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We use the coupled cluster method (CCM) to study the zero-temperature ground-state (GS) properties of a
spin- 1

2 J1 − J2 Heisenberg antiferromagnet on a triangular lattice with competing nearest-neighbor and next-
nearest-neighbor exchange couplings J1 > 0 and J2 ≡ κJ1 > 0, respectively, in the window 0 � κ < 1. The
classical version of the model has a single GS phase transition at κcl = 1

8 in this window from a phase with
3-sublattice antiferromagnetic (AFM) 120◦ Néel order for κ < κcl to an infinitely degenerate family of 4-sublattice
AFM Néel phases for κ > κcl. This classical accidental degeneracy is lifted by quantum fluctuations, which favor
a 2-sublattice AFM striped phase. For the quantum model we work directly in the thermodynamic limit of an
infinite number of spins, with no consequent need for any finite-size scaling analysis of our results. We perform
high-order CCM calculations within a well-controlled hierarchy of approximations, which we show how to
extrapolate to the exact limit. In this way we find results for the case κ = 0 of the spin- 1

2 model for the GS
energy per spin, E/N = −0.5521(2)J1, and the GS magnetic order parameter, M = 0.198(5) (in units where the
classical value is Mcl = 1

2 ), which are among the best available. For the spin- 1
2 J1 − J2 model we find that the

classical transition at κ = κcl is split into two quantum phase transitions at κc
1 = 0.060(10) and κc

2 = 0.165(5).
The two quasiclassical AFM states (viz., the 120◦ Néel state and the striped state) are found to be the stable GS
phases in the regime κ < κc

1 and κ > κc
2 , respectively, while in the intermediate regimes κc

1 < κ < κc
2 the stable

GS phase has no evident long-range magnetic order.
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I. INTRODUCTION

Quantum Heisenberg antiferromagnets (HAFMs), compris-
ing spins (with spin quantum number s) on an infinite regular
lattice in two spatial dimensions, and interacting via a pure
nearest-neighbor (NN) Heisenberg potential with exchange
coupling J1 > 0, have long occupied a special role in the
theory of quantum phase transitions. Thus, for example, the
well-known Mermin-Wagner theorem [1] proves that in both
one and two dimensions HAFMs are disordered at any nonzero
temperature (T �= 0), in the sense that thermal fluctuations
completely destroy all long-range order (LRO). Similarly, in
one dimension quantum fluctuations destroy the Néel LRO
even at zero temperature (T = 0). On the other hand, the
Mermin-Wagner theorem does not prohibit a ground state
(GS) with LRO for any two-dimensional (2D) model with
a continuous symmetry.

It thus remains an open question as to whether a particular
2D spin-lattice model will or will not display LRO in its GS
at T = 0. For a pure 2D HAFM both quantum fluctuations
and any geometrical frustration present in the lattice can
potentially combine to destroy long-range Néel-type order.
Quantum fluctuations are generally larger for smaller values
of s, stronger frustration, and lower coordination number z.
Of the 11 uniform Archimedean lattices, those tilings with the
greatest frustration are the triangular lattice (with z = 6) and
the kagome lattice (with z = 4). Thus, the spin- 1

2 HAFMs on
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the triangular and kagome lattices have attracted much specific
interest in the past.

For the triangular-lattice HAFM the classical (s → ∞) GS
is a 3-sublattice Néel state with an angle of 120◦ between
the spins on different sublattices, which thus breaks the
translational symmetry of the lattice. Historically, some 40
years ago, the spin- 1

2 HAFM on the triangular lattice was the
first model to be proposed [2,3] as a microscopic realization
of a system whose GS might be a quantum spin liquid (QSL).
It was argued that the GS might be similar to that of the
1D HAFM, and it was thus proposed that it had the form
of a rotationally invariant, resonating valence bond (RVB)
state, instead of a quasiclassical Néel state akin to the exact
classical GS, albeit with a reduced (but nonzero) value of the
corresponding sublattice magnetic order parameter.

By contrast, spin-wave theory (SWT) [4–9] results even at
higher orders consistently predict that quantum fluctuations
on the spin- 1

2 triangular-lattice HAFM do not destroy the
120◦ Néel antiferromagnetic (AFM) LRO, but lead to a
reduction in the sublattice magnetization of around 50% from
the classical value. A number of variational calculations have
also been performed for the spin- 1

2 triangular-lattice HAFM
with conflicting results. While some calculations [10,11]
predict a quasiclassical ordered state, others [12–14] predict a
magnetically disordered state. Typically, however, the former
are based on variational wave functions with LRO built in from
the outset, while the latter typically employ a spin-liquid type
of wave function.

While many of the early numerical studies [15–19] for
the spin- 1

2 triangular-lattice HAFM based on the exact di-
agonalization (ED) of small lattice clusters predicted a GS
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with no, or very small, magnetic LRO, it was later pointed
out rather forcefully [20] that two basic requirements need to
be carefully met in order to analyze the raw numerical ED
data properly. First, a consistent finite-size scaling analysis
is needed to reach the thermodynamic limit (N → ∞) of a
lattice with N spins, and second, a proper quantum definition
of observables needs to be made. Bernu et al. [20] argued that
once those two constraints are met, the numerical data point to
an ordered ground state for the infinite lattice. It is clear that
the N → ∞ extrapolation is rather difficult for this model. In
a separate paper [21] Bernu et al. quote an extrapolated ED
value for the magnetic order parameter M of approximately
50% of the classical value with a large error, probably of the
order of ±5% or more. This is in reasonable agreement with
the corresponding predictions of M = 47.74% and 49.95% of
the classical value from leading-order SWT and second-order
SWT, respectively [9], in which M is correct to order O(1/s)
and O(1/s2), respectively, in the usual SWT 1/s expansion. A
more recent ED analysis [22] quotes a more accurate, reduced
value for M of 38.6% of the classical value.

Series expansion (SE) methods constructed around an
ordered state have given equally confusing results for the
spin- 1

2 triangular lattice HAFM. For example, an early T = 0
SE calculation [23] found some evidence that this model may
be very close to a quantum critical point (QCP). If ordered
at all, the model was estimated to have a value for M much
smaller than the SWT estimates, and rather close to zero. By
contrast, a much more recent SE study [24] quoted a value for
M of (38 ± 4)% of the classical value.

We turn finally to other recent calculations for the spin- 1
2

triangular-lattice HAFM, employing state-of-the-art tools of
microscopic quantum many-body theory. First, sequences
of clusters, using pinning fields and cylindrical boundary
conditions to provide for rapidly converging finite-size scal-
ing (N → ∞), have been studied using the density-matrix
renormalization group (DMRG) method [25]. Nevertheless, it
was found that the finite-size analysis for the triangular lattice
HAFM was much less accurate than that for the corresponding
HAFM on the square lattice, for example. The best result
thus obtained for the magnetic order parameter of the spin- 1

2
triangular lattice HAFM is M ≈ (41 ± 3)% of the classical
value. Second, the spin- 1

2 triangular lattice HAFM has also
been studied on clusters of up to N = 144 sites using the
Green’s function Monte Carlo (GFMC) method [26], together
with a stochastic reconfiguration technique that allows the
fixed-node approximation (which is needed to overcome the
well-known minus-sign problem) to be released in a controlled,
albeit approximate, way. The best estimate thus obtained in
the thermodynamic limit (N → ∞) for the magnetic order
parameter of the spin- 1

2 triangular lattice HAFM is M ≈
(41 ± 2)% of the classical value. It is perhaps worth noting in
this context that an earlier fixed-node GFMC calculation [27]
of the model gave a much less accurate value for the order
parameter M as large as 62% of the classical value.

