
PHYSICAL REVIEW B 91, 014434 (2015)

Spin glass dynamics at the mesoscale

Samaresh Guchhait,1,* Gregory G. Kenning,2 Raymond L. Orbach,3 and Gilberto F. Rodriguez4

1Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, USA
2Department of Physics, Indiana University of Pennsylvania, Indiana, Pennsylvania 15705, USA

3Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, USA
4Department of Physics, University of California, Riverside, California 92521, USA

(Received 25 July 2014; revised manuscript received 9 December 2014; published 28 January 2015)

The mesoscale allows a new probe of spin glass dynamics. Because the spin glass lower critical dimension
dl > 2, the growth of the correlation length ξ (t,T ) can change the nature of the spin glass state at a crossover time
tco when ξ (tco,T ) = �, a minimum characteristic sample length (e.g., film thickness for thin films and crystallite
size for bulk samples). For thin films, and times t < tco such that ξ (t,T ) < �, conventional three-dimensional
dynamics is observed. When t > tco, a crossover to d = 2 behavior takes place. The parallel correlation length,
associated with a Tg = 0 transition, increases in time from the saturated value of the perpendicular correlation
length � to an equilibrium value of the parallel correlation length proportional to T −ν . This results in a pancakelike
correlated state, with a thickness � and a temperature-dependent in-plane radius that increases with decreasing
temperature. Activated dynamics is associated with these states. Measurements on Cu:Mn thin films are analyzed
quantitatively within this framework. We extract a temperature-dependent activation energy from a fit to the
frequency dependence of the dynamic susceptibility. The extrapolated temperature at which the activation energy
would become large is close to the extrapolated glass transition temperature from ac susceptibility measurements.
All known relevant experimental data are consistent with this approach. For polycrystalline materials, there is a
distribution of length scales P(�). For sufficiently broad distributions, a logarithmic time dependence is derived
for the time decay of the thermoremanent magnetization MTRM(t,T ) using an approach originally derived by
Ma. Properties dependent upon an effective waiting time t eff

w are derived that are consistent with experiment, and
further measurements are suggested.
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I. INTRODUCTION

The time evolution of nonlinear dynamical systems depends
strongly on initial conditions. For spin glasses, Zotev et al.
[1] showed that the aging properties of a spin glass depend
sensitively on the cooling protocol associated with arrival at the
final measurement temperature. This behavior was explored
at some length in the work of Rodriguez et al. [2]. They
demonstrated the relationship between the cooling protocol
and an effective waiting time teff

w .
Another initial condition to which attention has been drawn

[3,4] is the relation of the magnitude of the spin glass
correlation length ξ (t,T ) to a representative sample dimension
�. In a physical system prepared at times sufficiently short
so that ξ (t,T ) < �, the system behaves according to (spatial)
dimension d = 3 dynamics. However, for preparation times
greater than a crossover time tco, defined through ξ (tco,T ) = �,
the effective dimensionality is reduced. This reduction is of
great significance for spin glasses in that the lower critical
dimension dl > 2 [5,6].

The advent of the mesoscale [7] allows these properties to be
probed in real systems, allowing in principle the determination
of the parallel (in-plane) correlation length exponent ν. This
paper will be concerned with thin films, of the order of 20–30 Å
thickness, and polycrystalline samples where the crystallite
size is in the mesoscale range.

The experimental results for thin films form a remarkable
series of papers, beginning with the Michigan State University

*samaresh@physics.utexas.edu

group [8,9] and culminating with their collaborators at
Uppsala University [10,11]. Although these papers are now
nearly 25 years old, they nevertheless hold promise for
new studies that will further elucidate spin glass dynamics
in reduced dimensionality. The results for polycrystalline
materials are more recent, and illustrate the origin of the “end
of aging” dynamically.

Our analysis is based on theoretical calculations [12–14] for
the growth of the spin glass correlation length with time ξ (t,T )
and its experimental observation [15] for d = 3. In d = 2,
the parallel spin glass correlation length grows rather slowly
with time as calculated by Rieger et al. [16], then saturates at
an equilibrium value proportional to T −ν with the exponent
ν = 3.6 ± 0.02 for Ising spin glasses [17], and ν = 0.9 ± 0.2
for Heisenberg spin glasses [18].

For short measurement times, the spin glass correlation
length ξ (t,T ) is less than the film thickness, and the dynamics
can be regarded as appropriate to d = 3. Under these condi-
tions, it is found [12–14] that ξ (t,T ) grows as

ξ (t,T )

a0
= c1

(
t

τ0

)c2(T/Tg )

, (1)

where a0 is the average distance between magnetic spins, c1

and c2 are material-dependent constants, Tg is the spin glass
transition temperature, and τ0 is the average exchange time
τ0 ≈ �/(kBTg). The exponent c2 is found to be very small, of
the order of 0.12 < c2 < 0.17, depending upon the system [3].
As a consequence, ξ (t,T ) increases very slowly at long times,
but it can reach thin film thicknesses within experimental time
scales provided the temperature T is not too far below the
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glass temperature Tg . Thus, as we shall show, the growth of
ξ (t,T ) to a film thickness � = 15.5 nm (the length scale of
Guchhait et al. [4]) for Cu:Mn (13.5 at.%) takes 5 × 105 s at
T = 0.83Tg , and the age of the universe for T = 0.5Tg , while
it takes only 5 ms for � = 30 Å (the length scale of Sandlund
et al. [10]) at T = 0.56Tg .

At a given temperature, the d = 3 correlation length ξ (t,T )
grows to the film thickness � at a time we designate as the
crossover time tco, changing the dimension from d = 3 to
d = 2. At that point in time, the d = 2 parallel correlation
length ξ ‖(tco,T ) equals the perpendicular correlation length
ξ⊥(tco,T ) = � [19]. If the temperature is subsequently low-
ered, ξ⊥(t,T ) is fixed at � while the parallel (d = 2) correlation
length grows slowly [16] until it reaches its equilibrium value
ξ

‖
eq(T ) ∝ T −ν .

