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Physical properties of FeRh alloys: The antiferromagnetic to ferromagnetic transition
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The electronic, magnetic, thermodynamical, and transport properties of FeRh alloys are studied from first
principles. We present a unified approach to the phase stability, an estimate of exchange interactions in
various magnetic phases, and transport properties including the effect of temperature which are all based on
the same electronic-structure model. Emphasis is put on the transition between the ferromagnetic (FM) and
antiferromagnetic (AFM) phases. Such a study is motivated by a recent suggestion of FeRh as a room-temperature
antiferromagnetic memory resistor. The theory predicts the order-disorder transformation from the hypothetical
disordered bcc phase into ordered B2 phase. Comparison of exchange interactions in the magnetically ordered
FM and AFM phases with corresponding spin-disordered counterparts allows us to identify relevant interactions
which are precursors of magnetically ordered phases. The most important result is the explanation of a dramatic
decrease of the resistivity accompanying the AFM to FM phase transition which is due to the spin disorder present
in the system. The study of the anisotropic magnetoresistance in the AFM phase found recently experimentally
is extended also to finite temperatures.
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I. INTRODUCTION

Equilibrium solid phases of the binary Fe-Rh system exhibit
geometric structures related to the body-centered-cubic (bcc)
and face-centered-cubic (fcc) lattices [1]. For alloys near
the equiconcentration composition, the first phase below the
melting point (Tm = 1870 K) is a fcc substitutional solid
solution. Its cooling leads to a structural phase transition into a
bcc-based B2-ordered (CsCl-type) FeRh alloy at temperature
around 1570 K. This fact means that a hypothetical order-
disorder phase transition on the bcc lattice takes place at
a higher critical temperature Tord > 1570 K. After further
cooling of the ordered FeRh alloy down to much lower
temperatures, a transition from the paramagnetic state into the
ferromagnetic (FM) state occurs at about Tc = 670 K (Curie
temperature). Finally, the ferromagnetic phase transforms into
the antiferromagnetic (AFM) phase at temperatures around
Tn = 370 K which, however, can depend on the sample
preparation [2]. It should be noted that the above-mentioned
FM to AFM transition is reversible and can be realized
either through the conventional temperature cooling/heating
of the sample or with the help of external magnetic field
applied to the AFM phase at temperatures close to but below
the transition temperature to the FM phase. The release of
the field (magnetic cooling) turns the FM phase back into
the ground-state AFM phase. The reversibility of the FM
to AFM transition was used recently to propose FeRh as a
room-temperature antiferromagnetic memory resistor [3].

The electronic-structure properties of FeRh alloys have
been a subject of numerous studies based on the density
functional theory [4–9], although to give a comprehensive
list is beyond the scope of this paper. The physical origin
of the FM to AFM transition itself is still under debate (see,
e.g., Refs. [10–15]). All these papers, however, agree on the

decisive role played by Rh moments for this phase transition.
This fact can be conveniently illustrated by a detailed study of
exchange interactions in various magnetic phases of the FeRh
alloy. Another consequence of the FM to AFM transition is a
large drop of the resistivity ρ in the FM phase as compared
to the AFM state, while the absolute value of ρ often depends
on the sample preparation and the type of phase transition,
namely, if it is induced by the temperature or by external
magnetic field [16,17]. The large change of resistivities at the
AFM to FM transition induced by applied external magnetic
field allows us to speak about the large magnetoresistance
effect during such transition. Specifically, the resistivity drops
from about 125 μ� cm in the AFM phase to about 65 μ� cm
in the FM state [16], giving thus the magnetoresistance larger
than 50%. It should be noted that such magnetoresistance
is much larger as compared to the conventional anisotropic
magnetoresistance (AMR) which is induced by the relativistic
effects and which exists in both the FM and AFM phases [3].

Motivated by the relevance of the FM to the AFM transition
for the room-temperature AFM resistor [3], we have studied
here various related physical properties of the FeRh alloy
using a unified electronic-structure model in the framework
of the local density approximation. We thus avoid the use of
individually tailored inputs for different physical quantities.
The following properties are studied: (i) the densities of
states and magnetic moments in different magnetic phases
as well as the study of the dependence of Rh moments on
the canting angle θ between Fe and Rh moments (the latter
study can describe the AFM to FM transition induced by an
external field); (ii) the relevance of the Fe-Rh hybridization
for the formation of Rh moment in the FM phase will be
demonstrated by performing calculations with the switched-
off spin-dependent part of the exchange-correlation potential
on Rh atoms; (iii) the order-disorder transition from the
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hypothetical disordered bcc Fe0.5Rh0.5 to the ordered B2
FeRh alloy and an estimate of corresponding Tord using
the generalized perturbation (GPM) and concentration-wave
methods [18,19]; (iv) the exchange interactions based on
the mapping to the classical Heisenberg Hamiltonian [20,21]
and corresponding to various magnetic phases; (v) transport
properties (residual resistivities) in both the FM and AFM
phases using the linear-response theory (Kubo-Greeenwood
approach) [22,23]. We investigate resistivities due to either a
slight off-stoichiometry (Rh-rich FeRh alloy) or by using the
finite-relaxation-time model applied to the ordered FeRh alloy
and the existence of the AMR effect in the AFM state [3]; and
(vi) the large drop of the sample resistivity during the AFM
to FM transition mediated by the external magnetic field. This
drop is due to the temperature-induced spin disorder and we
employ the disordered local moment (DLM) approach and its
variants [24] to study it. In all cases, we compare results of
theoretical simulations with available experimental data.