Finally, we note that the coupled cluster method (CCM),
which will be employed in the present study, has also
been previously been applied to the spin- 1

2 triangular lattice
HAFM [28–31]. As will be explained in more detail in Sec. III,
the CCM is a size-extensive method that deals with infinite
lattices (N → ∞) from the outset. Nevertheless, results are

obtained at various levels of truncation in a well-defined
and systematic sequence of hierarchical approximations,
namely the lattice-animal-based subsystem (LSUBm) scheme
described in Sec. III. The only approximation then made is
to extrapolate to the exact limit m → ∞ of the truncation
index m. The earliest CCM results [28,29] were based on
relatively low-order approximations with 2 � m � 6, and gave
an extrapolated result for the order parameter of the spin- 1

2
triangular lattice HAFM of M ≈ 51% of the classical value.
Later results based on more accurate extrapolations with 2 �
m � 8 [30] and 4 � m � 10 [31] gave much improved results
of M ≈ 42.7% and 37.3% of the classical value, respectively.
Both are in excellent agreement with the corresponding results
using the DMRG [25], GFMC [26], ED [22], and SE [24]
methods.

Thus, by now, there is a rather clear consensus that the
spin- 1

2 HAFM on the triangular lattice retains the 3-sublattice
120◦ Néel ordering of the classical (s → ∞) version of the
model, albeit with a significant decrease in the magnetic order
parameter M to a value of around (40 ± 2)% of the classical
value, due to quantum fluctuations. Nevertheless, the model
retains interest, both experimentally and theoretically. On the
experimental side it is now believed that the spin- 1

2 HAFM on
the triangular lattice can rather accurately be realized in the
compound Ba3CoSb2O9 [32,33], in which the magnetic Co2+
ions form uniform triangular lattice layers. In this compound
the effective magnetic moment of the Co2+ ions, which possess
true spin s = 3

2 , can be well described by an s = 1
2 pseudospin

at low enough temperatures T (such that kBT is much
smaller than the spin-orbit coupling), where the magnetic
properties are determined by the lowest Kramers doublet.
Unlike in earlier possible realizations of spin- 1

2 triangular
lattice HAFMs, such as Cs2CuCl4 [34] and Cs2CuBr4 [35,36],
in which the triangular lattice is spatially distorted, and thus
with an exchange interaction that is spatially anisotropic, the
triangular lattice in Ba3CoSb2O9 is expected to be regular.

On the theoretical side the spin- 1
2 triangular lattice HAFM

retains specific interest as a starting-point to consider ways of
extending the model to investigate the stability of the classical
120◦ 3-sublattice Néel order against applied perturbations. We
know, in particular, that exotic (nonclassical) nonmagnetically
ordered states for spin-lattice systems tend to be favored
quantum-mechanically in situations for which the classical
(s → ∞) counterpart has two or more different forms of
GS ordering that are degenerate in energy. At the classical
level Villain et al. [37] showed how thermal fluctuations could
select, through the so-called order-by-disorder mechanism, a
specific form of order, which has softer excitation modes and
hence, for a given low energy, a larger density of states and a
larger entropy.

The commonest cause of such classical GS degeneracy is
when competing interactions are present. One such example is
the so-called J1 − J2 model on the triangular lattice in which
the NN interactions with exchange coupling strength J1 > 0
now compete with next-nearest-neighbor (NNN) interactions
with exchange coupling strength J2 ≡ κJ1 > 0. We are thus
led to the study of a model in which both geometric and
dynamic forms of frustration are present simultaneously. In
the present paper we will consider this model for spins with
s = 1

2 . Although initial interest will focus on determining the
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critical value κc
1 of the frustration parameter κ at which the

120◦ Néel order vanishes, our overall aim here is to study
the entire (T = 0) GS phase diagram of the spin- 1

2 J1 − J2

model on the triangular lattice in the range 0 � κ � 1 of the
frustration parameter, in the case J1 > 0.

Since the CCM has been shown to describe very accurately
the limiting case of the model when κ = 0, as discussed above,
we shall employ it here also when κ �= 0. The plan of the rest
of the paper is as follows. The model itself is first discussed in
Sec. II, where we also discuss its classical (s → ∞) limit. The
main elements of the CCM are then reviewed in Sec. III, before
presenting our results in Sec. IV. We end with a summary and
discussion in Sec. V.

II. THE MODEL

The Hamiltonian of the J1 − J2 model on the triangular
lattice is given by

H = J1

∑
〈i,j〉

si · sj + J2

∑
〈〈i,k〉〉

si · sk, (1)

where index i runs over all triangular lattice sites, and indices
j and k run over all NN and NNN sites to i, respectively,
counting each bond once and once only. Each lattice site i

carries a particle with spin s = 1
2 and a spin operator si =

(sx
i ,s

y

i ,sz
i ). The lattice and exchange bonds are illustrated in

Fig. 1(a). We consider the case where both the NN and NNN
bonds are antiferromagnetic (i.e., J1 > 0 and J2 ≡ κJ1 > 0).
Henceforth, with no loss of generality, we set J1 ≡ 1 to set the
overall energy scale.

The classical (s → ∞) version of the model has been
discussed in some detail by Jolicoeur et al. [38]. They showed
that the 3-sublattice 120◦ Néel antiferromagnetic (AFM) state
illustrated in Fig. 1(b) exists for κ � κcl

1 = 1
8 . This state thus

has an energy per spin, E/N , given by

ENéel

Ns2
= 3

(
κ − 1

2

)
. (2)

At κ = κcl
1 the system then undergoes a first-order phase

transition into an infinitely degenerate family (IDF) of 4-
sublattice Néel ground states illustrated in Fig. 1(c), in which
the only constraint is sA + sB + sC + sD = 0, where si denotes
the spin on each of the four sublattices, i = A,B,C,D, as
shown. Each member of this IDF has an energy per spin given

by

EIDF

Ns2
= −κ − 1. (3)

This IDF of 4-sublattice Néel states was shown to form
the stable GS phase for κcl

1 � κ � κcl
2 = 1. At κ = κcl

2 the
system then undergoes a second-order phase transition to an
incommensurate spiral phase with energy per spin given by

Espiral

Ns2
= −1

2

(
3κ + 1

κ

)
. (4)

This state persists for all values κ > κcl
2 . In the limiting case

κ → ∞, when the NN interactions no longer contribute, the
three sublattices effectively decouple and each of them again
has a 120◦ Néel configuration of spins.