The number of correlated spins encompassed by the
perpendicular and parallel correlation lengths ξ⊥(t,T ) and
ξ ‖(t,T ), respectively, generates a distribution of free-energy
barrier heights as a function of the Hamming distance between
states, up to a maximum �max(T ) [3]. As shown in [20], the
ultrametric relationship between states [21] separated by the
barriers results in a temperature dependence for the barrier
heights that causes a rapid growth (or diminution) as the tem-
perature is lowered (or raised). Hence, in experiments where
the temperature is changed during the experimental protocol,
the initial temperature controls the subsequent dynamics. We
term this initial temperature the “quench temperature” Tq .

Because the states are ultrametrically related, with state
density increasing exponentially with increasing Hamming
distance, the maximum barrier height reached after time t at
temperature T , �max(t,T ), effectively controls the dynamics
[4,20]. We relate �max(T ) to ξ (T ) in analogy to d = 3 [15]
through

�max(T )

kB Tg

= 1

c2

[
ln

(
ξ (t,T )

a0

)
− ln c1

]
. (2)

In order to compare seamlessly with expressions appro-
priate to three dimensions, we define an effective correlation
length ξ eff(t,T ) for thin films by

ξ eff(t,T ) = {ξ⊥(t,T )[ξ ‖(t,T )]2}1/3. (3)

The d = 2 correlation length ξ ‖(t,T ) is presumed to grow on
the time scale of experiment to its equilibrium value ξ

‖
eq(T ), so

that for t � tco, ξ eff(t � tco,T ) ≡ ξ eff(T ) is only a function of
temperature T , remembering, of course, that ξ

‖
eq(T ) remains

temperature dependent, proportional to T −ν .
Under controlled experimental conditions, the temperature

is quenched to an initial value Tq . At that initial temperature,
ξ (t,Tq) grows with time until t = tco when ξ (tco,Tq) = �, the
sample thickness. After tco, the system is frozen in a d = 2 state,
with the largest barrier set entirely by the sample’s physical
dimensions

�max(T = Tq)

kBTg

= 1

c2

[
ln

(
�

a0

)
− ln c1

]
, (4)

with both perpendicular and parallel correlation lengths
ξ⊥(t � tco,Tq) = ξ ‖(t � tco,Tq) = �. The only role of the
quench temperature Tq is the rate at which ξ (t,Tq) grows to �

from Eq. (1). The fact that Eq. (4) holds for different Tq arises

from the self-similarity of states at different temperatures,
found experimentally over accessible temperature ranges in
Refs. [4] and [20].

When the temperature is lowered from Tq , ξ ‖(t,T ) grows
to ξ

‖
eq(T ), proportional to T −ν . This leads to

ξ eff(tco,T ) = {�[ξ ‖
eq(T )]2}1/3, (5)

and, concomitantly, through Eq. (2),

�max(T )

kBTg

= 1

c2

[
ln

(
ξ eff(tco,T )

a0

)
− ln c1

]
. (6)

The combination of a maximum barrier height and exponential
increase of the state occupancy with Hamming distance (and
hence barrier height [22]) means that the dynamics after tco

will be Arrhenius type, with an exponent �max(T ) that is itself
temperature dependent.

The temperature dependence of �max(T ) has a component
in addition to the temperature dependence of ξ

‖
eq. This arises

from the temperature dependence of the Hamming distance
arising from the ultrametric tree for the free-energy states,
associated with the temperature dependence of the Edward-
Anderson overlap qEA(T ) [15]. This has been measured
explicitly through the temperature cycling experiments of
Joh et al. [15]. In Sec. III of this paper, we shall assume
that the increase in Hamming distance is associated with the
correlation length ξ eff(tco,T ) through Eq. (5). An interpretation
of the experiments of Kenning et al. [8,9] and Sandlund et al.
[10] and Granberg et al. [11] on thin Cu:Mn films will be based
on this analysis.

In the latter two papers, the dynamic susceptibility χ (τ )
was measured at different observations times τ (τ = 1/ω) for
thin-film sandwiches of Cu:Mn 13.5 at.%, of thickness 30 and
20 Å, respectively, over a range of temperatures from the bulk
value of the spin glass temperature Tg to low temperatures.
The authors extrapolated the effective spin glass transition
temperature T eff

g → 0 as the film thicknesses were reduced.
What is different in our analysis is the interpretation that what
was observed was the response of correlated spins within an
effective volume [ξ eff(tco,T )]3 through the arguments leading
up to Eqs. (5) and (6).

This picture was invoked in a previous publication [4] to
explain the time dependence of zero-field-cooled (ZFC) mag-
netization of (thicker) film of a-Ge:Mn [23], but at the quench
temperature Tq . This paper extends their treatment to (thinner)
films of Cu:Mn [8–11], and to temperatures below and
above Tq .

For polycrystalline spin glasses with random crystallite
length scales, we shall argue that the Ruderman-Kittel-
Kasuya-Yoshida (RKKY) exchange coupling is cut off by
finite crystallite length scales. This occurs even though the
electrical conductivity generally is somewhat insensitive to
polycrystallinity. The reason lies in the nature of the RKKY
interaction itself. Its long-range and oscillatory nature is
associated with the sharpness of the Fermi surface. How-
ever, as Kasuya calculates [24], electron scattering will
change the long-range cos(2kF rij )/[kF rij ]3 dependence to
r0/[(r2

0 − r2
ij )2 + 4r2

0 r2
ij ], where kF is the Fermi wave vector,

rij is the distance between spins i and j , and r0 is a
characteristic scattering length that we take to be of the order
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of the crystallite size. The lack of an oscillatory character
removes frustration, a requirement for spin glass behavior (in
addition to randomness), and thus effectively decouples the
individual spin glass grains.