II. FORMALISM AND COMPUTATIONAL DETAILS

The electronic-structure calculations were performed using
the relativistic tight-binding linear muffin-tin orbital (TB-
LMTO) method [23,25] within the local density approximation
(LDA). In chosen cases, also the scalar-relativistic version of
the TB-LMTO method [26,27] was employed like, e.g., in the
study of the alloy phase stability and magnetic interactions.
The Vosko-Wilk-Nusair exchange-correlation potential [28]
was used for the parametrization of the local density functional.
A possible effect of disorder is described by the coherent-
potential approximation (CPA) as formulated in the framework
of the TB-LMTO Green’s function method [27]. The same
atomic sphere radii were used for all constituent atoms, the
lattice constant was taken from the experiment, and the s,p,d

basis was used. We have verified that the electronic structure
is modified only marginally when using the s,p,d,f basis.
The disordered FeRh phase has the bcc structure, the FM
FeRh phase adopts the B2, or the CsCl lattice type, and the
AFM phase is the so-called AFMII one [4] characterized by
alternating Fe↑-Rh-Fe↓-Rh layers along the [111] direction.
The AFMII is thus formally equivalent to the Heusler alloy in
which four interpenetrating fcc lattices are mutually shifted by
the vector a(1,1,1)/4 (a is the lattice constant) and occupied,
respectively, by Rh, Fe↑, Rh, and Fe↓ atoms (L21-Rh2Fe↑Fe↓
Heusler alloy). It should be noted that for Fe sublattices
occupied by Fe atoms with parallel moments we recover
the B2-type structure, but with the halved lattice constant as
compared to the AFMII lattice. All calculations, even for bcc
and B2 phases, were done using the reference AFMII lattice
for computational consistency.

The phase stability of the alloy AxB1−x is described by the
Ising alloy Hamiltonian

H I =
∑

i �=j

Vij ηi ηj , (1)

where i,j are site indices, ηi is the occupation index which is
one if the site i is occupied by atom A and zero otherwise. The
quantities Vij are the effective pair (chemical) interactions.
The effective pair interactions Vij are determined using
the generalized perturbation method of Ducastelle [18] and

defined in terms of the chemical pair interactions V
Q,Q′
ij

(Q,Q′= Fe or Rh) as

Vij = V
Fe,Fe
ij + V

Rh,Rh
ij − V

Fe,Rh
ij − V

Rh,Fe
ij . (2)

It should be noted that Vij can depend on the presence
of magnetic moments [19]. The positive/negative values of
effective pair interactions indicate the tendency to prefer
unequal/similar atom pairs in the alloy (ordering/segregation).
In the GPM approach, one estimates chemical interactions
from the high-temperature phase, namely, from the disordered
bcc-(Fe0.5,Rh0.5) in the present case. For completeness, we
mention that an alternative Connolly-Williams approach ex-
tracts chemical interactions from possible low-temperature or-
dered alloy structures [29] rather than from a high-temperature
disordered phase as in the GPM method.

The magnetic structure is described by the classical Heisen-
berg Hamiltonian

H H = −
∑

i �=j

Jij ei · ej . (3)

Here, i,j are again site indices, ei is the unit vector in
the direction of the local magnetic moment at site i, and
the quantities Jij are exchange integrals between sites i

and j . The exchange integrals Jij are determined using the
method of infinitesimal rotations of Liechtenstein [20], and its
implementation within the present TB-LMTO method can be
found in Ref. [21]. The exchange integrals, by construction,
contain magnitudes of magnetic moments of atoms and their
positive (negative) signs indicate a tendency to the FM (AFM)
coupling.

The exchange integrals are conventionally determined
using the reference FM state [13,20], but also other reference
states can be used to derive them, e.g., the AFM state for the
corresponding magnetic phase. It should be noted, however,
that both the FM and AFM reference states already assume
a specific magnetic order derived from the experiment. In
order to gain a deeper understanding of the character of
interactions, we will also estimate exchange integrals from the
reference state with no prescribed magnetic order, i.e., from the
paramagnetic state above the critical temperature which will
be described here by the DLM reference state [24]. Finally, to
see a possible effect of the nearest-neighbor environment, we
also compare exchange integrals for the ordered (B2-FeRh)
alloy with its disordered bcc-(Fe0.5,Rh0.5) counterpart.

The residual resistivities are determined by the linear-
response theory as formulated in the framework of the
relativistic TB-LMTO-CPA method and its Kubo-Greenwood
counterpart [23] including the disorder-induced vertex cor-
rections [22,23]. The disorder-induced vertex corrections are
equivalent to the backward scattering in the collision term of
the Boltzmann transport theory.

The diagonal elements of the conductivity tensor read as

σμμ ∝ Tr 〈vμ(g+ − g−)vμ(g+ − g−)〉, (4)

where the Green’s functions g± = g(EF ± iImz) are obtained
from self-consistent electronic-structure calculations, EF is the
Fermi energy, and Imz is its imaginary part, vμ holds for
a nonrandom operator describing hopping between various
sites (the effective velocity in the intersite transport), and 〈. . .〉
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denotes the configurational averaging over the chemical or
magnetic disorders. We refer the reader to Refs. [22,23,30]
for details concerning formulation of the transport in the
framework of the present relativistic TB-LMTO-CPA theory.
The diagonal elements of the resistivity tensor ρμμ (μ =
x,y,z) are obtained by neglecting small off-diagonal elements
of the conductivity tensor as ρμμ = 1/σμμ. It should be noted
that the off-diagonal elements of the conductivity tensor are
relevant, e.g., for the anomalous Hall effect which, however, is
not the subject of this study. The residual resistivity ρ and the
AMR ratio rAMR are then obtained from calculated ρμμ values
as

ρ = (2ρxx + ρzz)/3, rAMR = (ρzz − ρxx)/ρ . (5)

In the present formulation, the magnetization points in the z

direction.
The effect of temperature on transport properties has been

studied using two approaches: (i) We employ the finite-
relaxation-time model [3,31] in which temperature-dependent
scatterings due to phonons and magnons (and, eventually, also
due to chemical disorder) are modeled in a phenomenological
manner by adding a finite imaginary part Imz to the Fermi
energy entering corresponding Green’s functions. It should be
noted that in conventional transport calculations we employ
Imz = 10−5 Ry which corresponds to a fraction of μ� cm
for metallic systems. This model can be used even for the
ideal B2-FeRh alloy without chemical disorder. On the other
hand, a relation of Imz and corresponding temperature is
beyond the limits of this simple model; and (ii) the effect of
spin disorder mediated by a finite temperature on transport
properties will be studied using the uncompensated DLM
model [32–34] (see Sec. III D 2). In this case, we employ
a slightly off-stoichiometric Rh-rich FeRh alloy which is
compatible with the experiment [3] although this model can
be applied to ideal systems as well.