The immediate question that arises is whether quantum
fluctuations will lift the degeneracy of the classical IDF of
states in the regime 1

8 < κ < 1, by the order-by-disorder
mechanism. Thus, it is well known that any accidental
degeneracy that occurs in systems that have continuous
degrees of freedom is usually removed by either thermal or
quantum fluctuations [37,39–41]. Various authors [38,42,43]
have applied lowest-order [i.e., to O(1/s)] SWT and shown
that to this order the 2-sublattice striped states, one of which
is illustrated in Fig. 1(d), are energetically preferred among
the IDF family. Korshunov [39] also asserts that thermal
fluctuations at the classical level favor the same collinear
striped ordering as do quantum fluctuations. ED calculations
on finite clusters [44] also led credence to this finding. The
striped AFM states have ferromagnetic ordering along one
direction [viz., the horizontal one in Fig. 1(d)] and AFM
ordering along the other two principal directions of the
triangular lattice. They are thus threefold-degenerate and break
the rotational invariance of the system.

Various authors [38,42–52] have studied the spin- 1
2 version

of the J1 − J2 model on the triangular lattice, using a number of
approximate methods, with little consensus to date concerning
the T = 0 GS phase diagram. On the other hand, to the best
of our knowledge, no high-order, systematically improvable
method has yet been applied to this spin- 1

2 model. It is our
aim here to apply one such technique, namely the CCM, to the
model, in the regime 0 � κ � 1 of most interest.

â

b̂

A

A

B
AA

C D

DC

D

CD

C

(a) (b) (c) (d)

FIG. 1. (Color online) The J1 − J2 model on the triangular lattice with J1 > 0 and J2 > 0, showing (a) the bonds (J1 ≡ black solid lines;
J2 ≡ blue dashed lines) and the Bravais lattice vectors â and b̂; (b) the 120◦ Néel antiferromagnetic (AFM) state; (c) the infinitely degenerate
family of classical 4-sublattice ground states on which the spins on the same lattice are parallel to each other, with the sole constraint that the
sum of four spins on different sublattices is zero; and (d) one of the three degenerate striped AFM states. For the two states shown the arrows
represent the directions of the spins located on lattice sites •.
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III. THE COUPLED CLUSTER METHOD

The CCM (see, e.g., Refs. [28,53–62] and references cited
therein) is one of the most powerful and most versatile
techniques of modern quantum many-body theory. Among
applications in a great variety of fields in physics and
chemistry, it has, in particular, been applied with considerable
success to a large number of spin-lattice problems in quantum
magnetism (see, e.g., Refs. [28–31,55,58–81] and references
cited therein). The CCM is especially suitable for the study
of frustrated magnetic systems for which the main alternative
techniques are often limited in their applicability. For example,
quantum Monte Carlo (QMC) methods are usually severely
restricted in such cases by the well-known “minus-sign
problem.” Similarly, the ED of finite lattice clusters is limited
in practice to such relatively small clusters that it can be rather
insensitive to the details of some subtle forms of phase order
that might be present. By contrast to almost all of the alternative
methods that are capable of systematic improvement within
well-defined hierarchical approximation schemes, the CCM
provides both a size-consistent and size-extensive technique,
which gives results from the outset in the thermodynamic
(infinite-lattice, N → ∞) limit, with no need, therefore, for
any finite-size scaling of the results.

We now briefly outline the CCM methodology to solve the
GS Schrödinger ket- and bra-state equations,

H |�〉 = E|�〉, 〈�̃|H = E〈�̃|. (5)

In order to describe quantitatively the quantum correlations
present in the exact GS phase under study, in the CCM one
refers them to a suitable, normalized model (or reference)
state |�〉. This state is required only to be a fiducial vector
(or generalized vacuum state) with respect to a suitable set
of mutually commuting, many-particle creation operators C+

I .
Here, the index I is a set-index that defines a multiparticle
configuration, and the requirement is that the set of states
{C+

I |�〉} completely span the ket-state Hilbert space.
A key element of the CCM is that, unlike in the

configuration-interaction method, in which the decomposition
of |�〉 is made linearly in this set, it is now made in an
exponentiated form. Specifically, we have the parametrizations

|�〉 = eS |�〉, 〈�̃| = 〈�|S̃e−S, (6)

where the two correlation operators S and S̃ are formally
decomposed as follows,

S =
∑
I �=0

SIC
+
I , S̃ = 1 +

∑
I �=0

S̃IC
−
I , (7)

where we define C+
0 ≡ 1 to be the identity operator, and

C−
I ≡ (C+

I )†. For the case of spin-lattice problems of the
type considered here the set-index I simply represents any
subset of the entire set of lattice sites (with possible repeats of
any site indices), as discussed more fully below. It denotes
a multispin-flip configuration with respect to the model
state |�〉, with C+

I |�〉 representing the corresponding wave
function associated with this configuration of spins. Hence,
the operators {C+

I } and {C−
I } are sets of mutually commuting

creation and destructor operators, respectively, defined with
respect to the state |�〉 taken as a (generalized vacuum)
reference state. They are hence chosen to obey the respective

relations

〈�|C+
I = 0 = C−

I |�〉, ∀I �= 0. (8)

By construction, therefore, the states defined by Eqs. (6)
and (7) obey the normalization conditions 〈�̃|�〉 = 〈�|�〉 =
〈�|�〉 = 1.

In order both to treat each lattice site on an equal footing and
to make the computational implementation of the technique as
universal as possible, it is very convenient to make a passive
rotation of the spin on each lattice site in each model state
|�〉 so that in its own local spin-coordinate frame it points
along the negative z axis, which we henceforth denote as
the downward direction. Such passive rotations are canonical
transformations that leave the underlying SU(2) commutation
relations unchanged, and which, therefore, have no physically
observable consequences. In these local spin coordinates,
which are clearly unique to each model state, every model
state then takes the universal form |�〉 = | ↓↓↓ · · · ↓〉, and
the Hamiltonian has to be rewritten accordingly in these spin
coordinates. Similarly, in these local spin-coordinate frames,
C+

I takes a universal form, C+
I → s+

l1
s+
l2

· · · s+
ln

, a product of
single-spin raising operators, s+

l ≡ sx
l + is

y

l . The set index
I → {l1,l2, . . . ,ln; n = 1,2, . . . ,2sN} thus simply becomes a
set of (possibly repeated) lattice site indices, where N (→ ∞)
is the total number of sites. In the case of an arbitrary spin
quantum number s, a spin raising operator s+

l can be applied
a maximum number of 2s times, on a given site l. Hence, in
any set index I included in the expansions of Eq. (7) a given
site l may appear no more than 2s times. Hence, in the present
case where s = 1

2 , each site index lj included in any single set
index I may appear no more than once.

