys. 78, 17
(2006).

[29] G. Wachtel and D. Orgad, Phys. Rev. B 90, 184505 (2014).
[30] J. E. Hoffman, E. W. Hudson, K. M. Lang, V. Madhavan,

H. Eisaki, S. Uchida, and J. C. Davis, Science 295, 466 (2002).
[31] Y. Wang, L. Li, and N. P. Ong, Phys. Rev. B 73, 024510 (2006).

014503-7

http://arxiv.org/abs/arXiv:1407.4480
http://dx.doi.org/10.1126/science.1223532
http://dx.doi.org/10.1126/science.1223532
http://dx.doi.org/10.1126/science.1223532
http://dx.doi.org/10.1126/science.1223532
http://dx.doi.org/10.1038/nphys2456
http://dx.doi.org/10.1038/nphys2456
http://dx.doi.org/10.1038/nphys2456
http://dx.doi.org/10.1038/nphys2456
http://dx.doi.org/10.1103/PhysRevLett.109.167001
http://dx.doi.org/10.1103/PhysRevLett.109.167001
http://dx.doi.org/10.1103/PhysRevLett.109.167001
http://dx.doi.org/10.1103/PhysRevLett.109.167001
http://dx.doi.org/10.1103/PhysRevLett.110.137004
http://dx.doi.org/10.1103/PhysRevLett.110.137004
http://dx.doi.org/10.1103/PhysRevLett.110.137004
http://dx.doi.org/10.1103/PhysRevLett.110.137004
http://dx.doi.org/10.1103/PhysRevLett.113.107002
http://dx.doi.org/10.1103/PhysRevLett.113.107002
http://dx.doi.org/10.1103/PhysRevLett.113.107002
http://dx.doi.org/10.1103/PhysRevLett.113.107002
http://dx.doi.org/10.1126/science.1242996
http://dx.doi.org/10.1126/science.1242996
http://dx.doi.org/10.1126/science.1242996
http://dx.doi.org/10.1126/science.1242996
http://dx.doi.org/10.1126/science.1243479
http://dx.doi.org/10.1126/science.1243479
http://dx.doi.org/10.1126/science.1243479
http://dx.doi.org/10.1126/science.1243479
http://dx.doi.org/10.1038/nphys2805
http://dx.doi.org/10.1038/nphys2805
http://dx.doi.org/10.1038/nphys2805
http://dx.doi.org/10.1038/nphys2805
http://arxiv.org/abs/arXiv:1402.5415
http://dx.doi.org/10.1103/PhysRevB.90.054514
http://dx.doi.org/10.1103/PhysRevB.90.054514
http://dx.doi.org/10.1103/PhysRevB.90.054514
http://dx.doi.org/10.1103/PhysRevB.90.054514
http://dx.doi.org/10.1103/PhysRevB.90.054513
http://dx.doi.org/10.1103/PhysRevB.90.054513
http://dx.doi.org/10.1103/PhysRevB.90.054513
http://dx.doi.org/10.1103/PhysRevB.90.054513
http://dx.doi.org/10.1038/nature10345
http://dx.doi.org/10.1038/nature10345
http://dx.doi.org/10.1038/nature10345
http://dx.doi.org/10.1038/nature10345
http://dx.doi.org/10.1038/ncomms3113
http://dx.doi.org/10.1038/ncomms3113
http://dx.doi.org/10.1038/ncomms3113
http://dx.doi.org/10.1038/ncomms3113
http://arxiv.org/abs/arXiv:1404.1617
http://dx.doi.org/10.1103/PhysRevLett.106.047006
http://dx.doi.org/10.1103/PhysRevLett.106.047006
http://dx.doi.org/10.1103/PhysRevLett.106.047006
http://dx.doi.org/10.1103/PhysRevLett.106.047006
http://arxiv.org/abs/arXiv:1402.7371
http://dx.doi.org/10.1103/PhysRevB.88.060505
http://dx.doi.org/10.1103/PhysRevB.88.060505
http://dx.doi.org/10.1103/PhysRevB.88.060505
http://dx.doi.org/10.1103/PhysRevB.88.060505
http://dx.doi.org/10.1038/nature08716
http://dx.doi.org/10.1038/nature08716
http://dx.doi.org/10.1038/nature08716
http://dx.doi.org/10.1038/nature08716
http://dx.doi.org/10.1038/nmat3963
http://dx.doi.org/10.1038/nmat3963
http://dx.doi.org/10.1038/nmat3963
http://dx.doi.org/10.1038/nmat3963
http://dx.doi.org/10.1103/PhysRevB.89.184516
http://dx.doi.org/10.1103/PhysRevB.89.184516
http://dx.doi.org/10.1103/PhysRevB.89.184516
http://dx.doi.org/10.1103/PhysRevB.89.184516
http://dx.doi.org/10.1126/science.1246310
http://dx.doi.org/10.1126/science.1246310
http://dx.doi.org/10.1126/science.1246310
http://dx.doi.org/10.1126/science.1246310
http://dx.doi.org/10.1103/PhysRevB.90.094515
http://dx.doi.org/10.1103/PhysRevB.90.094515
http://dx.doi.org/10.1103/PhysRevB.90.094515
http://dx.doi.org/10.1103/PhysRevB.90.094515
http://dx.doi.org/10.1103/PhysRevB.82.075128
http://dx.doi.org/10.1103/PhysRevB.82.075128
http://dx.doi.org/10.1103/PhysRevB.82.075128
http://dx.doi.org/10.1103/PhysRevB.82.075128
http://dx.doi.org/10.1038/nphys2641
http://dx.doi.org/10.1038/nphys2641
http://dx.doi.org/10.1038/nphys2641
http://dx.doi.org/10.1038/nphys2641
http://dx.doi.org/10.1103/PhysRevB.88.020506
http://dx.doi.org/10.1103/PhysRevB.88.020506
http://dx.doi.org/10.1103/PhysRevB.88.020506
http://dx.doi.org/10.1103/PhysRevB.88.020506
http://dx.doi.org/10.1103/PhysRevB.90.054511
http://dx.doi.org/10.1103/PhysRevB.90.054511
http://dx.doi.org/10.1103/PhysRevB.90.054511
http://dx.doi.org/10.1103/PhysRevB.90.054511
http://dx.doi.org/10.1103/RevModPhys.78.17
http://dx.doi.org/10.1103/RevModPhys.78.17
http://dx.doi.org/10.1103/RevModPhys.78.17
http://dx.doi.org/10.1103/RevModPhys.78.17
http://dx.doi.org/10.1103/PhysRevB.90.184505
http://dx.doi.org/10.1103/PhysRevB.90.184505
http://dx.doi.org/10.1103/PhysRevB.90.184505
http://dx.doi.org/10.1103/PhysRevB.90.184505
http://dx.doi.org/10.1126/science.1066974
http://dx.doi.org/10.1126/science.1066974
http://dx.doi.org/10.1126/science.1066974
http://dx.doi.org/10.1126/science.1066974
http://dx.doi.org/10.1103/PhysRevB.73.024510
http://dx.doi.org/10.1103/PhysRevB.73.024510
http://dx.doi.org/10.1103/PhysRevB.73.024510
http://dx.doi.org/10.1103/PhysRevB.73.024510


