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4State Key Laboratory of Mechanics and Control of Mechanical Structures,
Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China

5Department of Physics, Tsinghua University, Beijing 100084, China
6Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA

(Received 30 July 2014; revised manuscript received 7 January 2015; published 23 January 2015)

The magnetic proximity effect between the topological insulator (TI) and ferromagnetic insulator (FMI) is
considered to have great potential in spintronics. However, a complete determination of interfacial magnetic
structure has been highly challenging. We theoretically investigate the interlayer exchange coupling of two FMIs
separated by a TI thin film, and show that the particular electronic states of the TI contributing to the proximity
effect can be directly identified through the coupling behavior between two FMIs, together with a tunability of the
coupling constant. Such an FMI/TI/FMI structure not only serves as a platform to clarify the magnetic structure of
the FMI/TI interface, but also provides insights in designing the magnetic storage devices with ultrafast response.
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I. INTRODUCTION

The breaking of time-reversal symmetry (TRS), which
opens up a gap to the helical Dirac surface states in a
three-dimensional strong topological insulator (TI), has been
shown to be of central importance for both fundamental aspects
[1–8] and device applications [2,6,7,9–12] in TI studies. For
instance, the topological magnetoelectric effect [7], which
enables the possibility of an electric-field-controlled spin
transistor [11,13], requires an opening of the surface band
gap as a prerequisite to reach “off” state, otherwise the gapless
surface state would lead to a leakage current and very low
on/off ratio. Another promising example is the realization of
the quantum anomalous Hall effect [14–17], where gapped
surface states are accompanied with backscattering-protected
edge transport channels without external magnetic field.
This opens up the possibility for developing next-generation
low-dissipation spintronic devices. Moreover, domain-wall
Majorana bound states are predicted at the TI/FMI interface
where magnetization switches sign, which could be applied in
error-tolerant topological quantum computation [6,7,18]. All
the examples above require a gap-opening of the surface states
of TI.

In general, there are two approaches to break the TRS
and open up the gap: magnetic doping [14–16,19] and
magnetic proximity effect [9,15,20–25]. Compared to the
doping method, the advantages of the second of these include
better controllability of the electronic states, uniformly dis-
tributed band gap in space, preservation of the TI’s original
crystalline structure, and so on. In this regard, a comprehensive
understanding of the interfacial magnetic structure between TI
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and FMI becomes essential for observing the above-predicted
phenomena.

However, a complete determination of the magnetic struc-
ture between TI and FMI turns out to be nontrivial. On the
one hand, the interaction between the TI and FMI states is
self-consistent in nature, where TI states can lead to complex
spin structure, such as magnetic precession in FMI [26].
On the other hand, it is also hindered by the insufficient
information experiments that can extract for a comprehensive
understanding. For instance, despite the powerful technique
of spin-resolved angle-resolved photoemission spectroscopy
(ARPES) to study the surface electronic and magnetic structure
of doped TI [27] due to the small (∼1 nm) escape depth of
the photoelectrons [28], ARPES renders to be inapplicable
to study interfacial magnetic structure where a FMI layer is
epitaxially grown on the top of TI. The magnetooptical Kerr
effect (MOKE) is another promising method, which could be
used to determine both in-plane and out-of-plane magneti-
zation, and has been successfully applied in TI studies [9].
However, the resulting signal of rotated polarization is indeed
an overall effect of total magnetization projection, without
sensitivity to the individual layer. Due to the short-range
nature of exchange coupling [29–35], only the thin layer of
magnetic moments very close to the interface contributes to the
proximity effect, instead of the total measured magnetization
as in MOKE. Actually, at the interface of the TI/FMI structure,
strong spin-orbit coupling may tilt the interfacial magnetic
moment and result in a different magnetic structure near
the interface [20,36]. Another powerful characterization tool
is polarized neutron reflectometry (PNR), which has shown
great advantages [37] thanks to both compositional and depth
sensitivity, but PNR only measures the in-plane magnetization
component, without resolving the electronic states of TI which
participate in the proximity exchange coupling. Therefore, a
deeper understanding of TI/FMI proximity, which considers
only the near-interface FMI states, with the distinguishability
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of particular TI states involved in the exchange-coupling
process, is clearly needed.