The (formally complete) set of GS multispin c-number cor-
relation coefficients {SI ,S̃I } is now determined by requiring
that the GS energy expectation functional,

H̄ = H̄ {SI ,S̃I } ≡ 〈�|S̃e−SHeS |�〉, (9)

is minimized with respect to each of the coefficients
{SI ,S̃I ; ∀I �= 0.}. From Eqs. (7) and (9) we thus obtain the
coupled sets of equations,

〈�|C−
I e−SHeS |�〉 = 0, ∀I �= 0, (10)

by minimizing with respect to the parameter S̃I , and

〈�|S̃e−S[H,C+
I ]eS |�〉, ∀I �= 0, (11)

by minimizing with respect to the parameter SI . Equation (10)
takes the form of a coupled set of nonlinear multinomial
equations for the set of creation parameters {SI }. Once solved
the parameters {SI } are used as input to the coupled set of
linear equations for the set of destruction parameters {S̃I },
given by Eq. (11). Once Eq. (10) has been satisfied, the value
of H̄ at the minimum, which is simply the GS energy, may be
expressed in the form

E = 〈�|e−SHeS |�〉 = 〈�|HeS |�〉. (12)

Equation (11) for the destruction parameters {S̃I } may then
also be written in the equivalent form of a set of generalized
eigenvalue equations,

〈�|S̃(e−SHeS − E)C+
I |�〉, ∀I �= 0. (13)
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Another key feature of the CCM is that although the
operator S is exponentiated, the actual equations (10) and (13)
that we solve are automatically of finite order in the coefficients
{SI }, thereby obviating the need for any artificial truncation.
The reason is that in Eqs. (10) and (13) the operator S only
appears in the combination e−SHeS , a similarity transforma-
tion of the Hamiltonian. This form may be exactly and simply
expanded as the well-known nested commutator sum. This
otherwise infinite sum then terminates exactly with the double-
commutator term, first because all of the terms comprising S in
its expansion of Eq. (7) commute with one another and are just
simple products of single spin-raising operators as described
above, and second because of the basic SU(2) commutation
relations (and see, e.g., Refs. [28,29,58] for further details).
Exact such terminations equally apply for the GS expectation
values of all physical observables. One such, in which we will
be interested, is the magnetic order parameter, defined to be
the average local on-site magnetization,

M ≡ − 1

N
〈�̃|

N∑
l=1

sz
l |�〉 = − 1

N
〈�|S̃

N∑
l=1

e−Ssz
l e

S |�〉, (14)

where sz
l is defined now with respect to the chosen local spin-

coordinate frame on lattice site l, for the particular model state
|�〉 being employed.

Thus, for the reasons stated above, the only approximation
made in a practical implementation of the CCM is to truncate
the set of indices {I } in the expansions of the correlation
operators S and S̃ in Eq. (7). It is worth noting in this context
that it may be shown [57] that the CCM exactly obeys both the
Goldstone linked cluster theorem (and hence size extensivity)
and the important Hellmann-Feynman theorem at any such
level of truncation. We use here the well-tested (lattice-
animal-based subsystem) LSUBm scheme [28–31,55,58–81]
in which, at the mth level of approximation, one retains
all multispin-flip configurations I that are defined over no
more than m contiguous lattice sites. Any multispin-flip
configuration or cluster is defined to be contiguous if every
site is NN to at least one other in the cluster. The number,
Nf , of such distinct fundamental configurations is reduced
by fully exploiting the space- and point-group symmetries,
as well as any conservation laws, that pertain to both the
Hamiltonian and the model state being used. Nevertheless,
Nf increases rapidly as the LSUBm truncation index m is
increased, and it becomes necessary at the higher orders
to use massive parallelization together with supercomputing
resources [28,82]. In the present work we employ both the 120◦

Néel and the collinear striped AFM states shown in Figs. 1(b)
and 1(d), respectively, as CCM model states, and we have been
able to perform LSUBm calculations for all values m � 10 in
both cases. For example, at the LSUB10 level, the number of
fundamental configurations that we employ is Nf = 271 099
for the striped AFM state and Nf = 1 054 841 for the 120◦

Néel AFM state.
Finally, the only extrapolation that we need to make is to

the m → ∞ limit in the LSUBm scheme, where our results
for all GS properties are, in principle, exact, since we make
no other approximations, and we work from the outset in
the thermodynamic (N → ∞) limit. The LSUBm values for
the GS energy per spin, E(m)/N , converge very rapidly with

increasing values of m. We use the extrapolation scheme

E(m)/N = a0 + a1m
−2 + a2m

−4, (15)

which has been very widely tested and found to apply for
a large variety of spin-lattice model [29,31,58–81]. As is to
be expected, the expectation values of other GS quantities
converge less rapidly than the energy. For example, for most
models studied previously that are either unfrustrated or
contain only moderate amounts of frustration, the magnetic
order parameter, M , defined in the local spin-coordinate frames
by Eq. (14), typically follows a scheme with leading exponent
1/m [29,63–65,69,71,72],

M(m) = b0 + b1m
−1 + b2m

−2. (16)

On the other hand, for systems close to a QCP or when
the magnetic order parameter of the particular phase being
studied is either zero or close to zero, the extrapolation
scheme of Eq. (16) fits less well. In such cases it typically
overestimates the amount of order present. It usually also
yields a somewhat too large value of the critical strength of
the frustration interaction that is the primary driver for the
corresponding phase transition. An alternative extrapolation
scheme with leading exponent 1/m1/2,

M(m) = c0 + c1m
−1/2 + c2m

−3/2, (17)

has then been found both to provide an excellent fit
to the LSUBm results for a wide variety of models
[59,61,68,70,73–80] and also to yield more accurate values of
the corresponding QCP. In practice, any of the extrapolation
formulas of Eqs. (15)–(17), each of which contains three fitting
parameters, is ideally fitted to LSUBm results with at least four
different values of m, in order to obtain accurate and robust
fits. In so far as there is no conflict with this fitting rule, the
lowest-order results with m � 3 are also excluded, so far as
practicable, since these results are usually rather far from the
asymptotic regime.

IV. RESULTS

We now present our CCM results for the spin- 1
2J1 − J2

model (with J1 ≡ 1) on the triangular lattice, using both the
120◦ Néel and the collinear striped AFM states shown in Fig. 1
as model states, and employing the LSUBm truncation scheme
in each case for values of the truncation index m � 10. We first
display the results for the GS energy per spin, E/N , in Fig. 2.
Data are shown both for the “raw” LSUBm results in Fig. 2(a)
and for several extrapolations based on Eq. (15) in Fig. 2(b),
using different LSUBm data sets.