In analogy with the previous discussion, this will limit the
growth of ξ (t,T ) to a size characteristic of a particular spin
glass crystallite. The distribution of crystallite sizes leads to a
distribution of maximum barrier heights �max according to (4).
The overall dynamics for a distribution of activation energies
can be calculated using an expression originally introduced
by Ma [25], and more generally by Amir et al. [26]. One
finds a long-time logarithmic decay for the thermoremanent
magnetization MTRM(t,T ), first observed for spin glasses by
Kenning et al. [27], but known for many other glassy systems
(e.g. [28,29]). In addition, this model can be used to explain
the very large times for overlap of the MTRM(t,T ) decay curves
at increasing effective waiting times teff

w , and the dependence
of the crossover time tco on teff

w , as observed in [27].
The next section will be a brief review of the dynamical

spin glass properties to be explored in the paper in order to
give the reader not familiar with spin glass notation sufficient
background to access subsequent sections. Section III will treat
the dynamics of uniform spin glass thin films, showing that
the crossover to d = 2 behavior leads to activated dynamics
with a temperature-dependent maximum barrier height as
discussed above. Section IV addresses polycrystalline samples
for random crystallite length scales, spanning a sufficiently
broad range for the analysis of Ma [25] and Amir et al. [26]
to be relevant. A logarithmic time decay for MTRM(t,T ) is
obtained, in agreement with the experiments of Ref. [27].
Section V analyzes the overlap of the very long-time behavior
of MTRM(t,T ) for different teff

w , and Sec. VI the dependence of
tco on teff

w . Section VII summarizes our results followed by our
many acknowledgments.

II. BRIEF REVIEW OF DYNAMICAL SPIN GLASS
PROPERTIES

The memory effect, typical of glasses in general, and of
spin glasses in particular, arises from the cooling of the sample
temperature from above the freezing temperature, referred to as
the spin glass temperature Tg , to the measurement temperature
Tq (which is here the same as the quench temperature defined
before). It is assumed that the time to reach Tq is short (but see
[2,30] for discussions of the effect of the cooling protocol).
The time spent at Tq before the magnetic field H is changed is
termed the waiting time tw. The magnetic field change, either
from H = 0 to the applied field H , leading to zero-field-cooled
(ZFC) dynamics or from the applied field H to H = 0, leading
to thermoremanent magnetization (TRM) dynamics, causes
a change in the magnetic moment, the magnitude and time
dependence of which depends upon tw. The system exhibits,
almost always, behavior characterized by an effective waiting
time teff

w , larger than tw, depending upon the cooling protocol
[2,30]. The effective waiting time teff

w is typically extracted
from the position of the peak in the relaxation function

S(t) = − 1

H

dM(t,T )

d ln t
, (7)

where M(t,T ) is either the ZFC or TRM magnetization [31].

A physical interpretation of this phenomenon was intro-
duced in Ref. [20] in terms of barrier hopping between
degenerate free-energy phase-space states. The temperature
dependence of a specific barrier was measured, and shown to
increase rapidly as the temperature is lowered within a narrow
temperature range of �T ≈ 0.08 K for Ag:Mn (2.6 at.%). For
temperatures above Tq within this narrow temperature range
Tq + �T > T > Tq , small increases in temperature reduce
barrier heights significantly, allowing diffusion to proceed
more rapidly between states representative of those present
at the measuring temperature Tq . Hence, this effective aging
time teff

w , as derived from the peak position of S(t), is larger
than the actual waiting time tw, the longer the cooling protocol
finds itself within the narrow temperature range.

The works of Rodriguez et al. [2], and Parker et al.
[30], examined the dependence of teff

w on the cooling path
taken to reach Tq for Cu:Mn (6 at.%) (“Heisenberg type”);
and CdCr1.7In0.3S4, Au:Fe (8 at.%), and Fe0.5Mn0.5TiO3 (all
“Ising type”), respectively. While their interpretations are
different, they provided clear evidence that the cooling path
to reach Tq alters the magnitude of teff

w , even for tw = 0.
For this reason, the experiments of Kenning et al. [27] were
conducted using the fast cooling protocols of Ref. [2], where
the temperature after the quench is not allowed to rise above
Tq . This keeps the occupied phase-space states within the same
set of barriers appropriate to the effective aging time teff

w at Tq ,
or, equivalently, within the same spatial region spanned by
ξ (teff

w ,Tq), minimizing teff
w for a given tw. Using this protocol,

one can safely work at longer times t � teff
w to explore the

consequences of ξ (t,Tq) growing to sample dimensions. The
end of aging is then associated with ξ (t,Tq) ≈ � at a fixed
temperature Tq less than Tg at macroscopic length scales.

However, for mesoscopic length scales the form of Eq. (1)
changes the growth dynamics. Thus, for � ∼ 30 Å, as in the
work of Sandlund et al. [10], ξ (t,Tq) = � at 5 ms for Tq =
37.5 K (Tg = 66.8 K). This results in dynamics accessible
within laboratory time scales, as will be discussed in the
following section.

It is also important to understand the remarkable depen-
dence of the growth rate of ξ (t,T ) on temperature from Eq. (1).
Using the values for c1 and c2 from the literature [4,20],
one finds that ξ (t,T ) grows very slowly for T significantly
less than Tg , while for temperatures in the vicinity of Tg the
growth is relatively rapid. Thus, as long as the temperature is
significantly below Tg , ξ (t,T ) will never reach � on laboratory
time scales, and spin glass dynamics is appropriate to d = 3.
However, in the vicinity of Tg , the reverse is true. For example,
Ref. [4] finds ξ (t,T ) = � on laboratory time scales for 15.5 nm
films of amorphous Ge:Mn in the narrow temperature range
0.83 < T/Tg < 0.92 (Tg = 24 K). For T < 20 K (T/Tg =
0.83), the time required for ξ (t,T ) = � exceeds 4 × 105 s
(reaching 3 × 106 s at 19 K, with T/Tg = 0.79), while for
T > 22 K (T/Tg = 0.92), the time for ξ (t,T ) to reach � is of
the order of 104 s, a more accessible experimental time range.
This limits dynamical measurement in practice to a rather
narrow temperature range.

In summary, in order to prepare the spin glass sample for
the purposes of extraction of dynamics in the time range
where ξ (t,Tq) ≈ �, it is necessary to work with as short a
teff
w as possible, requiring a rapid cooling protocol wherein
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the approach of temperature to the measuring temperature Tq

never rises above Tq after quench, and either select a narrow
temperature range below Tg for which ξ (t,Tq) can approach �

for macroscopic samples, or work with materials of mesoscale
dimensions for which ξ (t,Tq) can approach � over a wide
temperature range.