In this study, we calculate the interlayer coupling con-
stant between two thin layers of FMI, separated by a thin
spacer layer of three-dimensional TI, within linear response
theory [38] and the indirect exchange interaction scheme,
which is Ruderman-Kittel-Kasuya-Yosida (RKKY) type in-
teraction [32,35] when the system is conducting, and superex-
change interaction when the system is insulating. We take
EuS/Bi2Se3/EuS as an example of the FMI/TI/FMI trilayer
due to the large magnetic moment of the Eu2+ ion [39]. Since
both the interlayer magnetic coupling and magnetic proximity
effect share the same physical origin of exchange coupling
between FMI and TI, the TI electronic states participating
in the proximity effect are naturally expected to be resolved
through the interlayer coupling process.

We use one atomic layer thickness of the magnetic
moment of FMI to describe the short-range exchange coupling
interaction, and apply the model Hamiltonian of Bi2Se3 [1,40]
as the prototype of TI. Despite the fact that density functional
theory calculation [41,42] shows more complicated behavior,
such as the coexistence of the normal and topological surface
state, the model Hamiltonian approach is still instructive due
to the insights of magnetic coupling it captures, the simplicity
when varying the system geometry with no need to build
multiple supercells, and is especially useful for nonepitaxial
heterostructure where the supercell could not be built. In this
approach, we show that a ferromagnetic-antiferromagnetic
oscillatory coupling also exists when varying the number of the
quintuple layer (QL) of TI, similar to the interlayer exchange
coupling results in Fe/Cr/Fe [32,43]. Most importantly, we
show distinct behaviors of coupling between the massive Dirac
TI state and the pz bands of Bi and Se due to the paramagnetic
nature of Dirac surface state and large diamagnetism of
Bi [44,45] orbitals. The sign difference and the tunability of
coupling constant vs Fermi level can be applied independently
to identify the TI states contributing to the proximity effect
due to the same origin of the short-range magnetic exchange
coupling process. Our approach, when applied to various
FMI/TI/FMI systems, can be used to better understand the
TI/FMI proximity effects, and thus for optimized designing of
TI-based spintronic devices.

II. THEORY

A. Interlayer exchange coupling constant

Traditionally, the interlayer exchange coupling applies to
a trilayer structure where the simple metal or single-atomic
species thin layer is sandwiched by two FMIs [29–32]. On
the other hand, here TI is a binary compound composed of
a quintuple-layered structure. However, even in its original
version of interlayer coupling, the single atomic layer is not
regarded as real “chemically active” atoms, but instead as
a smallest unit of charge density distribution. This allows
us to directly generalize it to composite materials from a
perspective of coarse-graining. In the present situation of
TI, 1 QL, which holds strong chemical binding, could be
regarded as the smallest unit, in that the valence and conduction
states, which we are interested in, extend over the entire

FIG. 1. (Color online) (a) The atomic configuration of
EuS/Bi2Se3/EuS trilayer, which is a viable example for FMI/TI/FMI
structure. The magnetic moment of Eu atoms are shown as red
arrows. The spin structure near the interface may be canted near the
interface. The interlayer coupling (orange dashed line) is achieved
through the electronic states of the TI spacer. (b) The original first
Brillouin zone and the simplified cylindrical integration volume. (c)
The comparison between spin susceptibilities using Eqs. (3) and (4),
with four-band Hamiltonian.

QL. In addition, from the view of the renormalization group,
this coarse-graining procedure simply shifts the real-space
cutoff from 1 atomic layer to 1 QL. The FMI/TI/FMI trilayer
EuS/Bi2Se3/EuS is schematically represented in Fig. 1(a). This
structure is an important prototype that has been extensively
studied [20,39,42,46], while our model is actually generic and
not only restricted to this EuS magnet. For a given localized
magnetic ion (the Eu ion in the green circle) of FMI close
to the interface, the interlayer magnetic coupling constant
I12 is an overall effect of the indirect exchange coupling
of all the Eu ions (blue ellipse) on the other side of the
TI/FMI interface, through the coupling of electronic states
in TI (orange dashed lines). Due to the localized nature of
Eu moments, we could apply the RKKY type of interlayer
coupling strength [32,34,35],