Several preliminary observations concerning the results
shown are in order. First, Fig. 2(a) clearly shows that the GS
energy per spin converges quite rapidly as a function of the
LSUBm truncation index m for both AFM phases based on
the 120◦ Néel state (left curves) and the striped state (right
curves). Second, it is apparent from Fig. 2(a) that there is
a marked even-odd staggering effect for the raw LSUBm

results based on both model states, which is particularly acute
for the striped state. In both cases, however, the difference
in the corresponding values for E/N , at a given value of
J2, tends to be smaller between pairs of LSUBm results
with m = {2n,2n + 1} than between corresponding pairs with
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(a) (b)

FIG. 2. (Color online) CCM results for the GS energy per spin, E/N , as a function of the frustration parameter κ ≡ J2/J1, for the spin- 1
2

J1 − J2 model on the triangular lattice (with J1 ≡ +1). The left curves in each panel are based on the 120◦ Néel AFM state as CCM model
state, while the right curves are similarly based on the striped AFM state as CCM model state. (a) The LSUBm results with 3 � m � 10, shown
out to their (approximately determined) termination points. Portions of the curves with thinner lines denote the (approximately determined)
unphysical regions where the magnetic order parameter takes negative values (M < 0). (b) The corresponding LSUB∞(k) extrapolations, based
on Eq. (15): the k = 1 curve for the 120◦ Néel model state is based on LSUBm results with m = {5,6,7,8,9,10}, while the k = {2,3} curves
for both model states are based on LSUBm results with m = {4,6,8,10} and m = {3,5,7,9}, respectively. The plus (+) symbols mark those
points where the corresponding extrapolated solutions have vanishing magnetic order parameters, M = 0 [and see Fig. 3(b)]. Those sections
of the curves beyond the plus (+) symbols, shown with thinner lines, indicate unphysical regions, where M < 0 for these approximations (and
see text for further details).

m = {2n + 1,2n + 2}, for integral values of n. Third, for a
given LSUBm order of approximation, we see from Fig. 2(a)
that the corresponding pairs of curves for E/N , based on both
model states, cross one another at a value of the frustration
parameter κ in the vicinity of the classical transition point at
κcl

1 = 1
8 . Thus, there is clear preliminary evidence of a quantum

phase transition in the s = 1
2 system from a phase with 120◦

Néel AFM ordering at low values of κ to one with striped
AFM ordering at high values of κ , although it is not yet clear
whether there is a direct transition between these phases or
whether it occurs via an intermediate state. As we shall see
below from a closer look at the extrapolated data, our results
are much more consistent with the latter scenario.

Fourth, we note from Fig. 2(a) that both sets of curves, based
on each of the model states shown, display termination points
at specific values of κ . In the case of the 120◦ Néel curves
the termination points are upper ones, while for the striped
curves they are lower ones. In each case the termination points,
which themselves depend on the LSUBm truncation used,
mark the points beyond which there exist no real solutions
to the respective set of CCM equations, corresponding to
Eq. (10). As is always the case, we see from Fig. 2(a) that
as the truncation index m is increased, and the solution
hence becomes more accurate, the range of values of the
frustration parameter κ over which the corresponding LSUBm

approximations have real solutions decreases. Such CCM
termination points have by now been observed in many
different spin-lattice problems and are both well documented
and well understood (see, e.g., Refs. [58,71]), and are discussed
further below. In particular, they provide a clear first signal of
the corresponding QCPs in the system under study, which
denote the points at which the respective forms of order shown
by the model states themselves melt. In practice, however,

what one finds is that accurate solutions to the CCM LSUBm

equations of Eq. (10) require an increasingly larger amount of
computer power the nearer a termination point is approached.
To obtain very accurate values of the termination points
themselves is thus computationally very costly.

A CCM LSUBm termination point κt
i (m) always arises

at the point where the solution with the ith model state to
the corresponding CCM equations given by Eq. (10) becomes
complex. Beyond such a point there actually exist two branches
of unphysical solutions, which are complex conjugates of one
another. Thus, in the region where the solution that tracks
the true physical solution is (necessarily) real, there actually
exists another real solution, which is numerically unstable
and, hence, difficult to find in practice. The physical branch is,
luckily, always the numerically stable solution. It is also always
easily identifiable in practice as the one that becomes exact in
some known limit. In all of our displayed results, therefore,
we display with confidence the branch that represents the
true (stable) ground state of the system. This physical branch
then meets the corresponding unphysical branch at some
termination point (typically with infinite slope in curves such
as those in Fig. 2), beyond which no real solutions exist and
the two solutions branch into the complex plane as conjugate
pairs. As the LSUBm truncation index becomes larger, the two
branches of real solutions become closer, and as m → ∞ they
merge, leaving the termination point as a mathematical branch
point, which represents the corresponding quantum critical
point. The LSUBm termination points are thus themselves
approximations to these critical points. Indeed, their m → ∞
extrapolations may be used as a method to estimate the position
of the phase boundary [58]. Both since the LSUBm termination
points themselves are computationally costly to obtain accu-
rately, as already noted, and also since we have other more
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accurate criteria at our disposal to find the quantum critical
points, as we shall see below, we do not use this method here.

What is found here too, in common with many other
applications of the CCM to spin-lattice systems, and as we
shall discuss more explicitly below when we discuss our
corresponding results for the magnetic order parameter M ,
is that in the vicinity of the LSUBm termination points the
respective solutions also become unphysical in the sense that
there exists a finite range of values of κ for which M becomes
negative. Thus, before the actual termination point of each
curve shown in Fig. 2(a), there exists a range of values of κ

over which M < 0. Such (approximately determined) regions
where M < 0 are shown in Fig. 2(a) by thinner lines than
the corresponding physical regions, where M > 0, that are
themselves denoted by thicker lines.

It is perhaps worth emphasizing that the regions where
M < 0 occur both for LSUBm solutions with m finite and
for the corresponding LSUB∞ extrapolations. We comment
further on these points below when the actual results for M

are discussed.
We show in Fig. 2(b) the corresponding extrapolated

(LSUB∞) values, a0, of the GS energy per spin, in each
case using Eq. (15) with various LSUBm data sets. In
light of the above-mentioned even-odd staggering effect in
the raw LSUBm results, we show separately extrapolations
using the even-m results m = {4,6,8,10} and odd-m results
m = {3,5,7,9}, for both model states. For the case of the 120◦

Néel AFM model state, for which the staggering is not too
pronounced, we also show the extrapolated LSUB∞ results a0

from Eq. (15) using the data set m = {5,6,7,8,9,10}. For both
model states the various extrapolated results are in excellent
agreement with one another.

We note that for both the even-m and odd-m extrapolations
we have tested explicitly for the applicability of Eq. (15).
Clearly, for any GS physical observable X, one may always
check directly for the correct leading exponent ν in the
asymptotic (m → ∞) fitting formula,

X(m) = x0 + x1m
−ν, (18)

by fitting an LSUBm set of results {X(m)} to this form,
and treating each of the parameters x0, x1, and ν as fitting
parameters [61,62,64,65,79,80]. For each of the even-m and
odd-m data sets used in Fig. 2(b) the exponent ν from fitting
to the form of Eq. (18) is very close to the value 2, thereby
justifying the use of Eq. (15) in these cases. While the even-odd
staggering effect leads to a fit with a comparatively worse value
of χ2 when both even and odd values of m are used together
than those obtained using only even values or only odd values
of m separately, such fits also yield values of ν close to 2 for
the GS energy per spin.