In this paper, we wish to investigate primarily the transport
properties of FeRh alloys. The transport properties are, how-
ever, closely related to the corresponding electronic structure.
Therefore, an agreement of various calculated physical prop-
erties based on the same electronic-structure model will give a
better justification also to related transport properties. We will
therefore start the discussion with basic electronic-structure
properties (densities of states and magnetic moments) of
different phases for which transport properties are estimated
(the FM, AFM, or DLM), then continue naturally with the
alloy phase stability, then with the study of the character of
magnetic interactions which will allow a deeper understanding
of the character of magnetic phases relevant for the transport,
and finish finally with transport properties itself including an
approximate study of their dependence on the temperature.
During evaluation of different physical properties, various
kinds of the disorder are present in studied system treated
using the CPA. For the reader’s convenience, we briefly
summarize them as follows: (i) The chemical disorder present
in disordered bcc-Fe0.5Rh0.5 will be used in the study of its
alloy phase stability and/or to estimate the effect of local
environment on exchange integrals (disordered and ordered
phases have different local site occupation). (ii) The native
chemical disorder present in the off-stoichiometric Rh-rich
FeRh samples will be used in the AMR transport studies.

(iii) The spin disorder present in the alloy at finite temperatures
is a relevant source of the sample resistivity close to the
critical temperatures. It can be also mapped approximately
into a special type of the chemical disorder in the framework
of the uncompensated DLM model. (iv) Finally, in some
cases different types of disorder can be present in the studied
system at the same time, e.g., in the case of the transport
properties at finite temperatures where the above-mentioned
native chemical disorder as well as the spin disorder due to
temperature coexist.

III. RESULTS AND DISCUSSION

In this section, we present theoretical estimates of various
physical quantities related to the FeRh alloy and compare them
with available experimental data.

A. Electronic structure

1. Densities of states and magnetic moments

The total and atom-resolved local densities of states (DOS)
for various phases, namely, for the nonmagnetic and FM
ones in the ordered B2 structure and the AFMII and DLM
(or paramagnetic) phases, are shown in Fig. 1. Calculations
were done scalar relativistically. The following remarks are
made: (i) Large local Fe and Rh DOS at the Fermi energy
in the nonmagnetic phase are signatures of the instability of
this phase towards the ferromagnetism (the Stoner criterion).
(ii) The larger Fe DOS(EF) as compared to the Rh one
indicates larger local magnetic moment of Fe atoms (see
following). (iii) Both the AFM and DLM phases have the
zero total magnetic moment (corresponding total majority and
minority DOS’s are the same). The DLM DOS is smoothed
out by the spin-disorder as the DLM phase corresponds
formally to the equiconcentration (Fe[+]

0.5 ,Fe[−]
0.5 )Rh alloy of

oppositely oriented moments [24]. It describes formally a
high-temperature paramagnetic phase. In both the AFMII and
DLM phases, local Rh moments collapse to zero. There is
a good agreement with corresponding DOS’s obtained in a
recent study [13].

Calculated scalar-relativistic local Fe moments in all phases
are large, about 3μB. Specifically, mFe = 3.023/ ± 2.955/ ±
2.932μB for the FM/AFMII/DLM phases, respectively. The
local Rh moment in the FM phase is mRh = 1.184μB and zero
in the AFMII and DLM phases.

For a comparison, we also show local moments obtained
using the relativistic theory. Corresponding Fe spin moments
for the FM/AFMII/DLM phases are almost the same, namely,
mFe = 3.075/ ± 3.020/ ± 3.025μB, respectively. The local
spin Rh moments are mRh = 1.173μB for the FM state and
zero for the AFMII and DLM phases. These results, of course,
agree well with other calculations (see, e.g., Refs. [4,13]). The
above results clearly show the relevance of Rh moments for
the FM phase as contrasted with the AFMII/DLM phases with
zero local Rh moments.

2. Constrained calculations

It is thus obvious that the values of Rh moments vary
dramatically at the FM to AFM transition. We will further
investigate this point by performing constrained noncollinear
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FIG. 1. The total and local densities of states for various phases:
(a) the nonmagnetic B2-FeRh; (b) the FM B2-FeRh; (c) the DLM
FeRh in the AFMII lattice; and (d) the ordered AFMII FeRh lattice.
The DOS are resolved into the majority (maj) and minority (min)
contributions while EF denotes the Fermi energy. The majority
and minority contributions are shown for one spin-orientation for
the AFMII and DLM FeRh phases, for the other spin orientation the
role of the majority and minority spins is interchanged. Note that the
AFMII and CsCl lattices have different formula units containing,
respectively, four and two atoms which are reflected in the area
under the total DOS’s, while the local DOS are normalized equally
irrespective of the formula unit.

calculations in the AFMII phase. Specifically, the Rh moment
is constrained to the z direction and we will vary the angle
θ between moments on the Rh and Fe sublattices from 0 to
±π/2. For θ = 0, we recover the FM B2 phase (in a doubled
unit cell) while for θ = π/2 on one sublattice and θ = −π/2
on the other one we have the AFMII phase. The present model
is thus related to the FM-AFMII phase transition mediated by
the external magnetic field (magnetic cooling or heating) [17].
Similar constrained calculations using the spin-spiral approach
have appeared recently [13]. This reciprocal space approach is,
however, limited to the ordered case and the scalar-relativistic
limit. On the contrary, the present approach [23] is local and
fully relativistic. In both cases, the local Fe and Rh moments
are calculated self-consistently for each angle θ . It should be
noted that we are not, however, able to relate the canting angle
θ and the strength of applied magnetic field.

