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Quantum theory of helimagnetic thin films
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We study properties of a helimagnetic thin film with a quantum Heisenberg spin model by using the Green’s-
function method. Surface spin configuration is calculated by minimizing the spin interaction energy. It is shown
that the angles between spins near the surface are strongly modified with respect to the bulk configuration.
Taking into account this surface spin reconstruction, we calculate self-consistently the spin-wave spectrum and
the layer magnetizations as functions of temperature up to the disordered phase. The spin-wave spectrum shows
the existence of a surface-localized branch which causes a low surface magnetization. We show that quantum
fluctuations give rise to a crossover between the surface magnetization and interior-layer magnetizations at low
temperatures. We calculate the transition temperature and show that it depends strongly on the helical angle.
Results are in agreement with existing experimental observations on the stability of helical structure in thin films
and on the insensitivity of the transition temperature with the film thickness. We also study effects of various
parameters such as surface exchange and anisotropy interactions. Monte Carlo simulations for the classical spin
model are also carried out for comparison with the quantum theoretical result.
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I. INTRODUCTION

Helimagnets have been discovered a long time ago by
Yoshimori [1] and Villain [2]. In the simplest model, the
helimagnetic ordering is noncollinear due to a competition
between nearest-neighbor (NN) and next-nearest-neighbor
(NNN) interactions: for example, a spin in a chain turns an
angle θ with respect to its previous neighbor. Low-temperature
properties in helimagnets such as spin waves [3–6] and heat
capacity [7] have been extensively investigated. Helimagnets
belong to a class of frustrated vector-spin systems. In spite of
their long history, the nature of the phase transition in bulk
helimagnets as well as in other noncollinear magnets such as
stacked triangular XY and Heisenberg antiferromagnets has
been elucidated only recently [8–10]. For reviews on many
aspects of frustrated spin systems, the reader is referred to
Ref. [11].

In this paper, we study a helimagnetic thin film with the
quantum Heisenberg spin model. Surface effects in thin films
have been widely studied theoretically, experimentally, and
numerically, during the last three decades [12,13]. Neverthe-
less, surface effects in helimagnets have only been recently
studied: surface spin structures [14], Monte Carlo (MC)
simulations [15], magnetic field effects on the phase diagram
in Ho [16], and a few experiments [17,18]. We will compare
our work to these in the Conclusion.

Helical magnets present potential applications in spintron-
ics with predictions of spin-dependent electron transport in
these magnetic materials [19–21]. This has motivated the
present work. We shall use the Green’s-function (GF) method
to study a quantum spin model on a helimagnetic thin film
of a body-centered-cubic (bcc) lattice. The GF method has
been initiated by Zubarev [22] for collinear bulk magnets
(ferromagnets and antiferromagnets) and by Diep-The-Hung
et al. for collinear surface spin configurations [23]. For
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noncollinear magnets, the GF method has also been developed
for bulk helimagnets [6] and for frustrated films [24,25].
Note that surface effects in thin films of stacked triangular
antiferromagnets with noncollinear 120◦ spin configuration
have been investigated by the method of the equation of
motion [26]. However, the model in these works did not
possess a surface spin reconstruction and does not belong to
the family of helical structures as our model described below.

In helimagnets, the presence of a surface modifies the
competing forces acting on surface spins. As a consequence,
as will be shown below, the angles between neighboring
spins become nonuniform, making calculations harder. This
explains why there is no microscopic calculation so far for
helimagnetic films.

Note that for illustration we use below the bcc lattice
structure, but the results obtained in this paper are valid for
different lattices, not restricted to the bcc crystal, provided
modifications on the coordination number and therefore on the
value of the critical value (J2/J1)c (J1, NNN interaction; J2,
NNN interaction). For example, the bcc case has (J2/J1)c = 1
while the simple cubic lattice has (J2/J1)c = 1/4.

The paper is organized as follows. In Sec. II, the model is
presented and the classical ground state (GS) of the helimag-
netic film is determined. In Sec. III, the general GF method
for nonuniform spin configurations is shown in detail. The GF
results are shown in Sec. IV where the spin-wave spectrum,
the layer magnetizations, and the transition temperature are
shown. Effects of surface interaction parameters and the film
thickness are discussed. Concluding remarks are given in
Sec. V.

II. MODEL AND CLASSICAL GROUND STATE

Let us recall that bulk helical structures are due to
the competition of various kinds of interaction [1,2,27–29].
We consider hereafter the simplest model for a film: the
helical ordering is along one direction, namely, the c axis
perpendicular to the film surface.
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We consider a thin film of a bcc lattice of Nz layers, with two
symmetrical surfaces perpendicular to the c axis, for simplicity.
The exchange Hamiltonian reads

H = He + Ha, (1)

where the isotropic exchange part is given by

He = −
∑
〈i,j〉

Ji,j Si · Sj , (2)

Ji,j being the interaction between two quantum Heisenberg
spins Si and Sj occupying the lattice sites i and j . The
anisotropic part is chosen as

Ha = −
∑
〈i,j〉

Ii,j S
z
i S

z
j cos θij , (3)

where Ii,j is the anisotropic interaction along the in-plane
local spin-quantization axes z of Si and Sj , supposed to be
positive, small compared to J1, and limited to NN on the c

axis. Let us mention that according to the theorem of Mermin
and Wagner [30] continuous isotropic spin models such as
XY and Heisenberg spins do not have long-range ordering at
finite temperatures in two dimensions. Since we are dealing
with the Heisenberg model in a thin film, it is useful to add an
anisotropic interaction to create a long-range ordering and a
phase transition at finite temperatures.