Before turning to our corresponding results for the
magnetic order parameter, M , it is worth discussing
first the accuracy of our results. In order to do so
let us consider the case κ = 0 for the pure triangular-
lattice HAFM. Thus, our extrapolated LSUB∞ results us-
ing Eq. (15) are E(κ = 0)/N ≈ −0.55227 ± 0.00011 with
LSUBm results m = {4,6,8,10}, E(κ = 0)/N ≈ −0.55207 ±
0.00001 with LSUBm results m = {3,5,7,9}, and E(κ =
0)/N ≈ −0.55180 ± 0.00033 with LSUBm results m =
{5,6,7,8,9,10}, and where in each case the errors quoted

are solely those associated with the respective fits. A careful
analysis of the errors yields our best estimate, E(κ = 0)/N =
−0.5521(2). This may be compared, for example, with the
values E(κ = 0)/N = −0.5502(4) from a linked-cluster SE
technique [24], E(κ = 0)/N = −0.5415 [20] and E(κ =
0)/N = −0.5526 [22] from two separate ED analyses of small
clusters of size N � 36 [20,22], E(κ = 0)/N = −0.5458(1)
from a GFMC technique [26], E(κ = 0)/N = −0.5533 from
a Schwinger-boson mean-field theory (SBMFT) approach
with O(1/N) Gaussian fluctuations included [83], and E(κ =
0)/N = −0.5358 and E(κ = 0)/N = −0.5468 from leading-
order and second-order SWT [7,9], respectively. Our present
value may also be compared with the value E(κ = 0)/N =
−0.5529 from a recent CCM analysis [31] of the spin- 1

2
HAFMs on all 11 Archimedean lattices. Although the raw
LSUBm results of this latter work are identical with those
obtained here for the κ = 0 case, the extrapolated value quoted
there [31] is based on all results with 4 � m � 10. Due to the
even-odd staggering effect present in this case, we believe that
the corresponding result E(κ = 0)/N = −0.5529 is skewed
by including unequal numbers of even and odd m values in the
fit. Our own result, quoted above, E(κ = 0)/N = −0.5521(2),
is accordingly more accurate. Finally, it may be worth pointing
out that, although, for example, the value E(κ = 0)/N =
−0.5533 cited above from SBMFT lies below our result, the
SBMFT method is not variational and hence does not provide
a rigorous upper bound to the GS energy.

Figure 3 displays our corresponding results for the GS
magnetic order parameter, M , of Eq. (14) to those shown in
Fig. 2 for the GS energy per spin, E/N . We see clearly from
Fig. 3(a) that at every LSUBm level of approximation the 120◦

Néel AFM order vanishes at some upper critical value κc
1 (m),

while the striped AFM order vanishes at some lower critical
value κc

2 (m). These are the respective values used in Fig. 2(a)
to demarcate the unphysical regions whose M < 0, shown
by thinner lines, in the cases where this applies to our data.
Once again, the even-odd staggering effect is clearly visible in
Fig. 3(a) for the results based on both model states, particularly
so for those based on the striped AFM state, for which it is
rather striking.

We note that it may not be obvious, a priori, why the
LSUBm regions with M < 0 are necessarily unphysical.
Indeed, they could simply arise because the quantization
axes have been chosen incorrectly. However, what is found
in practice is that the corresponding LSUBm critical values
κc

i (m) converge relatively quickly as m → ∞. Furthermore,
the extent of the region between κc

i (m) and the corresponding
LSUBm termination point κt

i (m), over which M < 0, shrinks
as m increases. Finally, in the limit, m → ∞, κc

i (∞) =
κt

i (∞), and both thus become equal to the corresponding
quantum phase transition point. In this sense, therefore, the
unphysical regions in which M < 0 are artifacts of LSUBm

approximations with finite values of m.
The same LSUBm data sets as were used in Fig. 2(b) for

the GS energy per spin extrapolations are also used in Fig. 3(b)
for the corresponding extrapolated curves for the GS magnetic
order parameter. In all cases the curves have been obtained
from the value c0 using the extrapolation scheme of Eq. (17).
Once gain, we have checked explicitly, by first fitting the
LSUBm values M(m) of the GS magnetic order parameter
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(a) (b)

FIG. 3. (Color online) CCM results for the GS magnetic order, M , as a function of the frustration parameter κ = J2/J1, for the spin- 1
2

J1 − J2 model on the triangular lattice (with J1 > 0). The left curves in each panel are based on the 120◦ Néel AFM state as CCM model state,
while the right curves are similarly based on the striped AFM state as CCM model state. (a) The LSUBm results with 3 � m � 10, shown
out to their (approximately determined) termination points. (b) The corresponding LSUB∞(k) extrapolations, based on Eq. (17): the k = 1
curve for the 120◦ Néel model state is based on LSUBm results with m = {5,6,7,8,9,10}, while the k = {2,3} curves for both model states are
based on LSUBm results with m = {4,6,8,10} and m = {3,5,7,9}, respectively. As explained in the text the extrapolation scheme of Eq. (17) is
appropriate for the accurate determination of the QCPs at which M → 0. However, for zero or small dynamic frustration (J2 ≈ 0) the scheme
of Eq. (16) is appropriate. Rather than crowd the figure with additional full curves based on Eq. (16), we show with cross (×) symbols the
corresponding extrapolated values based on the 120◦ Néel state, using Eq. (16), for the case κ = 0 only of the triangular-lattice HAFM.

to Eq. (18), that the extrapolation scheme of Eq. (17) is more
appropriate than the alternate scheme of Eq. (16) for all of
the results based on the striped model state. It is also the
case for most of the results based on the 120◦ Néel model
state, especially in the critical regime where M → 0. The
only exception is a very narrow region near κ = 0, where the
extrapolation scheme of Eq. (16) is clearly preferred, as has
been observed many time before, as discussed in Sec. III.

The corresponding extrapolated values, b0, obtained for the
spin- 1

2 triangular-lattice HAFM (viz., at κ = 0) are shown in
Fig. 3(b) by the cross symbols. Once again, these values may
be used as benchmarks for comparison with those obtained
by other methods, and to discuss the overall quality of our
CCM results. Our extrapolated LSUB∞ results using Eq. (16)
are M(κ = 0) ≈ 0.193 ± 0.002 based on the data set m =
{4,6,8,10}, M(κ = 0) ≈ 0.204 ± 0.003 based m = {3,5,7,9},
and M(κ = 0) ≈ 0.200 ± 0.009 based m = {5,6,7,8,9,10}. In
each case the quoted error is that associated solely with the
quality of the fit. The even-odd staggering effect is the cause
of the larger error associated with the fit using both even and
odd values of m, compared to those associated with the fits
using only even or only odd values of m. A careful analysis of
the errors yields our best estimate, M(κ = 0) = 0.198(5).

This value may again be compared with the corresponding
value M(κ = 0) = 0.187 from another recent CCM analy-
sis [31] of the spin- 1

2 HAFMs on all 11 Archimedean lattices.
As discussed above for the GS energy per spin results,
although this latter work obtained raw LSUBm results for
the triangular-lattice HAFM that are identical to our own
κ = 0 results, and although it also employed the extrapolation
scheme of Eq. (16), the result quoted is based on using the
data set m = {4,5,6,7,8,9,10}. Both the even-odd staggering

effect itself and the fact that the extrapolation is now based on
unequal numbers of even and odd m values used in the fit now
conspire to make the obtained value of 0.187 less accurate than
the value quoted here, 0.198(5).