The transition between the AFMII and FM phases, which
is due to switching of the external magnetic field, can be thus
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FIG. 2. The constrained noncollinear calculations assuming vari-
ation of the canting angle θ between magnetizations of Fe and Rh
sublattices in the AFMII phase. The Rh moment (filled circles)
points in the direction of the z axis, while the sublattice Fe
moments (empty circles) are canted by an angle ±θ . The dotted
line shows results of non-self-consistent calculations assuming a
simple cosine form, namely, mRh(θ )= mRh(θ = 0) cos(θ ). The values
θ = 0 and π/2 correspond to the collinear FM and AFMII phases,
respectively.

viewed as a gradual aligning of Fe spins on their sublattices
accompanied by an increase of the Rh moment from its zero
value in the AFMII phase to a finite Rh moment in the FM
phase in which Fe spins on both Fe sublattices become parallel
to each other. The resulting magnetic structure is thus changed
from the parent AFMII lattice to the B2-type lattice in the
FM phase. This process is reversible: gradual switching off
the external field allows the system to return back to the
AFMII phase which is the ground state with a lower energy.
This picture is simplified because experimentally the AFM
to FM transition occurs at a fixed temperature below the
Curie temperature. In such case, a certain amount of the spin
disorder already exists in the system. One can thus imagine a
modified picture in which spin directions fluctuate around the
statistically averaged value 〈θ〉 of the canting angle which can
be deduced, e.g., from the corresponding spin-spin correlation
function obtained from the Heisenberg Hamiltonian based on
the same electronic-structure model.

The result is shown in Fig. 2 for a system without
spin disorder. We see that local Fe moments are rigid with
respect to the canting angle θ as contrasted to local Rh
moments whose sizes decrease with increasing angle between
sublattice magnetizations and are zero for the canting angle
θ = ±π/2 (the AFMII phase). It should be mentioned that
the total energy of the AFMII state is lower than that of the
FM state. The variation of the Rh moment as a function
of the canting angle has a simple cosine form to a good
approximation. The Fe moment is thus a good spin in
the Heisenberg sense as contrasted to the non-Heisenberg
behavior of the Rh moment. A detailed statistical study of
the FeRh alloy should take this fact into account (see, e.g.,
Refs. [12,13]).
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3. Neglect of exchange-correlation enhancement on Rh atoms

The relevance of the Fe-Rh hybridization for the occurrence
of Rh moments in the FM state is generally accepted (see,
e.g., Ref. [13] for extensive discussion on this point). Here,
we wish to present another view of this problem. In metals,
such as e.g., bcc-Fe, it is the spin-dependent part of the
exchange-correlation potential which is responsible for its
ferromagnetism. The Rh crystal is under ambient conditions
nonmagnetic and its magnetism in the FeRh alloy is induced
by moments on adjoining Fe atoms. Here, we wish to quantify
which part of the Rh moment is due to the Fe-Rh hybridization
alone and which part can be ascribed to the exchange part
of the Rh potential. We thus calculate the Rh moment in
the FM FeRh by explicitly switching off the spin-dependent
part of the exchange-correlation potential on Rh atoms. The
calculated spin polarization on Rh atoms is then the net
effect of the hybridization of Rh atoms with Fe ones and
their magnetic moments. A similar approach, although in
a different context of the interlayer exchange coupling in
Fe|Cr|Fe trilayers, was used in Ref. [35]. To illustrate the
point it is enough to use the scalar-relativistic case although
similar study can be done also in the fully relativistic case. We
have obtained mFe = 2.939μB which compares very well with
the result of the conventional case (3.023μB). The calculated
mRh = 0.777μB should be compared to the value of 1.184 μB

in the conventional case. The part of the Rh moment due to the
Fe-Rh hybridization is thus almost two times larger than the
one corresponding to the spin-dependent part of the exchange
potential (0.407μB).

The Rh atom in B2-FeRh is surrounded by eight nearest
Fe atoms. On the other hand, only four nearest Fe atoms
are present in the disordered bcc-(Fe50,Rh50) alloy on the
average. We have obtained mFe = 2.820/2.789μB and mRh =
0.639/0.255μB for models with the conventional/suppressed
exchange, respectively. The reduced Fe surrounding dimin-
ishes the induced Rh moment as expected, but even in this
case a significant part of the moment is due to the Fe-Rh
hybridization. The above calculations clearly demonstrate the
relevance of the Fe-Rh hybridization for the formation of the
Rh moment in the FM FeRh alloy.

B. Order-disorder transition

The parent lattice of the ordered B2 alloy is the bcc lattice.
It therefore makes sense to investigate the order-disorder
transition from the hypothetical disordered bcc-FeRh alloy into
the ordered B2-FeRh alloy using the effective pair interactions.
It is not the aim of this study to investigate a real structural
transition from the fcc to B2 phases, but rather to understand
processes in existing alloys. It is in the spirit of the construction
of the Ising model (1) that one has to use related, not
necessarily existing, alloys.

We have thus used as a reference state for estimation of the
effective pair interactions Vij the disordered bcc-(Fe0.5,Rh0.5)
alloy in the nonmagnetic phase using the GPM approach [19].
The lattice Fourier transform V (q) of Vij allows us to discuss
the phase stability using the mean-field concentration-wave
approach [18,19]. The minimum of V (q) at the high-symmetry
point qord indicates an ordering tendency to form a superstruc-
ture compatible with it [18] while the minimum at qord = 0
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FIG. 3. (a) Effective pair interactions Vij in the disordered
nonmagnetic bcc-(Fe0.5,Rh0.5) alloy as a function of the interatomic
distance d in units of the lattice constant a, and (b) its corresponding
lattice Fourier transform V (q). The minimum of V (q) at the ordering
vector qord = H indicates ordering to the B2 phase (the CsCl lattice
type).

corresponds to a segregation of alloy components. Results
are shown in Fig. 3. Dominating positive Vij ’s for the first
two nearest-neighbor pair interactions [Fig. 3(a)] indicate a
clear ordering tendency in the alloy. The corresponding lattice
Fourier transform V (q) [Fig. 3(b)] has a pronounced minimum
at qord = 2π (1,0,0)/a (the high-symmetry point H in the bcc
Brillouin zone) which confirms ordering to the B2 phase [18]
compatible with the experimental data. An effective medium
order-disorder temperature is Tord = −V (qord)/(4kB) [18].
Calculated Tord is about 1700 K in an acceptable agreement
with the experimental value (1570 K) if one considers the
well-known tendency of the mean-field approximation to
overestimate Tord.