To generate a bulk helimagnetic structure, the simplest way
is to take a ferromagnetic interaction between NNs, say J1

(>0), and an antiferromagnetic interaction between NNNs,
J2 < 0. It is obvious that if |J2| is smaller than a critical value
|J c

2 | the classical GS spin configuration is ferromagnetic [3–5].
Since our purpose is to investigate the helimagnetic structure
near the surface and surface effects, let us consider the case of
a helimagnetic structure only in the c direction perpendicular
to the film surface. In such a case, we assume a nonzero J2

only on the c axis. This assumption simplifies formulas but
does not change the physics of the problem since including
the uniform helical angles in two other directions parallel to
the surface will not introduce additional surface effects. Note
that the bulk case of the above quantum spin model has been
studied by the Green’s-function method [6].

Let us recall that the helical structure in the bulk is planar:
spins lie in planes perpendicular to the c axis: the angle
between two NNs in the adjacent planes is a constant and is
given by cos α = −J1/J2 for a bcc lattice. The helical structure
exists therefore if |J2| � J1, namely, |J c

2 |(bulk)= J1 [see Fig. 1
(top)]. To simplify the presentation, we take a zero anisotropy
Ii,j = 0. The effect of Ii,j on the GS will be shown at the end
of this section.

To calculate the classical GS surface spin configuration, we
write down the expression of the energy of spins along the
c axis, starting from the surface:

E = −Z1J1 cos(θ1−θ2)−Z1J1[cos(θ2 − θ1) + cos(θ2 − θ3)]

+ . . . − J2 cos(θ1 − θ3) − J2 cos(θ2 − θ4)

− J2[cos(θ3 − θ1) + cos(θ3 − θ5)] + . . . , (4)

where Z1 = 4 is the number of NNs in a neighboring layer and
θi denotes the angle of a spin in the ith layer made with the
Cartesian x axis of the layer. The interaction energy between

c axis

FIG. 1. (Color online) Top: Bulk helical structure along the
c axis, in the case α = 2π/3, namely, J2/J1 = −2. Bottom: Cosinus
of α1 = θ1 − θ2, . . . , α7 = θ7 − θ8 across the film for J2/J1 =
−1.2,−1.4,−1.6,−1.8,−2 (from top) with Nz = 8; ai stands for
θi − θi+1 and x indicates the film layer i where the angle ai with
the layer (i + 1) is shown. The values of the angles are given in
Table I: a strong rearrangement of spins near the surface is observed.

two NN spins in the two adjacent layers i and j depends
only on the difference αi ≡ θi − θi+1. The GS configuration
corresponds to the minimum of E. We have to solve the set of
equations:

∂E

∂αi

= 0, for i = 1,Nz − 1. (5)

Explicitly, we have

∂E

∂α1
= 8J1 sin α1 + 2J2 sin(α1 + α2) = 0, (6)

∂E

∂α2
= 8J1 sin α2 + 2J2 sin(α1 + α2)

+ 2J2 sin(α2 + α3) = 0, (7)

∂E

∂α3
= 8J1 sin α3 + 2J2 sin(α2 + α3)

+ 2J2 sin(α3 + α4) = 0, (8)

∂E

∂α4
= . . . ,
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TABLE I. Values of cos θn,n+1 = αn between two adjacent layers are shown for various values of J2/J1. Only angles of the first half of the
eight-layer film are shown: other angles are, by symmetry, cos θ7,8=cos θ1,2, cos θ6,7=cos θ2,3, cos θ5,6=cos θ3,4. The values in parentheses are
angles in degrees. The last column shows the value of the angle in the bulk case (infinite thickness). For presentation, angles are shown with
two digits.

J2/J1 cos θ1,2 cos θ2,3 cos θ3,4 cos θ4,5 α(bulk)

−1.2 0.985(9.79◦) 0.908(24.73◦) 0.855(31.15◦) 0.843(32.54◦) 33.56◦

−1.4 0.955(17.07◦) 0.767(39.92◦) 0.716(44.28◦) 0.714(44.41◦) 44.42◦

−1.6 0.924(22.52◦) 0.633(50.73◦) 0.624(51.38◦) 0.625(51.30◦) 51.32◦

−1.8 0.894(26.66◦) 0.514(59.04◦) 0.564(55.66◦) 0.552(56.48◦) 56.25◦

−2.0 0.867(29.84◦) 0.411(65.76◦) 0.525(58.31◦) 0.487(60.85◦) 60◦

where we have expressed the angle between two NNNs as
follows: θ1 − θ3 = θ1 − θ2 + θ2 − θ3 = α1 + α2, etc. In the
bulk case, putting all angles αi in Eq. (7) equal to α we
get cos α = −J1/J2 as expected. For the spin configuration
near the surface, let us consider in the first step only three
parameters: α1 (between the surface and the second layer), α2,
and α3. We take αn = α from n = 4 inward up to n = Nz/2,
the other half being symmetric. Solving the first two equations,
we obtain

tan α2 = − 2J2(sin α3 + sin α1)

8J1 + 2J2(cos α3 + cos α1)
. (9)

The iterative numerical procedure is as follows: (1) replacing
α3 by α = arccos(−J1/J2) and solving Eqs. (6) and (9) to
obtain α1 and α2, (2) replacing these values into Eq. (8)
to calculate α3, (3) using this value of α3 to solve again
Eqs. (6) and (9) to obtain new values of α1 and α2, and (4)
repeating steps 2 and 3 until the convergence is reached within
a desired precision. In the second step, we use α1, α2, and α3

to calculate by iteration α4, assuming a bulk value for α5. In
the third step, we use αi (i = 1 − 4) to calculate α5, and so on.
The results calculated for various J2/J1 are shown in Fig. 1
(bottom) for a film of Nz = 8 layers. The values obtained
are shown in Table I. Results of Nz = 16 will be shown
later.

Some remarks are in order.
(i) The result shown is obtained by iteration with errors less

than 10−4 degrees.
(ii) Strong angle variations are observed near the surface

with oscillation for strong J2.
(iii) The angles at the film center are close to the bulk value

α (last column), meaning that the surface reconstruction affects
just a few atomic layers.