GIDEON WACHTEL AND DROR ORGAD PHYSICAL REVIEW B 91, 014503 (2015)

[32] We choose to normalize the fields to N , which should be
compared with the convention used by Hayward et al. [22],
who normalize the fields to 1. As a result, when comparing our
results with theirs, one needs to rescale ρs by N .

[33] J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1181 (1973).
[34] P. Ollson and P. Minnhagen, Phys. Scr. 43, 203 (1991);

N. Schultka and E. Manousakis, Phys. Rev. B 49, 12071 (1994).
[35] B. I. Halperin and D. R. Nelson, J. Low Temp. Phys. 36, 599

(1979).

[36] V. Oganesyan, D. A. Huse, and S. L. Sondhi, Phys. Rev. B 73,
094503 (2006).

[37] L. Benfatto, C. Castellani, and T. Giamarchi, Phys. Rev. Lett.
99, 207002 (2007).

[38] P. Minnhagen, Rev. Mod. Phys. 59, 1001 (1987).
[39] G. Wachtel and D. Orgad, Phys. Rev. B 90, 224506

(2014).
[40] L. Benfatto, C. Castellani, and T. Giamarchi, Phys. Rev. B 77,

100506(R) (2008).

014503-8

http://dx.doi.org/10.1088/0022-3719/6/7/010
http://dx.doi.org/10.1088/0022-3719/6/7/010
http://dx.doi.org/10.1088/0022-3719/6/7/010
http://dx.doi.org/10.1088/0022-3719/6/7/010
http://dx.doi.org/10.1088/0031-8949/43/2/016
http://dx.doi.org/10.1088/0031-8949/43/2/016
http://dx.doi.org/10.1088/0031-8949/43/2/016
http://dx.doi.org/10.1088/0031-8949/43/2/016
http://dx.doi.org/10.1103/PhysRevB.49.12071
http://dx.doi.org/10.1103/PhysRevB.49.12071
http://dx.doi.org/10.1103/PhysRevB.49.12071
http://dx.doi.org/10.1103/PhysRevB.49.12071
http://dx.doi.org/10.1007/BF00116988
http://dx.doi.org/10.1007/BF00116988
http://dx.doi.org/10.1007/BF00116988
http://dx.doi.org/10.1007/BF00116988
http://dx.doi.org/10.1103/PhysRevB.73.094503
http://dx.doi.org/10.1103/PhysRevB.73.094503
http://dx.doi.org/10.1103/PhysRevB.73.094503
http://dx.doi.org/10.1103/PhysRevB.73.094503
http://dx.doi.org/10.1103/PhysRevLett.99.207002
http://dx.doi.org/10.1103/PhysRevLett.99.207002
http://dx.doi.org/10.1103/PhysRevLett.99.207002
http://dx.doi.org/10.1103/PhysRevLett.99.207002
http://dx.doi.org/10.1103/RevModPhys.59.1001
http://dx.doi.org/10.1103/RevModPhys.59.1001
http://dx.doi.org/10.1103/RevModPhys.59.1001
http://dx.doi.org/10.1103/RevModPhys.59.1001
http://dx.doi.org/10.1103/PhysRevB.90.224506
http://dx.doi.org/10.1103/PhysRevB.90.224506
http://dx.doi.org/10.1103/PhysRevB.90.224506
http://dx.doi.org/10.1103/PhysRevB.90.224506
http://dx.doi.org/10.1103/PhysRevB.77.100506
http://dx.doi.org/10.1103/PhysRevB.77.100506
http://dx.doi.org/10.1103/PhysRevB.77.100506
http://dx.doi.org/10.1103/PhysRevB.77.100506