C. Exchange integrals

In this section, we wish to investigate character of exchange
interactions in both the FM and AFM phases with the aim to
identify interactions responsible for the FM to AFM transition.
We will show that the same interactions relevant for the FM to
AFM transition are already present in the B2 phase above the
Curie temperature without any magnetic order.
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FIG. 4. The exchange interactions J Q,Q′
, Q,Q′ = Fe, Rh, as

functions of the interatomic distance d (in units of the lattice
parameter a) calculated in the disordered FM bcc-(Fe0.5,Rh0.5) alloy
(a) and the ordered FM B2-FeRh alloy (b).

1. FM reference state

The ordered FM B2-FeRh state exists below the order-
disorder temperature. Nevertheless, it is instructive to show
also interactions in the hypothetical disordered bcc phase.
Results are shown in Figs. 4(a) and 4(b) for the disordered bcc-
(Fe0.5,Rh0.5) and the ordered B2-FeRh alloys, respectively.
The main difference between both systems consists in the
fact that in the B2 phase the first nearest-neighbors (NN)
exchange interactions are Fe-Rh ones while the nearest Fe-Fe
(and also the Rh-Rh) interactions are only the second NN
interactions. In the disordered bcc phase, on the contrary,
all types of interactions exist at any distance. The following
conclusions can be made: (i) dominating Fe-Fe interactions
J Fe,Fe( 1

2 , 1
2 , 1

2 ) present in the bcc phase are missing in the
B2 phase (Fe atoms are on a simple-cubic Fe sublattice).
The exchange interactions among Rh atoms are small in both
cases; (ii) important role of nearest-neighbor J Fe,Rh = J Rh,Fe

interactions between different atomic species in both bcc and
B2 phases is seen. These interactions are crucial for the B2
phase, where they become dominating thus confirming their
relevance for the formation of the ordered FM B2 phase.
Results for the B2 phase are in a good agreement with those in
Ref. [13]; and (iii) large AFM-like J Fe,Fe(1,1,1) interactions,

in particular in the ordered FM B2 phase (third NN ones), are a
precursor of the AFM phase although they are clearly seen also
in the disordered bcc phase. We have also calculated exchange
interactions in the bcc DLM phase with total zero magnetic
moment. In this case, only J Fe,Fe are nonzero and they are
essentially identical to those for the FM reference state (not
shown). This result is in accord with Fig. 2, demonstrating the
rigidity of Fe moments with respect to the spin rotations.

We have also calculated exchange interactions in the FM
B2-FeRh, but now without exchange splittings on Rh atoms
(see Sec. III A 3). In this case, J Rh,Rh and, in particular,
J Fe,Rh exchange interactions are zero and the only nonzero
ones are those among the Fe atoms. Although the character
of J Fe,Fe interactions remains the same as in FM B2-FeRh
[Fig. 4(b)] or DLM B2-FeRh (Fig. 5) cases, namely, the
dominating first NN and third NN AFM interactions, their
magnitudes are more than two times larger. This result clearly
proves the importance of exchange and correlations on the
Rh atoms for the ferromagnetism of B2-FeRh alloys: without
strongly ferromagnetic Fe-Rh interactions the system would
be antiferromagnetic.

2. AFM and DLM reference states

The exchange interactions for the AFMII reference state are
shown in Fig. 5. They are compared with interactions in the
spin-disordered (paramagnetic) B2 DLM phase corresponding
to the state above the Curie temperature (but below the
order-disorder transition). The B2 DLM phase has completely
disordered moments on the Fe sublattice and zero moments
on the Rh sublattice. It should be noted that in the DLM
phase there is no preference for the magnetic order (the
high-temperature phase). On the contrary, in the AFMII
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FIG. 5. The exchange interactions J Fe,Fe as a function of the
interatomic distance d calculated using different reference states:
(i) the B2 DLM state (stars), and (ii) the ordered AFMII FeRh alloy.
In the latter case, we distinguish between interactions among spins
on the same Fe sublattice (filled circles, labeled as “same”) and
interactions between different magnetic Fe sublattices with opposite
spin orientations (empty circles, labeled as “diff”), respectively.
All interatomic distances are given in units of the AFMII lattice
parameter a.
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phase the spin arrangement is forced to correspond to the
low-temperature ground state. The DLM and AFMII phases
have both the total zero magnetization and an equal amount
of spins pointing in opposite directions which, however, are
ordered in the AFMII phase and completely disordered in the
B2 DLM phase. We wish to make the following comments:
(i) The local moments on Rh sites vanish in both cases so that
J Fe,Fe interactions are the only nonzero ones. (ii) In the AFMII
phase, we distinguish between Fe-Fe interactions on the same
Fe sublattice and those between different Fe sublattices with
oppositely oriented spins. The latter ones are predominantly
AFM like. (iii) The most interesting result is that exchange
interactions in the B2 DLM phase and the AFMII phase are
very similar. (iv) The dominating J Fe,Fe( 1

2 ,0,0) (first NN) and
J Fe,Fe( 1

2 , 1
2 , 1

2 ) (third NN) interactions in the DLM B2 phase
seem to be responsible for the FM to AFM transition and they
naturally correspond to interactions among Fe moments on
different sublattices in the AFMII lattice. (v) Also, the J Fe,Fe

interactions in the FM B2 phase [see Fig. 4(b), full circles]
exhibit the same trend as J Fe,Fe interactions in the AFMII
and DLM B2 phases, although their absolute values slightly
differ due to different reference states. This demonstrates the
robustness of Fe-Fe interactions even in the presence of local
Rh moments.