(iv) The bulk helical order is stable just a few atomic layers
away from the surface even for films thicker than Nz = 8 (see
below). This helical stability has been experimentally observed
in holmium films [31].

Note that using the numerical steepest descent method
described in Ref. [24] we find the same result.

Let us discuss now the effect of the anisotropy on the GS
configuration. The form of Eq. (3) simplifies a lot: since the
interaction is limited to NN, it suffices to replace in Eq. (4)
the parameter J1 by J ′

1 = J1 + I1, where I1 = Ii,j for any
NN pairs (i,j ). The GS calculation is done exactly in the
same manner. That is the reason why we choose the form
of Eq. (3). The GS configuration is slightly modified but the
method and the general aspects of the results described above

remain valid. Of course, the calculations of the spin-wave
spectrum and layer magnetizations presented below take into
account the GS modification at each value of I1. Choosing
another form of anisotropy, for example, taking a standard
single-ion anisotropy −I (Sz

i )2 along the spin local axis, will
add just a constant in Eq. (4) [because (Sz

i )2 = 1 in the GS].
So, it will not affect the GS configuration. This is not our
interest.

In the following, using the spin configuration ob-
tained at each J2/J1 we calculate the spin-wave excita-
tion and properties of the film such as the zero-point
spin contraction, the layer magnetizations, and the critical
temperature.

III. GREEN’S-FUNCTION METHOD

Let us define the local spin coordinates as follows: the
quantization axis of spin �Si is on its ζi axis which lies in
the plane, the ηi axis of �Si is along the c axis, and the
ξi axis forms with ηi and ζi axes a direct trihedron. Since
the spin configuration is planar, all spins have the same η

axis. Furthermore, all spins in a given layer are parallel.
Let ξ̂i , η̂i , and ζ̂i be the unit vectors on the local (ξi,ηi,ζi)
axes. We use the following local transformation which has
been used for the first time in Ref. [3] and described in
Ref. [33]:

�Si = Sx
i ξ̂i + S

y

i η̂i + Sz
i ζ̂i , (10)

�Sj = Sx
j ξ̂j + S

y

j η̂j + Sz
j ζ̂j . (11)

We have (see Fig. 2)

ξ̂j = cos θij ζ̂i + sin θij ξ̂i ,

ζ̂j = − sin θij ζ̂i + cos θij ξ̂i ,

η̂j = η̂i ,

where cos θij = cos(θi − θj ) is the angle between two spins i

and j .
Note that in the laboratory coordinate system, namely, in the

film coordinates, the z direction coincides with the c direction
or the η̂ axis perpendicular to the film surface, while the x and
y directions are taken to be the bcc crystal axes in the film
plane.

Replacing these into Eq. (11) to express �Sj in the (ξ̂i ,η̂i ,ζ̂i)
coordinates, then calculating �Si · �Sj , we obtain the following
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ξ

ξ
i

j

j

ζ
i

ζ
jS

S i

Q

FIG. 2. Local coordinates in a xy plane perpendicular to the
c axis. Q denotes θj − θi .

exchange Hamiltonian from Eq. (2):

He = −
∑
〈i,j〉

Ji,j

{
1

4
(cos θij − 1)(S+

i S+
j + S−

i S−
j )

+ 1

4
(cos θij + 1)(S+

i S−
j + S−

i S+
j )

+ 1

2
sin θij (S+

i + S−
i )Sz

j − 1

2
sin θijS

z
i (S+

j + S−
j )

+ cos θijS
z
i S

z
j

}
. (12)

A. General formulation for noncollinear magnets

We define the following two double-time Green’s functions
in the real space:

Gi,j (t,t ′) = 〈〈S+
i (t); S−

j (t ′)〉〉
= −iθ (t − t ′)〈[S+

i (t),S−
j (t ′)]〉, (13)

Fi,j (t,t ′) = 〈〈S−
i (t); S−

j (t ′)〉〉
= −iθ (t − t ′)〈[S−

i (t),S−
j (t ′)]〉. (14)

We need these two functions because the equation of motion
of the first function generates functions of the second type, and
vice versa. These equations of motion are

i�
d

dt
Gi,j (t,t ′) = 〈[S+

i (t),S−
j (t ′)]〉δ(t − t ′)

− 〈〈[H,S+
i (t)]; S−

j (t ′)〉〉, (15)

i�
d

dt
Fi,j (t,t ′) = 〈[S−

i (t),S−
j (t ′)]〉δ(t − t ′)

− 〈〈[H,S−
i (t)]; S−

j (t ′)〉〉, (16)

where the spin operators and their commutation relations are
given by

S±
j = Sx

j ξ̂j ± iS
y

j η̂j ,

[S+
j ,S−

l ] = 2Sz
j δj,l,

[Sz
j ,S

±
l ] = ±S±

j δj,l .

Expanding the commutators in Eqs. (15) and (16),
and using the Tyablikov decoupling scheme [32] for
higher-order functions, for example, 〈〈Sz

i ′S
+
i (t); S−

j (t ′)〉〉 �
〈Sz

i ′ 〉〈〈S+
i (t); S−

j (t ′)〉〉, etc., we obtain the following general
equations for noncollinear magnets:

i�
dGi,j (t,t ′)

dt

= 2
〈
Sz

i

〉
δi,j δ(t − t ′) −

∑
i ′

Ji,i ′
[〈
Sz

i

〉
(cos θi,i ′ − 1)Fi ′,j (t,t ′)

+ 〈
Sz

i

〉
(cos θi,i ′ + 1)Gi ′,j (t,t ′) − 2

〈
Sz

i ′
〉
cos θi,i ′Gi,j (t,t ′)

]
+ 2

∑
i ′

Ii,i ′
〈
Sz

i ′
〉
cos θi,i ′Gi,j (t,t ′), (17)

i�
dFi,j (t,t ′)

dt

=
∑

i ′
Ji,i ′

[〈
Sz

i

〉
(cos θi,i ′ − 1)Gi ′,j (t,t ′)