III. SPIN GLASS DYNAMICS FOR UNIFORM THIN FILMS

As discussed in Ref. [4], when the spin glass correlation
length ξ (t,T ) grows from nucleation at t = 0 to the thickness
� of a uniform thin film at t = tco, the system crosses over from
dimension d = 3 to d = 2 dynamical behavior. The latter is
associated with a bulk Tg = 0 by virtue of the lower critical
dimension for spin glasses dl > 2 [5,6].

The earliest work on finite-size effects on the spin glass
transition was performed on thin films of Cu:Mn (7 at.%)
at a single effective time scale (inversely proportional to the
temperature scan rate) in Refs. [8,9]. In that work, the spin
glass thickness was changed in order to change the spatial
dimension from d = 3 to d = 2 in order to probe the spin
glass lower critical dimension dl . The spin glass transition
temperature Tg was measured over a range of thicknesses,
ranging from 2 to 1000 nm. Extrapolations were introduced in
order to demonstrate that Tg → 0 as one approached d = 2.
In subsequent work, a broad spectrum of observation times τ

was extracted for 30 Å thin films of Cu:Mn (13.5 at.%) from
the dynamic susceptibility χ (τ ) measured as a function of
temperature at frequencies ω = 1/τ for 10−5 < τ < 104 s in
Ref. [10], while thin films of thickness 20 Å were probed over
time scales of 10−4 < τ < 103 sec in Ref. [11] in a similar
manner. A generalized Arrhenius law with a zero-temperature
critical point was extracted for the very thin films. This was
interpreted in terms of “ . . . a crossover from three- to two-
dimensional spin glass dynamics when one spatial dimension
is gradually diminished to a finite size” [11].

However, as noted in Ref. [4], for times t > tco (when the
transition from d = 3 to d = 2 dynamics has taken place)
there will still remain correlated spins in the spin glass state,
different from the interpretation of [8,9] and [10,11]. There
will exist a maximum barrier height between metastable
states for these states, the largest of which is given by
Eq. (4) while at the quench temperature Tq . Because the
degeneracy of the ultrametric space increases exponentially
with Hamming distance, and because the barrier heights � are
linearly proportional to the Hamming distance [22], dynamical
properties will be determined through the largest barrier height
�max given by Eq. (4). This description remains until an
external parameter is changed (e.g., temperature or magnetic
field).

The data of Sandlund et al. [10] and Granberg et al. [11] for
χ (τ ) versus temperature at different observation times τ allow
a determination of the temperature dependence of �max(T ).
In d = 3, the temperature dependence of a specific barrier
can be determined [20], with �max(T ) increasing rapidly as
the temperature is lowered from the quench temperature, as
discussed in the Introduction. A fit to the measured data,
when extrapolated to lower temperatures, produced very large
values of �max(T ) that were well outside the experimentally
accessible time window. This was speculated to lead to the

pure states of Parisi [32]. For d = 2, we shall show from the
data of Ref. [10] that the correlated states also exhibit rapid
barrier height growth as the temperature is lowered from the
quench temperature Tq .

For temperatures accessed below the quench temperature,
the increase of �max(T ) with decreasing temperature arises
from two sources for thin films, as discussed in the Introduc-
tion. The first is associated with the growth of the Hamming
distance as the temperature is lowered. The second is the
growth in real space of the parallel correlation length ξ ‖(t,T ).
This length grows slowly in time [16] from an initial value of
ξ

‖
eq = � at Tq , to an equilibrium value [19]

ξ ‖
eq(T ) = �

(
T

Tq

)−ν

(8)

for T < Tq . In the absence of explicit cooling times from
Refs. [10,11], it is impossible to know if ξ ‖(t,T ) had reached
its equilibrium value ξ

‖
eq(T ) within the time scale of the

experiments. For purposes of analysis, we shall assume that
sufficient time had elapsed in the experiments of Refs. [10,11]
for ξ ‖(t,T ) to reach ξ

‖
eq(T ) as given by Eq. (8). Experiments

sensitive to the growth of ξ ‖(t,T ) with time t is an area ripe
for further investigation.

From the above arguments, we hypothesize that for de-
creases in temperature, the increase of �max(T ) arises from an
increase in �max(T ) from Eqs. (5) and (6) plus an increase in
the Hamming distance [20]. For increases in temperature, our
hypothesis is different. The perpendicular correction length is
pinned at the film thickness �, effectively pinning the parallel
correlation length also at � [19]. The only change of �max(T )
with an increase in temperature is through the decrease in
the Hamming distance, starting from the value �max(T = Tq)
from Eq. (4). In principle, the difference in the temperature
dependencies of �max(T ) for temperatures below and above
the quench temperature allows for the extraction of ξ

‖
eq(T ),

and thus a direct measurement of the d = 2 critical exponent
ν from Eq. (8).

We have employed the above analysis to extract �max(T )
from the experiments of Sandlund et al. [10] and Granberg
et al. [11]. Their experiments measured the temperature
dependence of the dynamic susceptibility χ (τ ) for different
observation times τ for thin Cu:Mn (13.5 at.%) films of
thicknesses 30 and 20 Å, respectively. The observation times
τ (T ) ranged over nine and seven orders of magnitude,
respectively, in their respective Figs. 1(a). We extract �max(T )
from their measurements through the Arrhenius relation

1

τ (T )
= 1

τ0
exp

(
−�max(T )

kBT

)
. (9)

To extract parameters appropriate to their measurements,
we use an average Mn spin separation appropriate to a
concentration of 13.5 at.% of a0 = 4.45 Å, and Tg = 66.8 K.
We make use of the values for c1 and c2 for Cu:Mn (6
at.%) extracted by Joh et al. [15]: c1 = 0.653 and c2 =
0.169, on the assumption that these parameters are relatively
insensitive to Mn concentration. Scaling 1/τ0 from the 6 at.%
Mn concentration of Joh et al. [15] to the 13.5 at.% Mn
concentration of Sandlund et al. [10] and Granberg et al. [11]
leads to 1/τ0 = 9.2 × 1012 s−1.
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FIG. 1. (Color online) The temperatures for which χ (τ ) peaks
are extracted from the plots of χ (τ ) versus temperature at different
observation times τ , where τ = ω−1, from Figs. 1(a) in Refs. [10,11],
for Cu:Mn (13.5 at.%) films of 30 and 20 Å, respectively. The points
at the higher peak temperatures (shorter τ ) are less certain because
of the broader experimental curves in this time regime.