I12 = − A2S2d

2V 2
0 (2π )3

∫
dqzd

2q‖eiqzzχ (q‖,qz)
∑

R‖∈F2

eiq‖·R‖ , (1)

where A is the amplitude of the contact potential A
⇀

Si · ⇀

s , with
⇀

Si and
⇀

s the spins of FMI and TI, respectively, V0 is the atomic

014427-2



MAGNETIC PROXIMITY EFFECT AND INTERLAYER . . . PHYSICAL REVIEW B 91, 014427 (2015)

volume, S is the spin of the FMI, for Eu2+, S = 7/2 at 0 K.
For finite temperature T , in a mean-field framework we can
estimate S as S(T ) = S(0)(1 − (T/Tc )2) for EuS Tc = 16.6 K.
d is the distance between adjacent atomic planes in its original
expression, in our present situation, due to the layered structure
of Bi2Se3, it is appropriate to take d ∼ 0.96 nm, which is the
thickness of 1 QL, since 1 QL is the smallest coarse-grained
unit for electronic properties, even though 3 QL is the unit for
periodic crystalline structure; z is the distance between two
FMI layers, z = (N + 1)d, where N is the number of QL; R

is the in-plane components of the coordinates of the Eu ions
to be summed up; and χ (q‖,qz) is the q-dependent magnetic
susceptibility of the TI spacer. The TI states participating in the
exchange coupling enter into the χ (q‖,qz) term, and are finally
reflected in I12. This is the theoretical basis why we could
study the TI/FMI proximity effect by studying the interlayer
coupling of FMI/TI/FMI.

In Eq. (1), the integration of q should be performed within
the first Brillouin zone of Bi2Se3 [Fig. 1(b), blue polyhedron].
However, if we define q and k periodically in the reciprocal
lattice by using a periodic zone scheme instead of a folded
zone scheme, we could define a prismatic auxiliary zone and
use the reciprocal unit cell with prismatic shape. Since the
in-plane area is hexagonal and close to a circle, we further
define a cylindrical integration zone which shares the same
volume with the original first Brillouin zone [Fig. 1(b), red
cylinder], which effectively reduces the integration dimension.
Finally, the interlayer coupling constant can be simplified
as

I12 = −1

2

(
A

V0

)2
S2d2

2πV0

∫ +π/d

−π/d

dqzχ (q‖ = 0,qz)e
iqzz. (2)

Here we have used the fact that in the period zone scheme,
the in-plane and out-of-plane components are decoupled; for
q‖ �= 0, we have

∑
R‖∈F2

eiq‖·R‖ = 0.

B. q-dependent spin susceptibility

To calculate the interlayer coupling constant I12 in Eq. (2),
we need the magnetic susceptibility. The spin magnetic
susceptibility along direction μ (μ = x,y,z) χμμ,spin for a
generic spinor state can be written using the Kubo formula
as [47]

χμμ,spin(q) = μ2
B

4π3

∑
m,occ

n,empty

∫
d3k

f0(En,k) − f0(Em,k+q)

Em,k+q − En,k + iδ

× |〈m,k + q|Sμ|n,k〉|2, (3)

where En,k denotes the eigenvalue at band number n and
wave vector k, with corresponding eigenstate |n,k〉, Sμ

(Sz = I ⊗ σz, Sx = τz ⊗ σx and Sy = τz ⊗ σy) is the spin
operator along direction μ and μB is the Bohr magneton. The
integration over k is over the cylindrical integration zone in
Fig. 1(b).

When the spinor structure is absent, and within the
plane-wave approximation, Eq. (3) can be greatly simplified

as [38,48]

χspin(q) = μ2
B

4π3

∑
m,occ

n,empty

∫
f0(En,k) − f0(Em,k−q)

Em,k−q − En,k + iδ
d3k, (4)

where f0 is the Fermi-Dirac distribution function.
The comparison between Eqs. (3) and (4) is shown in

Fig. 1(c). The resulting spin susceptibility [calculated using
Eq. (3) and the overlap of eigenstates of Hamiltonian Eq. (7)]
is ∼1/2 compared to the result using the simplified version
Eq. (4). This could be understood as a consequence of the spin
texture of bands, where the electronic transition amplitude for
minority spin components is suppressed due to the lack of
population in ∼1/2 of the k space [49]. Actually, to calculate
the exact magnitude of susceptibility, the density-functional
perturbation theory method that requires the input of realistic
states and the summation over all bands is needed [50].
However, since we are more interested in the role that the
TI state plays in the proximity effect, in addition the effective
Hamiltonian approach we adopt involves only a few bands, in
the following we use Eq. (4) instead of Eq. (3) to calculate
the interlayer coupling constant in Eq. (2), for computational
simplicity but without loss of qualitative illustration.