+ 〈
Sz

i

〉
(cos θi,i ′ + 1)Fi ′,j (t,t ′) − 2

〈
Sz

i ′
〉
cos θi,i ′Fi,j (t,t ′)

]
− 2

∑
i ′

Ii,i ′
〈
Sz

i ′
〉
cos θi,i ′Fi,j (t,t ′). (18)

B. Body-centered-cubic helimagnetic films

In the case of a bcc thin film with a (001) surface, the above
equations yield a closed system of coupled equations within
the Tyablikov decoupling scheme [32]. For clarity, we separate
the sums on NN interactions and NNN interactions as follows:

i�
dGi,j (t,t ′)

dt

= 2〈Sz
i 〉δi,j δ(t − t ′) −

∑
k′∈NN

Ji,k′
[〈
Sz

i

〉
(cos θi,k′ − 1)Fk′,j (t,t ′)

+〈
Sz

i

〉
(cos θi,k′ + 1)Gk′,j (t,t ′) − 2

〈
Sz

k′
〉
cos θi,k′Gi,j (t,t ′)

]
+ 2

∑
k′∈NN

Ii,k′
〈
Sz

k′
〉
cos θi,k′Gi,j (t,t ′) −

∑
i ′∈NNN

Ji,i ′

× [〈
Sz

i

〉
(cos θi,i ′ − 1)Fi ′,j (t,t ′) + 〈

Sz
i

〉
(cos θi,i ′ + 1)

×Gi ′,j (t,t ′) − 2
〈
Sz

i ′
〉
cos θi,i ′Gi,j (t,t ′)

]
, (19)

i�
dFk,j (t,t ′)

dt

=
∑

i ′∈NN

Jk,i ′
[〈
Sz

k

〉
(cos θk,i ′ − 1)Gi ′,j (t,t ′)

+ 〈
Sz

k

〉
(cos θk,i ′ + 1)Fi ′,j (t,t ′) − 2

〈
Sz

i ′
〉
cos θk,i ′Fk,j (t,t ′)

]
− 2

∑
i ′∈NN

Ik,i ′
〈
Sz

i ′
〉
cos θk,i ′Fk,j (t,t ′) +

∑
k′∈NNN

Jk,k′

× [〈
Sz

k

〉
(cos θk,k′ − 1)Gk′,j (t,t ′) + 〈

Sz
k

〉
(cos θk,k′ + 1)

×Fk′,j (t,t ′) − 2
〈
Sz

k′
〉
cos θk,k′Fk,j (t,t ′)

]
. (20)
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For simplicity, except otherwise stated, all NN interactions
(Jk,k′ ,Ik,k′ ) are taken equal to (J1,I1) and all NNN interactions
are taken equal to J2 in the following. Furthermore, let us
denote, in the film coordinates defined above, the Cartesian
components of the spin position Ri by (
i,mi,ni).

We now introduce the following in-plane Fourier trans-
forms:

Gi,j (t,t ′) = 1

�

∫ ∫
BZ

dkxy

1

2π

∫ +∞

−∞
dωe−iω(t−t ′)

× gni,nj
(ω,kxy)eikxy ·(Ri−Rj ), (21)

Fk,j (t,t ′) = 1

�

∫ ∫
BZ

dkxy

1

2π

∫ +∞

−∞
dωe−iω(t−t ′)

× fnk,nj
(ω,kxy)eikxy ·(Rk−Rj ), (22)

where ω is the spin-wave frequency, kxy denotes the wave
vector parallel to xy planes, and Ri is the position of the
spin at the site i. ni , nj , and nk are, respectively, the z-
component indices of the layers to which the sites Ri , Rj ,
and Rk belong. The integral over kxy is performed in the first
Brillouin zone (BZ) whose surface is � in the xy reciprocal
plane. For convenience, we denote ni = 1 for all sites on the
surface layer, ni = 2 for all sites of the second layer, and
so on.

Note that, for a three-dimensional (3D) case, making
a 3D Fourier transformation of Eqs. (19) and (20) we
obtain the spin-wave dispersion relation in the absence of
anisotropy:

�ω = ±
√

A2 − B2, (23)

where

A = J1〈Sz〉[cos θ + 1]Zγ + 2ZJ1〈Sz〉 cos θ

+ J2〈Sz〉[cos(2θ ) + 1]Zc cos(kza)

+ 2ZcJ2〈Sz〉 cos(2θ ),

B = J1〈Sz〉(cos θ − 1)Zγ

+ J2〈Sz〉[cos(2θ ) − 1]Zc cos(kza),

where Z = 8 (NN number), Zc = 2 (NNN number on the
c axis), and γ = cos(kxa/2) cos(kya/2) cos(kza/2) (a: lattice
constant). We see that �ω is zero when A = ±B, namely, at
kx = ky = kz = 0 (γ = 1) and at kz = 2θ along the helical
axis. The case of ferromagnets (antiferromagnets) with NN
interaction only is recovered by putting cos θ = 1 (−1) [23].

Let us return to the film case. We make the in-plane Fourier
transformation Eqs. (21) and (22) for Eqs. (19) and (20). We
obtain the following matrix equation:

M (ω) h = u, (24)

where M (ω) is a square matrix of dimension (2Nz × 2Nz) and
h and u are the column matrices which are defined as follows:

h =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g1,n′

f1,n′

...
gn,n′

fn,n′

...
gNz,n′

fNz,n′

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, u =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2
〈
Sz

1

〉
δ1,n′

0
...