In conclusion of this section, we wish to make two remarks:
(i) The present approach gives a magnetization averaged
over a given atomic cell. In the AFM state, the local Rh
moment vanishes. The behavior of Rh magnetization inside
the cell requires the full potential approach. This problem was
discussed in Ref. [13] and it was demonstrated that the zero
value of the Rh moment in the AFM state is in fact a result of
the compensation of the opposite spin polarizations in different
parts of Rh atomic cell. The authors of Ref. [13] argue that
such implicit spin polarization of Rh atoms at low temperatures
transforms into an explicit spin polarization of Rh atoms in the
FM state. (ii) In general, the classical Heisenberg model for a
system with strongly varying moment sizes (the Rh moment in
the FeRh alloy) has to be modified for quantitative conclusions
such as, e.g., the estimate of critical temperatures [13,14].
On the other hand, we made qualitative conclusions based on
the representive FM and AFM phases where the Heisenberg
description is applicable.

3. Volume dependence of exchange integrals

The study of the volume dependence of the exchange
integrals gives an additional insight into their proper-
ties [13,14]. Different lattice constants can be realized,
e.g., with help of samples grown by sputtering/molecular
epitaxy on different substrates. The reduced/expanded vol-
ume leads to (i) larger/smaller overlap of wave functions,
and (ii) increased/reduced bandwidths. The former effect
enhances/reduces exchange integrals while the latter one
reduces/enhances exchange integrals due to reduced/enhanced
magnetic moments. The net values are thus competition of the
above two effects.

In Fig. 6, we compare exchange integrals calculated for
the AFMII reference state at ambient volume with those
for reduced/expanded lattice parameters by about 5% each.
Different volumes are expressed in terms of corresponding
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FIG. 6. The exchange interactions J Fe,Fe calculated for the AFMII
reference state and for different lattice constants expressed in terms
of corresponding Wigner-Seitz (WS) radii: (i) WS = 2.63 a.u.,
(ii) WS = 2.77 a.u. (experiment), and (iii) WS = 2.91 a.u. The
full (empty) symbols correspond to interactions between the same
(full symbols) and different (empty symbols) Fe sublattices.

Wigner-Seitz radii. The following conclusions can be done:
(i) The volume dependence is stronger for exchange inter-
actions among Fe atoms with opposite spins as compared
to interactions among Fe atoms with parallel spins. (ii) The
strength of dominating AFM interactions among Fe atoms
with opposite spins is reduced/enhanced when the volume
increases/decreases. In the light of discussion above, this
means that their volume dependence is controlled by overlap of
wave functions rather than by corresponding modifications of
magnetic moments. (iii) The effect of volume is stronger when
volume is expanded. It should be noted that a similar effect for
expanded volume was obtained recently in Ref. [13] for the
FM B2 phase although absolute values are slightly different
due to different reference configurations. (iv) For the expanded
volume, the ground state becomes the FM one while for the
reduced volume the ground state is the AFMII. The stability
of the AFMII state as compared to the FM state increases
with reduced volume: it is 0.77 and 4.60 mRy/atom. These
values agree with those of Ref. [4] although they are smaller. It
should be noted that calculations in Ref. [4] are nonrelativistic
and employ the fixed-spin moment approach constraining the
total moment per unit cell. This result is also compatible with
the experiment on the pressure dependence of the critical
temperature for the AFMII to FM transition which increases
linearly with pressure in the rate about 4.5 K/kbar [36].

D. Transport properties

In this section, we present results of transport studies in
FeRh alloys, namely, the residual resistivity and the AMR
ratio. We wish to concentrate on two interesting aspects:
(i) the AMR, namely, its existence not only in the FM phase,
but particularly also in the AFM one in connection with
its potential use in spintronic applications [3], and (ii) the
resistivity close to the FM-AFM phase transition, specifically
on the large resistivity drop at the AFM to FM transition. A

014435-7
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temperature effect (T = 0 K): (a) the AMR ratios rAMR, and (b)
the residual resistivities.

relevant feature of this study is incorporation of the effect
of finite temperature, although in an approximate way. We
reiterate that the AFM to FM transition can be achieved either
by temperature tuning or by applying or switching off the
external magnetic field for temperatures slightly below the
AFM to FM transition (the magnetic heating/cooling) [16,17].

1. Properties of magnetically ordered systems

In a recent pilot study [3] we have calculated the AMR
ratio rAMR (5) at the zero temperature for the AFMII phase
as well as for the hypothetical FM phase to illustrate the
effect. Two models were used: (i) a slightly off-stoichiometric
FeRh alloy (Fe1−x,Rhx)Rh (Rh doping x is below 10%); such
model has an experimental justification [3]. The model fully
neglects the effect of temperature on the transport; and (ii) a
finite-relaxation-time model applied to the ideal FeRh alloy in
which temperature-dependent scattering due the phonons and
magnons is modeled in a phenomenological manner by adding
a finite Imz to the Fermi energy in transport equations.

The results are summarized in Fig. 7 for the model with
Rh doping and in Table I for the finite-relaxation-time model,
respectively. We mention that experiment for samples prepared
by the molecular epitaxy method [3] gives rAMR values in the
range 0.1% to 1% and the resistivity in the AFM phase about
200 μ� cm. Experiments performed on sputtered samples

TABLE I. Calculated residual resistivities ρ and values of the
AMR ratio rAMR (5) for the ideal stoichiometric FeRh alloy in the
ferromagnetic (FM) and antiferromagnetic AFMII phases (AFM).
The values of finite relaxation times which enter the theory through
the imaginary part Imz (in Ry) added to the Fermi energy are shown.
Resistivities are given in μ� cm and rAMR values in %. We also
present the rAMR values and resistivities calculated for enlarged
(2.91 a.u.) and reduced (2.63 a.u.) Wigner-Seitz radii (the experi-
mental Wigner-Seitz radius is 2.77 a.u.).