The values for �max(T = Tq) from Eq. (4) can be extracted
through a fit to the data of Refs. [10,11] for the two film
thicknesses using the above parameters. We find �max(T =
Tq) = 923 K for � = 30 Å film, and �max(T = Tq) = 727 K
for � = 20 Å film. As stated above, these values are set
by the film thickness, and are independent of temperature.
The quench temperatures for these two films were not given
in Refs. [10,11], so we extract them from a fit of Eq. (4)
to the peak temperature of the dynamic susceptibility χ (τ )
for different observation times τ from the data exhibited in
Figs. 1(a), respectively, of Refs. [10] and [11]. Figure 1 plots
the temperatures of the peak of the measured χ (τ ) for each
listed value of τ , as best we can extract them from the published
figures. We find Tq = 37.5 K for the 30 Å film from the data
of Ref. [10] and Tq = 30 K for the 20 Å film from Ref. [11].

The temperature-dependent �max(T ) can be extracted by
applying Eq. (9) to the temperature of the peak of χ (τ ) for each
characteristic time τ , as exhibited in Fig. 1. We plot �max(T )
in Fig. 2 for the 30 Å film, and in Fig. 3 for the 20 Å film. The
difference of the dependence of �max(T ) on temperature for
the two films is striking. For the 30 Å film, �max(T ) increases
more rapidly than linearly with temperature as the temperature
is lowered (exhibited by the departure from the “best fit to
a linear relationship” line on Fig. 2). For the 20 Å film, the
relationship of �max(T ) to temperature is approximately linear
(exhibited by the “best fit to a linear relationship” line on
Fig. 3).

The data from which we have to work are rather sparse,
but taking finite differences from Figs. 2 and 3, we plot
the values for δ�max(T )/δT against �max(T ) for both film
thicknesses in Fig. 4. The data for the 30 Å film in Fig. 4(a)
are suggestive of a relationship similar to that found for bulk
spin glasses [20] in that −δ�max(T )/δT appears to rise rather

FIG. 2. (Color online) The temperature-dependent activation en-
ergy of the highest barrier �max(T ) from Eq. (9) for the 30 Å Cu:Mn
(13.5 at.%) film, plotted against the peak temperature for χ (τ ), using
the data in Fig. 1. To guide the eye, a best fit to a linear dependence
is plotted on the same graph. It is seen that there is a significant
departure from a linear relationship between the values of �max(T )
and the peak temperatures for χ (τ ) at the larger values of �max(T )
(lower peak temperatures).

rapidly with increasing �max(T ). The solid line is a fit to
Eq. (10) below. The data for δ�max(T )/δT for the 20 Å film in
Fig. 4(b) are so scattered that it is difficult to draw any analytic
conclusion except that −δ�max(T )/δT does appear to increase
with increasing �max(T ).

FIG. 3. (Color online) The temperature-dependent activation en-
ergy of the highest barrier �max(T ) from Eq. (9) for the 20 Å Cu:Mn
(13.5 at.%) film, plotted against the peak temperature for χ (τ ), using
the data in Fig. 1. To guide the eye, a best fit to a linear dependence
is plotted on the same graph. Some curvature could be imputed to the
experimental points, but the data are too uncertain to claim anything
else than a linear relationship between the values of �max(T ) and the
peak temperatures for χ (τ ).
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FIG. 4. (Color online) Plots of δ�max(T )/δT against �max(T )
extracted (a) from the data points for the 30 Å film from Fig. 2
and (b) from the data points for the 20 Å film from Fig. 3. The
solid line for the 30 Å film in Fig. 4(a) is a fit of the 30 Å data to
an exponential dependence of ∂�max(T )/∂T on �max(T ) [Eq. (10)]
following the reasoning of Ref. [20]. The scatter for the 20 Å film in
Fig. 4(b) obviates any fit.

Following the approach of Ref. [20], we fit the extracted
data for ∂�max(T )/∂T for the 30 Å film to an exponential form

− 1

kB

∂�max(T )

∂T
= α exp

[
β �max(T )

kBTg

]
. (10)

In order to reduce the number of unknown constants, we
make use of the value β = 0.2 from Ref. [20]. We find
α = 2.18 from a fit of Eq. (10) to the data in Fig. 4(a).
The data exhibit some scatter around the fitted line, with the
greatest scatter at the smaller values of �max(T ) that occur
at the higher temperatures. The experimental curves for the
dynamic susceptibility χ (τ ) from Fig. 1(a) in [10] are broadest
at the higher temperatures, so an accurate extraction of the
temperature of the peak is more difficult in this region of
temperature [and concomitantly for �max(T ) at the smaller
values]. The value of α (2.18) is approximately four times
larger than the value of 0.5 from [20]. Noting that α in Eq. (10)
is a scale factor representing the size of the barrier heights
�(T ), and that the Mn concentration to which we are fitting
for Cu:Mn alloys is 13.5 at.% in Ref. [10], while the Mn
concentration of Ref. [20] is 2.6 at.%, one would expect a
ratio of approximately five from the concentration difference
alone, as compared to four for the increase in α. The closeness
of this scaling adds weight to our interpretation.