2
〈
Sz

Nz

〉
δNz,n′

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (25)

where, taking � = 1 hereafter,

M(ω)=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω + A1 0 B+
1 C+

1 D+
1 E+

1 0 0 0 0 0 0
0 ω − A1 −C+

1 −B+
1 −E+

1 −D+
1 0 0 0 0 0 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · D−

n E−
n B−

n C−
n ω + An 0 B+

n C+
n D+

n E+
n · · ·

· · · −E−
n −D−

n −C−
n −B−

n 0 ω − An −C+
n −B+

n −E+
n −D+

n · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 0 0 D−

Nz
E−

Nz
B−

Nz
C−

Nz
ω + ANz

0
0 0 0 0 0 0 −E−

Nz
−D−

Nz
−C−

Nz
−B−

Nz
0 ω − ANz

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(26)

where

An = −8J1(1 + d)
[〈
Sz

n+1

〉
cos θn,n+1 + 〈

Sz
n−1

〉
cos θn,n−1

]
− 2J2

[〈
Sz

n+2

〉
cos θn,n+2 + 〈

Sz
n−2

〉
cos θn,n−2

]
,

where n = 1,2,...,Nz, d = I1/J1, and

B±
n = 4J1

〈
Sz

n

〉
(cos θn,n±1 + 1)γ,

C±
n = 4J1

〈
Sz

n

〉
(cos θn,n±1 − 1)γ,

E±
n = J2

〈
Sz

n

〉
(cos θn,n±2 − 1),

D±
n = J2

〈
Sz

n

〉
(cos θn,n±2 + 1).

In the above expressions, θn,n±1 is the angle between a spin
in the layer n and its NN spins in layers n ± 1, etc., and
γ = cos( kxa

2 ) cos( kya

2 ).
Solving det |M| = 0, we obtain the spin-wave spectrum

ω of the present system: for each value (kx,ky), there
are 2Nz eigenvalues of ω corresponding to two opposite
spin precessions as in antiferromagnets (the dimension of
det |M| is 2Nz × 2Nz). Note that the above equation depends
on the values of 〈Sz

n〉 (n = 1,...,Nz). Even at temperature
T = 0, these z components are not equal to 1/2 because
we are dealing with an antiferromagnetic system where
fluctuations at T = 0 give rise to the so-called zero-point
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spin contraction [33]. Worse, in our system with the existence
of the film surfaces, the spin contractions are not spatially
uniform as will be seen below. So the solution of det |M| = 0
should be found by iteration. This will be explicitly shown
hereafter.

The solution for gn,n is given by

gn,n(ω) = |M|2n−1

|M| , (27)

where |M|2n−1 is the determinant made by replacing the
2n − 1th column of |M| by u given by Eq. (25) [note that
gn,n occupies the (2n − 1)th line of the matrix h]. Writing
now

|M| =
∏

i

[ω − ωi(kxy)], (28)

we see that ωi

(
kxy

)
, i = 1, . . . ,2Nz are poles of gn,n. ωi

(
kxy

)
can be obtained by solving |M| = 0. In this case, gn,n can be
expressed as

gn,n(ω) =
∑

i

D2n−1[ωi(kxy)]

[ω − ωi(kxy)]
, (29)

where D2n−1[ωi(kxy)] is

D2n−1[ωi(kxy)] = |M|2n−1 [ωi(kxy)]∏
j �=i[ωj (kxy) − ωi(kxy)]

. (30)

Next, using the spectral theorem which relates the cor-
relation function 〈S−

i S+
j 〉 to the Green’s function [22], we

have

〈S−
i S+

j 〉 = lim
ε→0

1

�

∫ ∫
dkxy

∫ +∞

−∞

i

2π
[gn,n′ (ω + iε)

− gn,n′ (ω − iε)]
dω

eβω − 1
eikxy ·(Ri−Rj ), (31)

where ε is an infinitesimal positive constant and β = (kBT )−1,
kB being the Boltzmann constant.

Using the Green’s function presented above, we can calcu-
late self-consistently various physical quantities as functions
of temperature T . The magnetization 〈Sz

n〉 of the nth layer is
given by

〈
Sz

n

〉 = 1

2
− 〈S−

n S+
n 〉

= 1

2
− lim

ε→0

1

�

∫ ∫
dkxy

∫ +∞

−∞

i

2π
[gn,n(ω + iε)

− gn,n(ω − iε)]
dω

eβω − 1
. (32)

Replacing Eq. (29) in Eq. (32) and making use of the following
identity,

1

x − iη
− 1

x + iη
= 2πiδ(x), (33)

we obtain

〈
Sz

n

〉 = 1

2
− 1

�

∫ ∫
dkxdky

2Nz∑
i=1

D2n−1(ωi)

eβωi − 1
, (34)

where n = 1,...,Nz. As 〈Sz
n〉 depends on the magnetizations

of the neighboring layers via ωi(i = 1,...,2Nz), we should
solve by iteration Eq. (34) written for all layers, namely,
for n = 1,...,Nz, to obtain the magnetizations of layers
1,2,3, . . . ,Nz at a given temperature T . Note that by symmetry
〈Sz

1〉 = 〈Sz
Nz

〉, 〈Sz
2〉 = 〈Sz

Nz−1〉, 〈Sz
3〉 = 〈Sz

Nz−2〉, and so on.
Thus, only Nz/2 self-consistent layer magnetizations are to be
calculated.

The value of the spin in the layer n at T = 0 is calculated
by

〈
Sz

n

〉
(T = 0) = 1

2
+ 1

�

∫ ∫
dkxdky

Nz∑
i=1

D2n−1(ωi), (35)

where the sum is performed over Nz negative values of ωi

(for positive values the Bose-Einstein factor is equal to zero at
T = 0).

The transition temperature Tc can be calculated in a self-
consistent manner by iteration, letting all 〈Sz

n〉 tend to zero,
namely, ωi → 0. Expanding eβωi − 1 → βcωi on the right-
hand side of Eq. (34) where βc = (kBTc)−1, we have, by putting
〈Sz

n〉 = 0 on the left-hand side,

βc = 2
1

�

∫ ∫
dkxdky

2Nz∑
i=1

D2n−1(ωi)

ωi

. (36)

There are Nz such equations using Eq. (34) with n = 1, . . . ,Nz.
Since the layer magnetizations tend to zero at the transition
temperature from different values, it is obvious that we have
to look for a convergence of the solutions of Eq. (36) to
a single value of Tc. The method to do this will be shown
below.