Imz WS radius rAMR (AFM) rAMR (FM) ρ (AFM) ρ (FM)

10−3 2.77 0.41 0.36 34 7
5.10−3 2.77 0.37 0.40 113 29
10−2 2.77 0.18 0.39 140 53
10−2 2.91 0.19 0.42 162 67
10−2 2.63 0.02 0.36 102 30

report resistivities about 65 and 125 μ� cm in the FM and
AFM, respectively, if the field cooling at the room temperature
is used and resistivities about 150 and 270 μ� cm for cooling
from 385 to 350 K [16,17]. All results are sensitive to sample
annealing, but a pronounced drop of resistivities through the
transition from the AFM to FM phases seems to be firmly
established.

The present results for residual resistivities of the FM and
AFMII phases can be compared to previous calculations done
in the scalar-relativistic limit and neglecting the transport
vertex corrections (see Fig. 2 in Ref. [37]). The calculated
magnetoresistance was due to different magnetic structure of
the FM and AFMII phases rather than to relativistic effects
which was the object of the study of Ref. [3]. Strictly speaking,
the effect is similar to the giant magnetoresistance (GMR)
studied in the past in metallic multilayers and it exists, contrary
to the AMR effect, also in the scalar-relativistic limit. In
fact, the B2-FeRh can be considered as a natural multilayer
system [37]. The additional scattering due to spin-orbit effects
which mixes up both spin channels leads to an enhancement
of residual resistivities in the present relativistic case.

The rAMR values calculated in both models are within
experimental error bars. We have demonstrated [23] that
the values of rAMR in the FM Ni-based alloys depend on
the disorder strength in the majority spin channel, with the
highest rAMR values obtained for alloys with negligible spin-up
scattering. On the contrary, if disorder strengths in both
channels are comparable, the rAMR values are small. This
seems to be also the present case which thus qualitatively
explains small calculated and measured rAMR values for FeRh.
However, values of resistivities in the AFMII phase obtained
for the Rh-doped FeRh alloy are too small as compared to
experiment. Also, resistivities of the AFMII phase and of the
hypothetical FM phase are very similar [see Fig. 7(b)], while
in the experiment resistivities of the AFM and FM phases
are very different. It should be noted that calculations in
Rh-doped FeRh alloy for both phases correspond to the zero
temperature. Essentially linear increase of residual resistivities
with Rh concentration in both magnetic phases corresponds to
the low-concentration limit in the Kubo-Greenwood transport
equations (impurity concentration is up to 10%) [38]. Similar
resistivities of the FM and AFMII phases are due to the
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fact that impurity Rh atoms on Fe sublattices scatter roughly
similarly for both spin orientations. One thus needs another
and stronger scattering mechanism to obtain results compatible
with experiment. We will demonstrate that it is the temperature
which leads to scattering among differently oriented magnetic
moments. Such scattering is particularly strong for oppositely
oriented moments due to a large exchange splitting which
manifests itself in large Fe-spin moments of order 3μB. The
latter mechanism is included, although on an approximate
level, in a simple finite-relaxation-time model which includes
the effect of temperature empirically in terms of finite Imz and
gives a pronounced resistivity drop as found in the experiment.
Both models differ also in details concerning effect of disorder
on the rAMR values: while increasing chemical disorder leads
to increasing values of the rAMR for the AFM phase, the
finite-relaxation-time model gives an opposite trend.

The effect of volume on transport properties is also
illustrated in Table I using the finite-relaxation-time model
with Imz = 10−2 Ry. The resistivity increases/decreases with
corresponding volume changes for both the FM and AFMII
phases. While the relaxation time is fixed (Imz = 10−2 Ry),
the bandwidth decreases/increases for corresponding volume
changes thus leading to relative increase/decrease of the
scattering strength at the Fermi energy. The AMR ratios follow
the same trend in both phases, namely, they increase/decrease
for enlarged/reduced volumes. The spin-orbit effect in broader
bands has to be weaker as compared to narrower bands, which
is a rough explanation of the effect. The changes are rather
small, with the exception of the dramatic decrease of the rAMR

value for AFM phase and reduced volume. While a decrease
of the AMR ratio for broader bands is in accord with the above
qualitative explanation, such large decrease is unexpected. We
do not have a simple explanation for this fact, we have just
checked that it is not caused by numerical inaccuracy or by
an insufficient convergence with respect to the number of k

points.

2. Effect of spin disorder

Keeping in mind the success of a simple finite-relaxation-
time model, we proceed further to describe the effect of
temperature in a more quantitative way. In particular, we
wish to investigate the AFM to FM transition mediated by
external field and its effect on transport properties [16]. This
case is simplified by the fact that experiment is done at
a fixed temperature and we shall thus concentrate on the
effect of the spin disorder caused by temperature. The effect
of spin disorder [32] is simulated in the framework of the
uncompensated DLM (uDLM) model which was recently
successfully applied to study the effect of temperature on
transport properties in ordering Pd-rich PdFe and FePt alloys
in the L12 and L10 structures, respectively [33,34]. The spin
disorder is described as a random distribution of local moments
Fe[+] and Fe[−] pointing in opposite directions. Formally, it can
be described as a random ternary alloy (Fe[+]

1−x−y,Fe[−]
y ,Rhx)

on each Fe sublattice (we treat also FM phase in the AFMII
lattice for an internal consistency). The amount of oppositely
oriented Fe moments is y. This situation can be conveniently
treated using the CPA. While the effect of temperature is
correctly related to the amount of spin disorder in the system

(characterized by the quantity y), a quantitative relation of y

and the temperature is beyond limits of this model. It should
be noted that the collinear CPA model for spin disorder [32]
is an accurate mapping of the problem for temperatures at and
above critical ones; its use for temperatures below the critical
temperature is an additional, but acceptable approximation.
A possible effect of phonons at a given temperature can be
eventually simulated by adding a small finite Imz. In this case,
the combined effect of spin and phonon disorders is treated
beyond a simple Matthiessen rule [39].