Our value may again be compared with those from using the
best of the available alternate methods. For example, a linked-
cluster SE analysis [24] yields the value M(κ = 0) = 0.19(2);
a recent ED analysis [22] of small clusters of size N � 36
yields the N → ∞ extrapolated value M(κ = 0) = 0.193; a
GFMC technique [26] based on clusters of size N � 144 yields
the N → ∞ extrapolated value M(κ = 0) = 0.205(10); and
a DMRG analysis [25] yields the N → ∞ extrapolated value
M(κ = 0) = 0.205(15). All of these modern values are seen
to be in excellent agreement with one another, with our own
CCM result being now perhaps the most accurate available. By
contrast, the results from SWT and SBMFT are significantly
larger. Thus, the corresponding values from leading-order and
second-order SWT [7,9] are M(κ = 0) = 0.2387 and M(κ =
0) = 0.2497, respectively, while the result from (lowest-order)
SBMFT [46] is M(κ = 0) = 0.275.

The LSUB∞ extrapolated curves for M shown in Fig. 3(b)
use the extrapolation scheme of Eq. (17). This scheme is
particularly appropriate in the quantum critical regimes, where
M becomes vanishingly small, as we have again explicitly
checked by first finding the leading exponent ν in fits of M

to the scheme of Eq. (18), using various LSUBm data sets.
The corresponding values where M → 0 are the values shown
in Fig. 2(b) on the extrapolated GS energy per spin curves
by the plus (+) symbols. They provide our best estimates for
the QCPs, κc

1 ≡ κc
1 (∞) at which the 120◦ Néel AFM order

melts and κc
2 ≡ κc

2 (∞) at which the striped AFM order melts.
We find the explicit estimate κc

1 ≈ 0.053 from the LSUB∞
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extrapolation scheme of Eq. (17) using the LSUBm data set
m = {4,6,8,10}, with the corresponding estimate κc

1 ≈ 0.066
from comparably using the data set m = {3,5,7,9}. The
estimate obtained from using the data set m = {5,6,7,8,9,10}
is κc

1 ≈ 0.076, although the quality of this fit is considerably
worse than those using only even or only odd values of m, due
to the even-odd staggering effect discussed above, and hence
this latter value comes with an appreciably larger error. The
corresponding estimates obtained for κc

2 are κc
2 ≈ 0.163 from

using the LSUBm data set m = {4,6,8,10}, and κc
2 ≈ 0.170

from using the set of m = {3,5,7,9}. On the basis of an analysis
of all our results our best estimates for the two QCPs are
κc

1 ≈ 0.060(10) and κc
2 ≈ 0.165(5).

In the concluding section we now summarize and discuss
our results.

V. SUMMARY AND DISCUSSION

We have studied the spin- 1
2 J1 − J2 model on the triangular

lattice using the CCM in the case of AFM NN bonds (J1 > 0)
and AFM NNN bonds (J2 ≡ κJ1 < 0), in the range 0 � κ � 1
for the frustration parameter. A big advantage of the CCM
is that, unlike most alternative accurate methods, we work
from the outset in the thermodynamic limit (N → ∞) of an
infinite lattice, which hence obviates the need for any finite-
size scaling.

For the limiting case κ = 0 of the triangular-lattice HAFM
with NN bonds only we find, in agreement with most other
recent high-order calculations, that the quantum s = 1

2 model
is magnetically ordered, retaining the classical (s → ∞) 120◦

Néel AFM order, albeit with a reduced value of the GS mag-
netic order parameter M (viz., the local on-site magnetization),
M = 0.198(5), compared to the classical value M = 0.5. In
the same κ = 0 limit the GS energy per spin is found to be
E/N = −0.5521(2). Both values are in excellent agreement
with those from other recent studies using high-accuracy
methods, and both possibly now represent the most accurate
values available.

In the classical (s → ∞) J1 − J2 model on the triangular
lattice the 120◦ Néel AFM state is the stable GS phase in the
region 0 � κ � κcl

1 , where κcl
1 = 1

8 . At κ = κcl
1 there is then

a first-order phase transition to an IDF of 4-sublattice Néel
states, which form the stable GS in the region κcl

1 < κ < κcl
2 ,

where κcl
2 = 1. Lowest-order SWT and ED calculations on

finite clusters show that from this IDF of states, the 2-sublattice
striped states are energetically preferred over the entire region
1
8 < κ < 1. In the light of these findings we have applied the
CCM to the spin- 1

2J1 − J2 model on the triangular lattice,
using both the 3-sublattice 120◦ Néel and 2-sublattice striped
AFM states as model states.

It is worth noting that, in principle, we could easily use
other candidate states from the IDF of 4-sublattice Néel states
as CCM model states, apart from the striped state used here. By
comparing their extrapolated (LSUB∞) GS energies we could
then use the CCM itself to provide evidence for a quantum
order-by-disorder selection of the striped state among the
classical IDF. However, since many other methods provide
strong evidence of the striped state being selected, it seems
somewhat redundant to do so. Furthermore, for the actual
calculation of the QCP at κc

2 , at which quasiclassical ordering

reappears for all κ > κc
2 , it almost certainly suffices to use any

of the IDF as a CCM model state.
Calculations have been performed in the well-defined

LSUBm hierarchy of approximations, which becomes exact in
the limit m → ∞. High-order calculations have been carried
out for both quasiclassical states for values of the truncation
index m � 10, and we have discussed the extrapolations to the
m → ∞ limit for both the GS energy per spin, E/N , and the
GS magnetic order parameter, M .

Our main finding is that the classical phase transition
at κcl

1 = 1
8 is split, for the spin- 1

2 version of the model,
into two quantum phase transitions at κc

1 < κcl
1 and κc

2 >

κcl
1 . The quasiclassical 120◦ Néel AFM order persists now

only over the diminished range (0 <) κ < κc
1 under study,

while the quasiclassical striped AFM order persists over the
(also diminished) range κc

2 < κ (< 1) under study. Our best
estimates for the two spin- 1

2 QCPs are κc
1 = 0.060(10) and

κc
2 = 0.165(5).

These findings may be compared with the corresponding
results from other methods. For example, lowest-order (or
linear) SWT [48] predicts a quantum nonmagnetic phase
for the spin- 1

2 case in the range 0.10 � κ � 0.14. However,
when leading-order, O(1/s2), corrections are included [42,47]
this window closes and the prediction then is that there
is a direct first-order transition at κ ≈ 1

8 between the two
quasiclassical phases for the s = 1

2 case, just as for the classical
(s → ∞) case. By contrast, lowest-order SBMFT [46] predicts
a first-order direct transition for the spin- 1

2 model between the
two quasiclassical states at some critical value κc ≈ 0.16, with
no interesting disordered phase. At this critical point the order
parameter M is reduced from its value M(κ = 0) = 0.275, but
is still nonzero, M(κ ≈ 0.16) ≈ 0.17. Now, however, when
the leading-order corrections due to Gaussian fluctuations are
included [50] in the SBMFT approach, there opens a window
0.12 � κ � 0.19, where the spin stiffness vanishes and the
quasiclassical 120◦ Néel and striped forms of magnetic LRO
both melt. Clearly, the results of SWT and SBMFT approaches
are in conflict with one another.