IV. RESULTS FROM THE GREEN’S-FUNCTION METHOD

Let us take J1 = 1, namely, ferromagnetic interaction
between NN. We consider the helimagnetic case where the
NNN interaction J2 is negative and |J2| > J1. The nonuniform
GS spin configuration across the film has been determined
in Sec. II for each value of p = J2/J1. Using the values of
θn,n±1 and θn,n±2 to calculate the matrix elements of |M|, then
solving det |M| = 0, we find the eigenvalues ωi(i = 1,...,2Nz)
for each kxy with an input set of 〈Sz

n〉(n = 1,...,Nz) at a given
T . Using Eq. (34) for n = 1,...,Nz we calculate the output
〈Sz

n〉(n = 1,...,Nz). Using this output set as input, we calculate
again 〈Sz

n〉(n = 1,...,Nz) until the input and output are identical
within a desired precision P . Numerically, we use a Brillouin
zone of 1002 wave-vector values, and we use the obtained
values 〈Sz

n〉 at a given T as input for a neighboring T . At
low T and up to ∼ 4

5Tc, only a few iterations suffice to get
P � 1%. Near Tc, several dozen iterations are needed to get
convergence. We show below our results.

A. Spectrum

We calculated the spin-wave spectrum as described above
for each given J2/J1. The spin-wave spectrum depends on
the temperature via the temperature dependence of layer
magnetizations. Let us show in Fig. 3 the spin-wave frequency
ω versus kx = ky in the case of an eight-layer film where
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FIG. 3. Spectrum E = �ω vs k ≡ kx = ky for J2/J1 = −1.4 at
T = 0.1 (top) and T = 1.02 (bottom) for Nz = 8 and d = 0.1. The
surface branches are indicated by s.

J2/J1 = −1.4 at two temperatures T = 0.1 and 1.02 (in units
of J1/kB = 1). Some remarks are in order:

(i) There are eight positive and eight negative modes
corresponding to two opposite spin precessions. Unlike fer-
romagnets, spin waves in antiferromagnets and noncollinear
spin structures have opposite spin precessions which describe
the opposite circular motion of each sublattice spins [33]. The
negative sign does not mean spin-wave negative energy, but
it indicates just the precession contrary to the trigonometric
sense.

(ii) Note that there are two degenerate acoustic surface
branches lying at low energy on each side. This degeneracy
comes from the two symmetrical surfaces of the film. These
surface modes propagate parallel to the film surface but are
damped from the surface inward.

(iii) As T increases, layer magnetizations decrease (see
below), reducing therefore the spin-wave energy as seen in
Fig. 3 (bottom).

(iv) If the spin magnitude S �= 1/2, then the spectrum is
shifted toward higher frequency since it is proportional to S.

(v) The surface spin-wave spectrum (and bulk spin waves)
can be experimentally observed by inelastic neutron scattering
in ferromagnetic and antiferromagnetic films [12,13]. To our
knowledge, such experiments have not been performed for
helimagnets.

FIG. 4. (Color online) Spin lengths of the first four layers at T =
0 for several values of p = J2/J1 with d = 0.1, Nz = 8. Black circles,
void circles, black squares, and void squares are for first, second, third,
and fourth layers, respectively. See text for comments.

B. Spin contraction at T = 0 and transition temperature

It is known that in antiferromagnets quantum fluctuations
give rise to a contraction of the spin length at zero temper-
ature [33]. We will see here that a spin under a stronger
antiferromagnetic interaction has a stronger zero-point spin
contraction. The spins near the surface serve for such a test.
In the case of the film considered above, spins in the first and
in the second layers have only one antiferromagnetic NNN
while interior spins have two NNNs, so the contraction at a
given J2/J1 is expected to be stronger for interior spins. This
is verified with the results shown in Fig. 4. When |J2|/J1

increases, namely, the antiferromagnetic interaction becomes
stronger, we observe stronger contractions. Note that the
contraction tends to zero when the spin configuration becomes
ferromagnetic, namely, J2 tends to −1.

C. Layer magnetizations

Let us show two examples of the magnetization, layer by
layer, from the film surface in Figs. 5 and 6, for the case where
J2/J1 = −1.4 and −2 in a Nz = 8 film. Let us comment on
the case J2/J1 = −1.4.

(i) The shown result is obtained with a convergence of 1%.
For temperatures closer to the transition temperature Tc, we
have to lower the precision to a few percent which reduces the
clarity because of their close values (not shown).

(ii) The surface magnetization, which has a large value
at T = 0 as seen in Fig. 4, crosses the interior layer
magnetizations at T � 0.42 to become much smaller than
interior magnetizations at higher temperatures. This crossover
phenomenon is due to the competition between quantum
fluctuations, which dominate low-T behavior, and the low-
lying surface spin-wave modes which strongly diminish the
surface magnetization at higher T . Note that the second-layer
magnetization makes also a crossover at T � 1.3. Similar
crossovers have been observed in quantum antiferromagnetic
films [34] and quantum superlattices [35].

Similar remarks can be also made for the case J2/J1 = −2.
Note that though the layer magnetizations are different at

low temperatures they will tend to zero at a unique transition
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FIG. 5. (Color online) Layer magnetizations as functions of T

for J2/J1 = −1.4 with d = 0.1, Nz = 8 (top). Zoom of the region at
low T to show crossover (bottom). Black circles, blue void squares,
magenta squares, and red void circles are for first, second, third, and
fourth layers, respectively. See text.

temperature as seen below. The reason is that as long as an
interior layer magnetization is not zero it will act on the surface
spins as an external field, preventing them from becoming zero.