We applied the uDLM to the Rh-doped (x = 5%) FeRh
alloy studied above for T = 0 K assuming that y = 0.05.
This is a reasonable choice if one considers the temperature at
which magnetic heating was done (T = 300 K) and the Curie
temperature (T = 670 K) [33,34]. Calculated resistivities of
the AFM and FM phases, 124.8 and 52.4 μ� cm, respectively,
compare well with the experiment (127 and 68 μ� cm) [16].
The origin of a pronounced resistivity drop is thus strong
disorder among oppositely oriented local moments on Fe
sublattices in the AFMII phase which is missing in the FM
phase. We remind that for the present Rh-rich case, resistivities
at T = 0 K were similar being about 30 μ� cm [see Fig. 7(b)].
The spin disorder thus enhances the FM resistivity by about
70%, but the AFM one by almost 420%.

In the case of the AFM phase we have also done calculations
assuming y = 0.03, i.e., for the smaller spin disorder which
corresponds in our simple model to a lower temperature.
Calculated resistivity was reduced from 124.8 to 94.02 μ� cm,
which is the expected result. On the other hand, the AMR ratio
has increased from the value of 0.06% for y = 0.05 to the
value of 0.43% for y = 0.03.

We have also used the same model using the scalar-
relativistic transport codes to see the effect of relativistic
corrections. In this case, the AMR ratio is zero, but calculated
AFM and FM resistivities are similar, being 122.2 and
33.5 μ� cm for the AFM and FM phases, respectively. This
confirms that the spin-disorder effects and not the relativistic
effects are responsible for the large drop of resistivities during
the AFM to FM phase transition.

The spin-disorder resistivity (SDR), which is the resistivity
in the paramagnetic state above the Curie temperature, can be
also estimated. This state can be reasonably represented using
the DLM approach [40]. We give here the result for the ideal
ordered B2 alloy which exists above the Curie temperature.
The calculated value is 131.5 μ� cm in the relativistic case and
107.8 μ� cm in the scalar-relativistic limit. Larger resistivities
in the relativistic case as compared to the scalar-relativistic one
are caused by an additional scattering between the majority and
minority spin channels due to the spin-orbit coupling.

It should be noted that in this section we have implicitly
assumed the validity of the Matthiessen rule, namely, the fact
that contributions from phonons and spin disorder are additive.
It is not generally correct [39], but we have verified its validity
in the present FeRh alloy by performing resistivity calculations
for the AFMII FeRh alloy assuming (i) Imz = 10−3 Ry without
the spin disorder (y = 0), (ii) Imz = 10−5 Ry with the spin
disorder (y = 0.05), and (iii) Imz = 10−3 Ry and the same
spin disorder as in (ii). The finite Imz is a rough model of
the disorder due to phonons (although there is no relation to a
certain temperature). The corresponding resistivities are 34.2,
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J. KUDRNOVSKÝ, V. DRCHAL, AND I. TUREK PHYSICAL REVIEW B 91, 014435 (2015)

101.4, and 129.9 μ� cm. The latter value compares very well
with the Matthiessen’s rule resistivity of 135.6 μ� cm.

It should be mentioned that a more sophisticated way
of the estimation of temperature effects on the resistivity
has been proposed recently [41,42] in which the supercell
Landauer-Büttiker formulation of the resistivity combined
with the Monte Carlo simulations of phonon and spin disorders
was used. But, even such approach has a limitation due to the
use of the classical (Monte Carlo) versus quantum statistics, the
latter being relevant for low-temperature behavior of magnons.

IV. CONCLUSIONS

We have presented, based on the unified first-principles
model (the relativistic TB-LMTO approach), estimates of
a broad range of physical properties of FeRh alloys. The
main results can be summarized as follows: (i) The mag-
netic moments agree with experiment as well as with other
theoretical approaches and their values are influenced by
relativistic effects only weakly. (ii) Sizes of the local Rh
moments are very sensitive to their relative orientations with
respect to the Fe moments whose sizes remain essentially
unchanged. This result demonstrates the relevance of induced
Rh moments for ferromagnetism of the FeRh and can also
qualitatively describe the AFM to FM transition in which
Rh moments missing in the AFM phase appear in the FM
one. (iii) The magnetic Rh moments in the FM state are

predominantly due to the hybridization with surrounding
polarized nearest-neighbor Fe atoms rather than due to the
spin-dependent part of the exchange-correlation potential.
(iv) Pair chemical interactions clearly indicate the ordering
tendency in random bcc-(Fe0.5,Rh0.5). We have shown that
the CsCl lattice develops from the hypothetical disordered
bcc phase on cooling and that the estimated mean-field order-
disorder temperature is in a fair agreement with the experiment.
(v) Detailed analysis of magnetic exchange interactions in
various reference states has allowed us to understand more
details concerning the FM to AFM transition. In particular,
large AFM-like J Fe,Fe(1,1,1) interactions in the FM B2 phase
are a precursor of the transition to AFM phase and they are also
seen even in the disordered bcc phase. (vi) The large resistivity
drop at the phase transition from the AFM to FM phase can be
understood only by invoking the effect of temperature on the
transport. In particular, we have found a relevant effect of large
spin disorder between Fe sublattices in the AFM phase which
is missing in the FM phase. This was demonstrated using both
a simple finite-relaxation-time model and the uncompensated
DLM model which simulates the temperature-induced spin
disorder more realistically.
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[32] J. Kudrnovský, V. Drchal, S. Khmelevskyi, and I. Turek,
Phys. Rev. B 84, 214436 (2011).
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