C. Estimation of orbital magnetic susceptibility

Besides the spin susceptibility that contributes to param-
agnetism due to the diamagnetic nature of bulk Bi2Se3, we
include the diamagnetic orbital term as well. The q-dependent
orbital susceptibility can be regarded as an overlap between
eigenstates and their curvatures [45,48,50]. In the q → 0
limit, the susceptibility from spin paramagnetism and orbital
diamagnetism can be simplified as [38]

χorb(q → 0) = −4

3

(
me

m∗g∗

)2

χspin(q → 0), (5)

where m∗ is the effective mass of electron, D(E) is the density
of state near energy E. Despite that in the one-electron theory
the linear dispersion seems to result in massless electron
m∗ = 0, in fact the many-body effect, such as electron-phonon
coupling, leads to a small but finite m∗ [51]. Actually, for
the case of the Dirac state, g∗ � 2me

m∗ is valid [52], hence we
expect the spin paramagnetism to be dominant for Dirac states.
This is consistent with the recent experimental report about
paramagnetic Dirac susceptibility in TI [53]. On the contrary,
for bulk parabolic-like bands g∗ � 2 [38]. Due to the small
effective mass of Bi2Se3, we expect the orbital diamagnetism
dominates the spin paramagnetism in bulk Bi2Se3, which is
also true based on the experimental value [54]. Neglecting
the Van Vleck paramagnetism, which is only significant at
high temperature [38], the total magnetic susceptibility at low
temperature can be written as

χ (q) � χorb(q) + χspin(q). (6)

D. Four-band model Hamiltonian of TI Bi2Se3

To calculate the magnetic susceptibility in Eq. (6), eigen-
values from a model Hamiltonian are needed. Due to the
hybridization effect between the upper the lower surfaces, the
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Hamiltonian is a function of the layer thickness with different
hybridization gaps [46]. However, for qualitative demonstra-
tion purposes, we take a layer-independent Hamiltonian for
simplicity. Using a four-band k · p theory, and a basis |p+

1z, ↑〉,
|p−

2z, ↑〉, |p+
1z, ↓〉, |p−

2z, ↓〉, the model Hamiltonian of a TI in
Bi2Se3 family can be written as [22,40]

H (k) = ε0(k)I4×4 + M(k)I ⊗ σz + A1kzσz ⊗ τx

+A2kxσx ⊗ τx − A2kyσy ⊗ τx, (7)

where ε0(k) = C + D1k
2
z + D2(k2

x + k2
y), k± = kx ± iky ,

M(k) = M0 − B1k
2
z − B2(k2

x + k2
y). For Bi2Se3 we have C =

−0.0068 eV, D1 = 0.013 eV · nm2, D2 = 0.196 eV · nm2,
M0 = 0.28 eV, B1 = 0.10 eV · nm2, B2 = 0.566 eV · nm2,
A1 = 0.22 eV · nm, and A2 = 0.41 eV · nm. The doubly
degenerate eigenvalues can be written as

E(2−
z,↑/↓,k) = ε0(k) +

√
M2(k) + A2

1k
2
z + A2

2

(
k2
x + k2

y

)
,

E(1+
z,↑/↓,k) = ε0(k) −

√
M2(k) + A2

1k
2
z + A2

2

(
k2
x + k2

y

)
, (8)

where 1 = Bi and 2 = Se in this notation.