The temperature where layer magnetizations tend to zero is
calculated by Eq. (36). Since all layer magnetizations tend to
zero from different values, we have to solve self-consistently
Nz Eq. (36) to obtain the transition temperature Tc. One way
to do it is to use the self-consistent layer magnetizations
obtained as described above at a temperature as close as
possible to Tc as input for Eq. (36). As long as the T is
far from Tc the convergence is not reached: we have four
“pseudotransition temperatures” Tcs as seen in Fig. 7, one for
each layer. The convergence of these Tcs can be obtained by
a short extrapolation from temperatures when they are rather
close to each other. Tc is thus obtained with a very small
extrapolation error as seen in Fig. 7 for p = J2/J1 = −1.4:
Tc � 2.313 ± 0.010. The results for several p = J2/J1 are
shown in Fig. 8.

D. Effect of anisotropy and surface parameters

The results shown above have been calculated with an
in-plane anisotropy interaction d = 0.1. Let us show now the
effect of d. Stronger d will enhance all the layer magnetizations

FIG. 6. (Color online) Layer magnetizations as functions of T

for J2/J1 = −2 with d = 0.1, Nz = 8 (top). Zoom of the region at
low T to show crossover (bottom). Black circles, blue void squares,
magenta squares, and red void circles are for first, second, third, and
fourth layers, respectively. See text.

and increase Tc. Figure 9 shows the surface magnetization
versus T for several values of d (other layer magnetizations are
not shown to preserve the figure clarity). The transition tem-
peratures are 2.091 ± 0.010, 2.313 ± 0.010, 2.752 ± 0.010,
3.195 ± 0.010, and 3.630 ± 0.010 for d = 0.05, 0.1, 0.2, 0.3,
and 0.4, respectively. These values versus d lie on a remarkably
straight line.

Let us examine the effects of the surface anisotropy and
exchange parameters ds and J s

1 . As seen above, even in the case
where the surface interaction parameters are the same as those
in the bulk the surface spin-wave modes exist in the spectrum.
These localized modes cause a low surface magnetization,
observed in Figs. 5 and 6. Here, we show that with a
weaker NN exchange interaction between surface spins and the
second-layer ones, namely, J s

1 < J1, the surface magnetization
becomes much smaller with respect to the magnetizations of
interior layers. This is shown in Fig. 10 for several values of J s

1 .
We observe again here the crossover of layer magnetizations
at low T due to quantum fluctuations as discussed earlier.
The transition temperature strongly decreases with J s

1 : we
have Tc = 2.103 ± 0.010, 1.951 ± 0.010, 1.880 ± 0.010, and
1.841 ± 0.010 for J s

1 = 1, 0.7, 0.5, and 0.3, respectively (Nz =
16, J2/J1 = −2, d = ds = 0.1). Note that the value J s

1 = 0.5
is a very particular value: the GS configuration is a uniform
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FIG. 7. (Color online) Top: Transition temperature is calculated
at p = J2/J1 = −1.4 for d = 0.1, Nz = 8; at each temperature, using
the self-consistent values of layer magnetizations at T < Tc, Eq. (36)
is solved to obtain Tcs for each layer. The convergence is reached when
Tcs tend to a single value Tc. One has Tc � 2.313 ± 0.010. Red circles,
black void circles, blue squares, and blue void squares are Tcs obtained
from Eq. (36) for first, second, third, and fourth layers, respectively,
at different temperatures. Bottom: Extrapolation by lines to obtain
Tc is shown for surface parameter J s

1 /J1 = 0.7. The precision for
self-consistent convergence is 1% for layer magnetizations. See text
for comments.

configuration with all angles equal to 60◦; namely, there is no
surface spin rearrangement. This can be explained if we look at
the local field acting on the surface spins: the lack of neighbors

FIG. 8. (Color online) Transition temperature vs p = J2/J1 for
an eight-layer film with d = 0.1. See text for comments.

FIG. 9. Surface magnetization vs T for d = 0.05 (circles), 0.1
(void circles), 0.2 (squares), 0.3 (void squares), and 0.4 (triangles),
with J2/J1 = −1.4, Nz = 16.

is compensated by this weak positive value of J s
1 so that their

local field is equal to that of a bulk spin. There is thus no
surface reconstruction. Nevertheless, as T increases, thermal
effects will strongly diminish the surface magnetization as
seen in Fig. 10 (middle). As for the surface anisotropy
parameter ds , it affects strongly the layer magnetizations and
the transition temperature: we show in Fig. 11 the surface mag-
netizations and the transition temperature for several values
of ds .

E. Effect of the film thickness

We have performed calculations for Nz = 8, 12, and 16.
The results show that the effect of the thickness at these values
is not significant: the difference lies within convergence
errors. Note that the classical ground states of the first four
layers are almost the same: for example, here are the values
of the cosinus of the angles of the first half of the film for
Nz = 16, which are to be compared with the values for Nz = 8
given in Table I, for p = J2/J1 = −2 (in parentheses are
angles in degree): 0.86737967 (29.844446), 0.41125694
(65.716179), 0.52374715 (58.416061), 0.49363765
(60.420044), 0.50170541 (59.887100), 0.49954081
(60.030373), 0.50013113 (59.991325), 0.49993441
(60.004330).

From the fourth layer, the angle is almost equal to the bulk
value (60◦).

At p = J2/J1 = −2, the transition temperature is 2.090 ±
0.010 for Nz = 8, 2.093 ± 0.010 for Nz = 12, and 2.103 ±
0.010 for Nz = 16. These are the same within errors. At
smaller thicknesses, the difference can be seen. However, for
helimagnets in the z direction, thicknesses smaller than 8 do not
allow us to see fully the surface helical reconstruction which
covers the first four layers: to study surface helical effects in
such a situation would not make sense.