Integration of Eq. (10) leads to barrier heights increasing
ever more rapidly as the temperature is lowered. The finite
thickness of a thin film would mitigate against an infinite
barrier height, but the fit in Fig. 4(a) to Eq. (10) certainly
suggests much higher barriers for temperatures below those at

FIG. 5. (Color online) Integration of the exponential form for the
dependence of ∂�max(T )/∂T on �max(T ) for 30 Å film, fitted to the
experimental data (solid line portion), as a function of (T − T ∗)/Tg ,
over the full range of �max(T )/(kBTg) and (T − T ∗)/Tg using
Eq. (11). The × denotes the value of �max at quench from Eq. (4).

the lowest experimentally accessible temperature. Integration
of Eq. (10) leads to

�max(T )

kBTg

= − 1

β
ln

[
αβ (T − T ∗)

Tg

]
for T > T ∗, (11)

where in principle �max(T ) would diverge at T = T ∗.
The fitted values α = 2.18 and β = 0.2 for the 30 Å film

are used to plot the magnitude of �max(T − T ∗) versus the
temperature difference dT = T − T ∗ from Eq. (11) in Fig. 5.
The dashed curve is Eq. (11), with the solid portion the
extracted values of �max(T ). The cross is at the position
of the quench temperature Tq [equivalently, �max(T = Tq)
from Eq. (4)]. The extrapolated divergence of �max(T ) is
predicted to take place at a (T − T ∗)/Tg ≈ 0.06 below the
temperature of the lowest peak in [10], 31.5 K, leading
to an extrapolated divergence of �max(T ) at T ≈ 27.8 K.
The lowest experimental peak temperature is associated with
τ = 104 s. Going to any lower temperature, according to
Eq. (11) plotted in Fig. 5, would lead to values of τ well
beyond any experimental measurement range for χ (τ ).

As added evidence, Sandlund et al. [10] note that “there is a
pronounced cooling rate dependence of the FC susceptibilities,
with the knee shifting towards lower temperatures with
decreasing cooling rate.” Associating the decrease in the
cooling rate with an increase in τ is consistent with the growth
of �max(T ) as the temperature is lowered. The extrapolated
value of �max(T ) would represent an infinite time scale for τ ,
that would lead to a projected knee in the field-cooled (FC)
magnetic susceptibility MFC/H at T = T ∗ ≈ 27.8 K.

The results for the 20 Å film are quite different. Figure 3,
the plot of the �max(T ) versus temperature, is approximately
linear, displaying no noticeable increase beyond linear at the
lower temperatures, and the scatter in Fig. 4(b) is so great
that no analytic fit is possible. We suspect the difference of
behavior from the 30 Å film is the relatively small number
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of correlated spins even for times t > tco when ξ (tco,Tq) = �.
With the average distance between Mn spins equal to 4.45 Å,
a spherical correlation volume with radius �/2 would contain
only of the order of 50 spins in the 20 Å film, so that one might
expect large spatial fluctuations for dynamical properties. This
could be the origin of the scatter in Fig. 4(b). The 30 Å
film contains of the order of 160 spins within a correlation
volume at t = tco [ξ (t = tco,Tq) = �] and can be thought of
as a precursor to bulk. It would be of interest to probe the
dynamical properties of films with thicknesses in the vicinity
of 20 to 30 Å to probe the approach to bulk behavior as a
function of the number of correlated spins.

It should be noted that the interpretations of Refs. [10,11]
differ from our own, in that they associate their observed time
scales with a generalized Arrhenius law using droplet scaling
theory [33] for two-dimensional spin glass systems. Their
analysis, on the assumption of a zero temperature transition
[Eq. (3) of Ref. [10]] is based on

ln(τ/τ0) ∝ T
−(1+ψν)
f , (12)

with Tf their “freezing temperature” associated with the
maximum in the time-dependent susceptibility, and ψν =
1.6 ± 0.2. Our own analysis would yield a form more like
that for critical dynamics [20]. Inserting (11) into (9), we find

τ

τ0
= αβ

(
T − T ∗

Tg

)−1/[β(T/Tg )]

. (13)

This expression is of the usual critical exponent form [34], with
zν = 1/[β(T/Tg)]. Using the value for β = 0.20, and taking
T equal to the quench temperature 37.5 K, we find zν ≈ 9.
Further, from Fig. 5, we find a value for T ∗ = 27.8 K. The
former is in rather remarkable agreement with experiments on
three-dimensional spin glasses [35,36], and the latter with the
value extracted using a critical slowing down analysis in [10]
of Tg = 26 K.

Our analysis, based on spin glass correlations after ξ (t,T )
has reached the film thickness �, appears consistent with all
known relevant thin film and bulk experimental data.

IV. ORIGIN OF THE LOGARITHMIC TIME DEPENDENCE
FOR TRM DECAY

In a polycrystalline sample, there is a distribution of
crystallite sizes. As argued in the Introduction, this will
introduce scattering into the integral responsible for the RKKY
interaction, the oscillatory character of which is responsible for
frustration that leads to spin glass behavior in dilute magnetic
systems. The scatter changes the long-range oscillations to a
uniform coupling falling off faster than the RKKY interaction
[24]. This removes frustration and effectively decouples the
spin glass states in the grains from one another, even though
the electrical conductivity remains high.

The distribution of crystallite sizes, and hence of length
scales �, introduces dynamics that are more complex than
for the uniform thin films treated in Sec. III. We denote
the distribution of crystallite sizes through a probability
distribution P(�), where � is the length scale associated with
a given crystallite. There exists, therefore, a maximum barrier
height �max(T = Tq) associated with each crystallite of length

scale � from Eq. (4), that we designate as �max(�). All of
the experiments treated in this section will be at constant
measuring temperature Tq , so that Eq. (4) uniquely determines
�max(�).

The distribution of length scales �, governed by a proba-
bility density P(�), leads from (4) to a probability density for
�max(�) given by

P(�max) = [∂�max(�)/∂�]−1 P(�). (14)

The purpose of this section is to derive the long-time
dynamical properties for a polycrystalline spin glass. An
example is the work of Kenning et al. [27] who displayed a
logarithmic time dependence for the decay of the thermorema-
nent magnetization MTRM(t,Tq) at long decay times. We shall
derive this property on the assumption that the measurement
time scale is sufficiently long that each crystallite has crossed
over into a low-dimensional state. That is, we assume that
for each crystallite there is a crossover time t�co, defined by
ξ (t�co,Tq) = �, and that the measurement time t > t�co, for all �.