E. Effective Hamiltonian for massive dirac surface states

Contrary to the four-band model that describes the bulk
highest valence and lowest conduction states of Bi2Se3, the
surface states are ideally only localized on the TI surface.
However, due to the band bending effect that allows surface-
state confinement near the interface, multiple surface states
penetrate into the bulk [55], including the energetically
low-lying Dirac surface states, M-shaped valence states, and
Rashba-split conduction states. The strong band bending effect
in Bi2Se3 can result in a deep penetration of states ∼12 QL.
Thus, for thin TI spacer, it is still important to consider the
possibility that the surface states participate in the interlayer
magnetic coupling.

For the purpose of qualitative demonstration, we neglect the
M-shaped valence states and Rashba-split conduction states,
but only keep the Dirac states. The effective Hamiltonian for
the Dirac states with gap opening can be written as [1]

H2D(k) = Dk2I +
(
HD + M · σ tI

tI −HD + M · σ

)
, (9)

where HD = �vF (σxky − σykx). For 4 QL Bi2Se3 and magnet
MnSe, M = 28.2 meV, t = 17.6 meV, D = 0.098 eV · nm2,
vF = 2.66 × 105 m/s. For a different number of layers, the
hybridization t will change accordingly, accompanied with a
slight difference of Fermi velocity vF . For a semiquantitative
demonstration purpose, we keep these parameters fixed when
varying the thickness of TI and the type of magnet. The
eigenvalues can be written as

E(k) = Dk2

±
√

�2v2
F k2+M2+t2+2

√
M2t2+�2v2

F (Mxky−Mykx)2.

(10)

In sum, the interlayer coupling constant I12 can be thus be
calculated by substituting Eq. (6) back to Eq. (2). The eigen-
values in Eqs. (10) and (8) can be used to obtain the magnetic

susceptibility based on Eq. (4). From the modeled Hamiltonian
approach since we are more interested in a qualitative behavior
rather than a quantitative magnitude, we regard Eq. (5) valid
at finite q values to incorporate the orbital contribution.

III. RESULTS AND DISCUSSIONS

The interlayer coupling constant I12 as a function of QL
number and temperature are shown in Fig. 2, using the
bulk four-band Hamiltonian [Eq. (7), Fig. 2(a)] and Dirac
Hamiltonian [Eq. (9), Fig. 2(b)]. It is remarkable to see that
at the same QL number, a sign difference of I12 exists when
the interlayer coupling are contributed by the valence and
conduction electrons or massive Dirac electrons. This is not
only physically reasonable due to the diamagnetic nature of

FIG. 2. (Color online) The interlayer exchange coupling constant
I12 as a function of temperature and number of QL, with (a) four-band
Hamiltonian and (b) massive Dirac Hamiltonian. The oscillating fer-
romagnetic (I12 < 0) antiferromagnetic (I12 > 0) coupling behavior
is shown in both cases, but with a sign change.
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FIG. 3. (Color online) (a, b) Interlayer coupling constant I12 at T = 1 K, as a function of temperature and Fermi level, for the four-band
and Dirac Hamiltonian, respectively. Within the bulk-band gap, I12 does not change for the four-band Hamiltonian, while I12 is sensitive to EF

for the Dirac Hamiltonian. (c) The comparison of interlayer coupling constant I12 between four-band Hamiltonian and Dirac Hamiltonian, at
5 QL and 1 K. We see that for the four-band Hamiltonian I12 remains constant while for Dirac Hamiltonian I12 keeps changing. This fact can
be used to identify the TI states participating in the proximity effect. We can also see that above the bulk band gap, the four-band I12 starts to
change dramatically.

bulk Bi2Se3 and paramagnetic nature of the surface states, but
also agrees with the recent experimental report [45] which is
able to extract the paramagnetic Dirac susceptibility in the
diamagnetic background in TI.

The significance of the sign difference can hardly be over-
estimated. In device application using the TI/FMI proximity
effect, it requires the exchange coupling of FMI with the Dirac
surface states to open up the surface band gap. However, the
FMI may also couple with other TI states simultaneously.
Thus, the sign of I12 would tell directly which TI states would
dominate the proximity exchange coupling, and provide guide-
lines to suppress the proximity effect with other TI states while
keeping the Dirac surface states dominant for future device
design. Moreover, with the aid of the external magnetic field,
it is theoretically possible to resolve the relative weights of the
coupling strength from the TI Dirac state and other states since
they have different responses to the external magnetic field.