At this stage, it is interesting to note that our result
is in excellent agreement with experiments: it has been
experimentally observed that the transition temperature does
not vary significantly in MnSi films in the thickness range of
11–40 nm [17]. One possible explanation is that the helical
structure is very stable as seen above: the surface perturbs
the bulk helical configuration only at the first four layers, so
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FIG. 10. (Color online) Layer magnetizations as functions of T

for the surface interaction J s
1 = 0.3 (top), 0.5 (middle), and 0.7

(bottom) with J2/J1 = −2, d = 0.1, and Nz = 16. Black circles,
blue void squares, magenta squares, and red void circles are for first,
second, third, and fourth layers, respectively.

the bulk “rigidity” dominates the transition. This has been
experimentally seen in holmium films [31].

F. Classical helimagnetic films: Monte Carlo simulation

To appreciate quantum effects causing crossovers of layer
magnetizations presented above at low temperatures, we show
here some results of the classical counterpart model: spins
are classical XY spins of amplitude S = 1. We take the
XY spins rather than the Heisenberg spins for comparison
with the quantum case because in the latter case we have

FIG. 11. Top: Surface magnetization vs T for ds = 0.01 (circles),
0.1 (void circles), 0.2 (squares), and 0.3 (void squares), with J s

1 = 1,
J2/J1 = −2, and Nz = 16. Bottom: Transition temperature vs ds for
J s

1 = 0.7, 0.5, and 0.3 (curves from up to down), with J2/J1 = −2,
d = 0.1, and Nz = 16.

used an in-plane Ising-like anisotropy interaction d. Monte
Carlo simulations have been carried out over film samples of
100 × 100 × 16. Periodic boundary conditions are applied in
the xy plane. We discard 1 × 106 MC steps to equilibrate
the system, and another 1 × 106 MC steps are used for
averaging. The layer magnetizations versus T are shown in
Fig. 12 for the case where surface interaction J s

1 = 1 (top)
and 0.3 (bottom) with J2/J1 = −2 and Nz = 16. One sees the
following.

(i) By extrapolation there is no spin contraction at T =
0 and there is no crossover of layer magnetizations at low
temperatures.

(ii) From the intermediate temperature region up to the
transition the relative values of layer magnetizations are not
always the same as in the quantum case: for example, at T =
1.2, one has M1 < M3 < M4 < M2 in Fig. 12 (top) and M1 <

M2 < M4 < M3 in Fig. 12 (bottom), which are not the same
as in the quantum case shown in Fig. 6 (top) and Fig. 10 (top).

Our conclusion is that, even at temperatures close to the
transition, helimagnets may have slightly different behaviors
according to their quantum or classical nature. Extensive MC
simulations with size effects and detection of the order of
the phase transition are not within the scope of the present
paper.
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FIG. 12. (Color online) Monte Carlo results: Layer magnetiza-
tions as functions of T for the surface interaction J s

1 = 1 (top) and
0.3 (bottom) with J2/J1 = −2 and Nz = 16. Black circles, blue void
squares, cyan squares, and red void circles are for first, second, third,
and fourth layers, respectively.

V. CONCLUSION

We have studied in this paper surface effects in a helimagnet
of a bcc lattice with quantum Heisenberg spins. Note that
the method presented above can be applied to any lattice
structure, and the results found in this paper are valid for
general helimagnetic structures, not limited to bcc crystals.
Note also that the results have been shown for the case of
spin S = 1/2 where quantum fluctuations are strong at low
temperatures. Rare-earth elements Ho and Dy with helical
structures along the c axis and ferromagnetic in the basal planes
which are very similar to the present model are expected to bear
the same features as what has been shown above. However, at
low temperatures, due to their larger spin amplitudes, S = 7/2
and 5/2 for Ho and Dy, quantum fluctuations are certainly

weaker, and the crossover may occur with smaller difference.
Numerical applications of our formalism should be performed
to get precise values for these cases.

In this paper, the classical bulk ground-state spin config-
uration in a thin film is exactly calculated and is found to
be strongly modified near the film surface. The surface spin
rearrangement is, however, limited to the first four layers in
our model, regardless of the bulk angle, namely, the NNN
interaction strength J2. The spin-wave excitation is calculated
using a general Green’s-function technique for noncollinear
spin configurations. The layer magnetization as a function
of temperature as well as the transition temperature are
shown for various interaction parameters. Among the striking
features found in the present paper, let us mention (i) the
crossover of layer magnetizations at low temperatures due
to the competition between quantum fluctuations and thermal
effects; (ii) the existence of low-lying surface spin-wave modes
which cause a low surface magnetization; (iii) a strong effect
of the surface exchange interaction (J s

1 ) which drastically
modifies the surface spin configuration and gives rise to a
very low surface magnetization; (iv) the transition temperature,
which varies strongly with the helical angle but is insensitive
to the film thickness in agreement with experiments performed
on MnSi films [17] and holmium [31]; and (v) the classical spin
model counterpart, which gives features slightly different from
those of the quantum model, both at low and high temperatures.

Let us make some comments on works of other similar
models. The work by Mello et al. [14] has treated almost
the same model as ours using a hexagonal anisotropy which
corresponds to the case of Dy in which the helical angle is
�60◦. However, the authors of this work studied only the
classical spin configuration at T = 0. Unlike our work, no
treatment at finite T has been considered by these authors.
Rodrigues et al. [16] have used exactly the same model as
Mello et al. [14] but with application to the Ho case. They
have used the mean-field estimation to establish a phase
diagram in the space (T ,H ) (H : magnetic field) and shown
that surface effects affect the phase diagram. There has been,
however, no detail given on surface spin configuration, surface
magnetization, and quantum effects, unlike what we have
done here. The MC work of Cinti et al. [15] was based on
a classical spin model with a Hamiltonian, very different from
ours, including a six-constant interaction (a kind of dipolar
interaction) in the c direction.

To conclude, let us emphasize that the general theoretical
method proposed here allows us to study at a microscopic level
surface spin waves and their physical consequences at finite
temperatures in systems with noncollinear spin configurations
such as helimagnetic films. It can be used in more complicated
situations such as helimagnets with Dzyaloshinskii-Moriya
interactions [18].
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