The time development of MTRM(t,T ) can then be deduced
as follows. Upon removal of the magnetic field, all barriers are
reduced in height by the change in Zeeman energy EZ [37] (see
the next section for more detail). The states occupied between
barriers from 0 < � < EZ are instantaneously emptied into
the lowest-energy Zeeman state (in our case, M = 0 for
TRM decay). The remaining states then decay to the M = 0
state by transitions over the remaining barriers of height
0 < � < �max(�) − EZ . For small changes in magnetic field,
we can neglect EZ with respect to �max(�), so that the effective
decay rate for a particle of size � will be set by the largest
barrier �max(�). For waiting times short compared to the time
for ξ (t,Tq) to reach � (we shall see that this condition is
violated in some cases in Sec. VI), as the measurement time
t increases, the TRM decay will cross over from conventional
TRM decay to exponential for a given particle of length
scale � at measurement times t > t�co. We shall refer to the
magnetization remaining at that time in the particle of length
scale � as M�

TRM(t > t�co,Tq). This leads to a size-dependent
decay rate 1/τ� for M�

TRM(t > t�co,Tq) for a particular crystallite
of length scale �, where by generalizing Eq. (9)

1

τ�

=
(

1

τ0

)
exp

[
−�max(�)

kBTq

]
. (15)

For a particle of length scale �, M�
TRM(t > t�co,Tq) will then

decay according to

M�
TRM

(
t > t�co,Tq

) = M�
TRM

(
t�co,Tq

)
exp(−t/τ�). (16)

A polycrystalline sample consists of particles of length scale
� distributed through a probability density P(�). This requires
that (16) with (15) be averaged over P(�). To make the average
tractable, we shall replace M�

TRM(t�co,Tq) with an average
MTRM(tco,Tq) that will have to be extracted from experiment.
We are then left with integrals of the sort

∫ ∞

0
exp(−t/τ�)P(�) d�. (17)

To make the evaluation more transparent, we use (14) with
(15) to transform from P(�) to P(�). The integrals are then of
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the form, in an obvious notation,∫ ∞

0
exp(−t/τ�)P(�) d�. (18)

This class of integrals was first evaluated in this context by Ma
[25]. For a flat distribution of barrier heights of width much
greater than kBTq , (18) can be transformed to∫ ∞

kBTq ln(t/τ0)
P(�) d�. (19)

We takeP(�) to be flat with widthD between �0 − (D/2) and
�0 + (D/2), where �0 is the mean value of � inP(�), and we
assume D � kBTq , so that P(�) = 1/D. Ma [25] evaluates
this integral by noting that it is the area under P(�) to the right
of (Tq/Tg) ln(t/τ0). The part to the left of (Tq/Tg) ln(t/τ0) has
already decayed. Then, the integral (19) is equal to

1

D

[
�0 + D

2
− kBTq ln

(
t

τ0

)]
. (20)

Using (16) and (20), we now have

MTRM(t,Tq)

= MTRM(tco,Tq)

D

[
�0 + D

2
− kBTq ln

(
t

τ0

)]
, (21)

where t > t�co for all �. Taking the derivative with respect to
ln t generates

∂MTRM(t,Tq)

∂ ln t
= −B T (r)

q MTRM(tco,Tq), (22)

where B is a constant containing the many factors associated
with (22), T (r)

q =Tq/Tg , and MTRM(tco,Tq) is an average
value of MTRM(t,Tq) over the various times t�co [equivalently,
an average of M�

TRM(t�co,Tq) over particle dimensions �].
Experimentally, MTRM(tco,Tq) will be taken to be the value
of the TRM when the decay crosses over to ln t behavior.

The experimental data for S(t) for Cu:Mn (6 at.%), at
Tq = 26 K [T (r)

q = 0.83], were reported in Ref. [27] and their
Fig. 1 is reproduced here as our Fig. 6. The inset in Fig. 6(b)
for the shortest effective waiting time (7 s) clearly displays a
crossover to logarithmic behavior at approximately 1000 s, and
continues for at least two orders of magnitude in time. Using
the parameters from Joh et al. [3], one can calculate the value
of the correlation length ξ (t,Tq) to test the assumptions leading
to Eq. (15). At t = 103 s, ξ (103,26 K) ≈ 60 nm. At t = 105 s,
ξ (105,26 K) ≈ 130 nm. Rodriguez [2] estimated crystallite
sizes ranging from 80 to 300 nm, with an average size of
approximately 100 nm. Thus, in the time regime contained
in the inset of Fig. 6(b), where logarithmic time behavior is
exhibited, the correlation length is comparable to the length
scale of the Cu:Mn crystallites, a condition required for the
use of Eq. (15) for 1/τ�. The broad range of crystallite length
scales probed by ξ (t,Tq) over this time scale is consistent with
the approximations contained in the evaluation of Eq. (19).

It should be noted that logarithmic behavior at long times
is not limited to spin glasses. For example, Amir et al. [26]
find a rather “general mechanism for slow relaxations and
aging, which predicts logarithmic relaxations . . . ,” and, in
an extensive analysis of electron glass dynamics, find many
examples of ln t behavior. In that sense, Eq. (22) may be a

specific manifestation of a more general relationship for glassy
systems.

V. VERY-LONG-TIME BEHAVIOR OF MTRM(t,T )

The previous section discussed the long-time behavior for
polycrystalline spin glasses after crossover to d < 3, i.e., when
the correlation length has reached the length scale of the
crystallites. Figure 6(b) [reproduced from Fig. 1(b) of [27]]
exhibits the subtraction of the teff

w = 7 s TRM decay curve for
the fast cooling protocol from those at longer effective waiting
times 17.5 � teff

w � 44 s, all utilizing the fast cooling protocol,
for polycrystalline Cu:Mn (6 at.%). The striking feature of
these differences is the very long time for the various curves to
cross over to the teff

w = 7 s value. For example, the long-time
portion of the teff

w = 17.5 s decay curve overlaps the long-time
portion of the teff

w = 7 s decay curve at an overlap time tov of
≈6,000 s, whereas the teff

w = 44 s and the teff
w = 110 s curves

FIG. 6. (Color online) Reproduction of Fig. 1 from Ref. [27].
Figure 6(a) shows the decay curves for t eff