Very recently, the phase diagram of the spin- 1
2J1 − J2

model on the triangular lattice has been studied using the
variational Monte Carlo (VMC) method within various broad
classes of trial many-body wave functions [51,52]. In a first
study [51], Mishmash et al. compared the energies of the two
quasiclassical AFM states, as modeled by Jastrow-type wave
functions, of the form pioneered by Huse and Elser [10], which
incorporate NN and NNN correlations only, with that of a class
of trial spin-liquid states with d-wave symmetry. On the basis
of such a VMC calculation they find QCPs at κc

1 ≈ 0.05 above
which the 120◦ Néel AFM order melts, and κc

2 ≈ 0.18 below
which the striped AFM order melts. In between they find that
a QSL state with nodal d-wave symmetry has lower energy
than either of the surrounding quasiclassical states. Clearly,
the values so obtained for the positions of the two QCPs are in
good agreement with those obtained in the present study.

Nevertheless, the Jastrow-type trial variational wave func-
tions used by Mishmash el. [51] are relatively inaccurate. For
example, for the case κ = 0, Huse and Elser [10] obtained
a VMC upper-bound value for the GS energy per spin of
E(κ = 0)/N ≈ −0.5367 with a trial wave function (probably)
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containing more free parameters than that used by Mishmash
et al. for the 120◦ Néel AFM state, which is appreciably above
both our own value of E(κ = 0)/N = −0.5521(2) and those
from other accurate high-order methods quoted previously.
Although the difference in energy values may seem small, we
note that the classical value of the energy per spin is −0.375
from Eq. (2). Thus the best Jastrow-type wave function of
Huse and Elser, which included all two-spin interactions with
a spin-Jastrow factor proportional to r−σ

ij , where rij is the
Euclidean distance between sites i and j , together with only
the shortest-range three-spin term, still gives only about 92%
of the nontrivial quantum part of the GS energy. Since the
energy differences between competing phases are themselves
small, as may be seen explicitly from Fig. 2(b), such errors
may be highly significant.

Indeed, the authors of a more recent VMC calculation [52]
believe that the calculations of Mishmash et al. may in-
trinsically overestimate the QSL phase, due to the relative
inaccuracy of their trial spin-Jastrow wave functions for
the quasiclassical AFM states. Instead, Kaneko et al. [52]
calculate the ground and low-lying excited states of the spin- 1

2
J1 − J2 model on the triangular lattice using a many-variable
VMC approach. They again find three locally stable states as
candidates for the GS phase. These once more include the
120◦ Néel AFM state and the striped AFM state, now together
with a QSL state (with no LRO order) of an unconventional
critical (algebraic) type, characterized by gapless excitations
and a power-law decay of the spin-spin correlation function.
Within their (enlarged) class of trial wave functions, Kaneko
et al. find that the 120◦ Néel AFM state is favored for values
κ < κc

1 = 0.10(1), the striped AFM state is favored for values
κ > κc

2 = 0.135(5), with the critical QSL forming the stable
GS phase for κc

1 < κ < κc
2 .

Clearly, all variational studies are restricted by the class
of trial wave functions that they employ. For that reason
quantitative estimates obtained from them for QCPs or phase
boundaries must always be treated with extreme caution. What
they can reveal, however, is when certain states (e.g., of a QSL
variety) become competitive energetically with other more
conventional (e.g., quasiclassical) states.

One strength of the CCM used here is that it is certainly ca-
pable of giving accurate values of QCPs and phase boundaries.
For that reason we tend to believe that our own values for κc

1
and κc

2 are intrinsically more accurate than those coming from
VMC calculations. On the other hand, a weakness of the CCM
as implemented so far is that, despite giving accurate values of
the QCPs at which the two forms of quasiclassical order melt,
our calculation to date gives no information about the nature
of the intermediate state.

Indeed, each of the CCM model states used here has been
of the independent spin-product type. While it is certainly
true that solutions of the CCM are, to some extent, always
tied to these reference states, the relationship can be quite
subtle. For example, it has been shown explicitly [84] that
exact valence-bond crystal (VBC) states of the local dimer
or plaquette variety can also be described exactly within the
CCM, starting from the use of collinear independent-spin
product states as model states. More mundanely, one may also
describe non-classical VBC ordering within the CCM by the
direct employment of valence-bond model states [85] (e.g., on
the square lattice, two- or four-spin singlet product states) in
place of the simpler single-spin product states used here. A
complication of this approach, however, is that a whole new
matrix-operator formalism then needs to be created for each
new problem. Both the Hamiltonian and the CCM bra- and
ket-state operators must then be rewritten in terms of the new
matrix algebra. Once the commutation relations between the
operators have been found, the CCM equations must finally be
derived and solved. Although the whole procedure is formally
straightforward, its implementation in practice can be both
tedious and computationally intensive. What is certainly much
more difficult, however, is to use directly a CCM model state
of any of the usual QSL types. Indeed, to date, this has never
been achieved.
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U. Schollwöck, J. Richter, D. J. J. Farnell, and R. F. Bishop
(Springer-Verlag, Berlin, 2004), p. 85.

[23] R. R. P. Singh and D. A. Huse, Phys. Rev. Lett. 68, 1766 (1992).
[24] W. Zheng, J. O. Fjærestad, R. R. P. Singh, R. H. McKenzie, and

R. Coldea, Phys. Rev. B 74, 224420 (2006).
[25] S. R. White and A. L. Chernyshev, Phys. Rev. Lett. 99, 127004

(2007).
[26] L. Capriotti, A. E. Trumper, and S. Sorella, Phys. Rev. Lett. 82,

3899 (1999).
[27] M. Boninsegni, Phys. Rev. B 52, 15304 (1995).
[28] C. Zeng, D. J. J. Farnell, and R. F. Bishop, J. Stat. Phys. 90, 327

(1998).
[29] D. J. J. Farnell, R. F. Bishop, and K. A. Gernoth, Phys. Rev. B

63, 220402(R) (2001).
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D. J. J. Farnell, and R. F. Bishop (Springer-Verlag, Berlin, 2004),
p. 307.

[59] R. F. Bishop, P. H. Y. Li, R. Darradi, J. Schulenburg, and
J. Richter, Phys. Rev. B 78, 054412 (2008).

[60] R. F. Bishop, P. H. Y. Li, D. J. J. Farnell, and C. E. Campbell,
J. Phys.: Condens. Matter 24, 236002 (2012).

[61] R. F. Bishop, P. H. Y. Li, and C. E. Campbell, J. Phys.: Condens.
Matter 25, 306002 (2013).

[62] R. F. Bishop, P. H. Y. Li, and C. E. Campbell, Phys. Rev. B 89,
214413 (2014).
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