Besides the sign change, the dependence of the Fermi level
provides further evidence to identify the TI states involved in
the proximity effect [Figs. 3(a) and 3(b)]. We see that for the
bulk pz bands [Fig. 3(a)], I12 is insensitive with Fermi level EF

within ∼0.3 eV bulk band gap [Fig. 3(c), blue square curve],
whereas on the contrary, a sensitive change of I12 with EF

[Figs. 3(b) and 3(c), green circle curve] is shown when coupled
with the Dirac states. Therefore, by varying the Fermi level
and measuring the variation of I12, it is in principle possible
to resolve the particular TI states contributing to the exchange
coupling, and determine the relative weights in the proximity
effect as well.

Due to the oscillating coupling behavior of nearby QL
number, the thickness fluctuation becomes one factor that
makes the resulting I12 deviate from the ideal case, and
hinders further extraction to determine the weights in the
proximity effect. In the condition that the lateral correlation
length is large enough (ξ > z), the averaged effect coupling
constant Ī12 can be written as averaging over the thickness
fluctuations [30]

Ī12 =
∫

dzP (z)I (z), (11)

where P (z) is the distribution function of spacer thickness. For
simplicity we define the Gaussian distribution

P (z) = 1√
2πσ

exp

(
− (z − z̄)2

2σ 2

)
, (12)

where σ is the thickness variation. Since the Se-Bi-Se-Bi-Se
atomic layers within 1 QL is the strong chemical bonding,
while the bonding between QLs is weaker van der Waals
interaction, we still use 1 QL as the unit of thickness and
discretizing z ∝ d with d the thickness of 1 QL, without
considering the possibility to break the chemical bonds within
1 QL which leads to fractional thickness in the unit of
1 QL. However, σ can still be arbitrary as it denotes the
relative weights for different thicknesses to appear in the
layered structure. As an illustration, the resulting change
of I12 for the four-band Hamiltonian with different σ is
shown in Fig. 4. When the thickness fluctuation increases, the

FIG. 4. (Color online) The interlayer coupling constant I12 at
various thickness fluctuation, σ = 0.5 and 0.8 nm, using a four-band
Hamiltonian model at EF = 0 eV and T = 1 K. Stronger thickness
fluctuation has a smoothing effect on the overall coupling constant,
and may hamper the manifestation of TI states participating in the
proximity effect.
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resulting averaged Ī12 drops dramatically. Thus, to determine
the particular TI states involved in the proximity exchange
coupling as well as their relative weights, high-quality samples
with negligible thickness fluctuation are desirable.

IV. CONCLUSION

We have provided a systematic approach to illustrate
the feasibility that how interlayer exchange coupling in
FMI/TI/FMI structure can help understand the TI/FMI prox-
imity effect, with the capability to identify the TI states
involved in the proximity exchange. By changing the external
magnetic field or Fermi level, the weights for the exchange
coupling between the FMI and desired TI Dirac states can be
obtained. Such information can hardly be obtained directly
by the experimental probes such as ARPES, MOKE, PNR, or
transport since this approach circumvents the complications
of the TI-FMI interaction, but infers the TI states from the
simpler indirect FMI-FMI coupling using TI states as medium.
In this perspective, the interlayer coupling between two FMIs
in the FMI/spacer/FMI structure is not only an interesting
phenomenon by itself, but also can be regarded as a probe to
study the properties of the spacer.

Moreover, since the interlayer exchange coupling in
magnetic multilayers, such as the Fe/Cr superlattice [56],

has played a significant role in giant magnetoresistance
(GMR) [57–59], the present work also sheds light on the
application of magnetic data storage and magnetic field sen-
sors. As shown in Fig. 3(c), the interlayer exchange coupling
constant could be tuned when coupling with Dirac states of
TI. This provides a method to achieve electrically controlled
magnetic coupling, with reversibility due to gating, and rapid
response due to high-mobility, backscattering-protected Dirac
electrons. The only prerequisite is that the exchange coupling
with massive Dirac states should overcome the bulk TI states.
This may be realized in thinner TI film where the bulk bands
diminish whereas the surface bands dominate. Therefore,
further studies of interlayer exchange coupling in TI-based
magnetic layers for GMR applications are highly desired.
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