w equal to 7, 17.5, 25, 27,
35, 44, and 110 s. In the inset, the relaxation curves S(t) for each
curve are used to determine t eff

w . Figure 6(b) displays the subtraction
of the t eff

w = 7 s TRM decay curve from the other TRM curves. The
MTRM(t) curve for t eff

w = 17.5 s begins to overlap the MTRM(t) curve
for t eff

w = 7 s at a time tov ≈ 6000 s, while the curve for t eff
w = 44 s

overlaps at a tov ∼ 105 s, and by extrapolation the curve for t eff
w =

110 s overlaps at a time tov ∼ 109 s. The inset displays the relaxation
curve S(t) for the t eff

w = 7 s curve. The curve becomes horizontal
at t ∼ 103 s, remaining flat over two orders of magnitude in time,
indicating a crossover to a logarithmic time dependence for the decay
of MTRM(t).
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do not overlap at long times with the teff
w = 7 s decay curve

until tov ∼ 105 s and, by inference, 109 s, respectively.
We suggest that this striking dependence of the long-

time behavior of the TRM decay upon teff
w is the result of

the dependence of the initial magnitude of MTRM(tov,Tq =
0.83 Tg) on the effective waiting time teff

w . The highest barrier
surmounted during a waiting time teff

w is given by Eq. (9) that
we rewrite as

�
(
teff
w ,Tq

) = kBTq

(
ln teff

w − ln τ0
)
. (23)

When the magnetic field is removed, measurements by Chu
et al. [36], along with other observations of a similar nature
by Vincent et al. [37], suggest that a change in magnetic
field reduces the barriers in the initially occupied field-cooled
magnetization manifold MFC by the change in Zeeman energy
EZ . This reduction can be thought of conceptually as diffusion
between states of constant MFC through intermediate states of
lower Zeeman energy [38]. States within the MFC manifold
with barriers less than the Zeeman energy change are emptied
instantaneously into the M = 0 manifold [35,36]. The Zeeman
energy change is given by

EZ = Ns χFC H 2, (24)

where Ns is the number of spins within a correlation
length that participate in barrier hopping {we shall set Ns =
[ξ (teff

w ,Tq)/a0]3}, and χFC is the magnetic susceptibility per
spin obtained from the total value of the field-cooled magnetic
susceptibility MFC/H divided by the total number of spins N .

From Eqs. (23) and (24), the larger teff
w , the larger the

thermoremanent magnetization MTRM(t = 0,Tq) remaining
when the magnetic field is removed. That is, the fractional
change EZ/�(teff

w ,Tq) diminishes as teff
w increases. This is

seen explicitly in Fig. 6 where the initial value of MTRM(t =
0,Tq = 0.83Tg) increases as teff

w increases. Hence, in order
for the long-time decay portions of MTRM(t,Tq) to become
comparable in magnitude for differing values of teff

w , the offset

FIG. 7. (Color online) A logarithmic plot of the time for the
MTRM(t) curves to overlap the MTRM(t) curve for t eff

w = 7 s, as a
function of their respective t eff

w .

in the initial values of MTRM(t =0,Tq) must be overcome
through the time decay of MTRM(t,Tq). But, the very slow
decay of MTRM(t,Tq) for t > tco, proportional to ln(t/τ0) from
(21), means that this difference will take very long times,
exponentially increasing with increasing teff

w . This dependence
is exhibited in Fig. 7 where tov is plotted against teff

w .

VI. EFFECTIVE WAITING TIME DEPENDENCE OF tco

It was pointed out in the Introduction that the crossover
time to logarithmic time decay for MTRM(t,Tq) depends on
the effective waiting time teff

w . This is caused by the growth of
ξ (t,T ) during the waiting time. If, for example, ξ (t,T ) were to
grow during teff

w to overlap some of the smaller crystallites, then
when the magnetic field is removed, the smaller crystallites
portion of P(�) (i.e., those with the smallest length scale �)
would have already have transitioned to d < 3. Then, as time
progresses after removal of the magnetic field, it would appear
that the mean of P(�) for which aging continues (i.e., for
d = 3 dynamics) is shifted to larger �. This would show up as
an increase of tco with increasing teff

w . It would be interesting
to test this dependence experimentally. For example, in the
Cu:Mn 6% sample used in the experiments of Rodriguez et al.
[2], at Tq/Tg = 0.95, a waiting time of tw = 110 s would
yield ξ (tw =110 s, Tq =0.95 Tg) = 86 nm, just overlapping
the smallest of the crystallites in his sample. For tw =
406 s, ξ (tw =406 s, Tq =0.95 Tg) = 106 nm, already larger
than the mean crystallite size of his sample. Thus, the system
would contain effectively larger crystallites for crossover to
logarithmic decay with increasing teff

w , hence a larger tco for
larger teff

w . Experiments remain to be performed over accessible
time scales to check this prediction.

VII. SUMMARY

We have explored the dynamics for spin glasses at the
mesoscale. For uniform thin films, we have exhibited how
the crossover from d = 3 to d = 2 results in spin glass
correlations with the perpendicular correlation length equaling
the film thickness, while the parallel correlation length grows
as the temperature is lowered. The ultrametric nature of these
states generates a temperature dependence of the dynamics,
consistent with the observed temperature dependence of the
dynamic susceptibility χ (τ ) for a thin film of Cu:Mn (13.5
at.%) of thickness 30 Å [10]. We were unable to analyze the
dynamics of the thinner film of thickness 20 Å [11] because
of what we believe to be large spatial fluctuations associated
with the relatively small number of spins within a correlated
volume. For polycrystalline samples, we have derived an
expression for the logarithmic decay of the TRM after the
correlation length has become comparable to crystallite sizes.
This behavior is nearly universal for glassy systems [28,29],
and in this sense, spin glasses follow suit. The time for
ξ (t,T ) to become comparable to crystallite dimensions falls
within the experimentally accessible range for temperatures
in the vicinity of Tg , but increases precipitously at lower
temperatures. Finally, predictions are made with respect to
the onset of the logarithmic decay of the thermoremanent
magnetization (TRM) that should be explored.
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