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Generalization of polarized spin excitations for asymmetric dimeric systems
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Through the use of Heisenberg spin-spin interactions, we provide analytical representations for inelastic
neutron scattering eigenstates and excitation cross sections of the general S1-S2 spin dimeric systems. Using
an exact diagonalization approach to the spin Hamiltonian, we analyze various spin coefficients to provide
general representations for the neutron scattering cross sections of two interacting spins. We also provide a
generalized method for the determination of Sz-polarized excitations, which produces an approximation for the
spin excitations within an applied z-axis magnetic field. These calculations enhance the general understanding of
the interactions between two individual or compound spin systems, which can help provide insight into condensed
matter systems such as molecular magnets, quantum dots, and spintronic systems, as well as particle physics
investigations into quark matter and meson interactions.
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I. INTRODUCTION

The study of quantum nanomagnets has been expanding
rapidly due to the possible technological applications for
systems such as molecular magnets and quantum dots as
well as to the presence of quantum tunneling phenomena
and anisotropic effects [1–10]. The complete understanding
of quantum excitations and the ability to detect and observe
them are two critical components for the development of
applications in spintronics and spin switches for quantum
computation and various device applications [10,11].

Molecular magnets are clusters of magnetic ions that are
typically isolated from long-range magnetic interactions by
nonmagnetic ligands [12–19], and they typically have many
magnetic ions such as Mn12 and V15 [15,16]. Recently, it
has been shown that many excitations within large magnetic
clusters are governed by individual subgeometry (smaller
two- and three-body components) excitations [20]. Therefore,
examining the smallest components of magnetic interactions
is critical for moving forward in gaining information for the
larger and more complex systems.

From an experimental point of view, there are many tech-
niques that can be employed to characterize and measure the
properties of antiferromagnetic spin systems. These include
magnetic susceptibility, inelastic neutron scattering (INS),
optical/Raman spectroscopy, and electron spin resonance
[19,21,22]. While many of these techniques are important for
the study of the bulk properties for magnetic systems, INS
provides the unique ability to investigate individual excitations
and examine local interactions and structural data.

Typically, discussions of magnetic clusters are limited to
specific material systems [23–29], which does not always
provide a complete picture of the interactions being studied.
Spin-1/2 clusters have been studied in great detail by a
number of theoretical and experimental groups [30–35].
With regards to the spin dimer, Whangbo et al. present a
detailed analysis of general excitations [31]; however, this
work does not examine the changes in the inelastic neutron
scattering intensities. Recently, Furrer and Waldman published
a systematic review of symmetric S magnetic clusters [36].
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However, because mixed valency is common within molecular
magnets, it is of great importance to understand not only how
symmetric systems work, but also what effects are produced
by spin asymmetry and what roles are played in molecular
magnets. Therefore, an examination of the spin transitions for
excitations of asymmetric magnetic dimer systems is needed.

In this article, we discuss the spin excitations for the general
S1-S2 dimer system. We evaluate these systems within the
context of an isotropic Heisenberg Hamiltonian and determine
analytical representations for the eigenstates. We also provide
a generalized representation for the unpolarized and polarized
INS structure factor for excitations from the ground state and
first excited state of any spin dimer configuration. These results
allow for a generalized method to determine z-polarized exci-
tations, which can be observed through z-axis magnetic-field
and/or single-ion anisotropy splitting, since they will split de-
generate states without producing mixing between spin states.
Therefore, the unpolarized average will produce subsequent
excitations, which for mixed-valence systems will produce
multiple excitations with varying intensities. Analysis of these
intensity ratios allows for easy characterization of dimeric sys-
tems as well as larger molecular magnet systems. We provide
detailed examples of these methodologies in the Appendices.

II. SPIN EXCITATIONS FOR MAGNETIC DIMERS

To determine specific individual excitation information,
including energy and momentum dependence, one needs to
look towards INS. In materials with long-range magnetic
ordering, the energy transfer ω is dependent on momentum
transfer q, which produces a dispersion relationship. However,
for magnetic clusters, there is no dispersion, since excitations
are provided in discrete quantum steps. Therefore, to gain
specific information about the exchange parameters and
magnetic structure, one has to look at the scattering intensity
or cross section S(q,ω) of the excitations.

Typically, magnetic excitations produced by INS follow
the selection rule of transition in Stot of ±1 or 0. However,
in cluster and molecular magnet systems, the INS excitations
are specific to the spin state being excited. This modification
means that neutrons can only excite energy levels of �Si = ±1
or 0, where i is the specific basis state of the subgeometries
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FIG. 1. (Color online) An illustration of the excitations for var-
ious spin dimers detailing the ground state and first excited state
excitations. Here, we define a spin dimer as the system of any two
objects with definite spin separated by distance a and interaction J .
Multiple energy level lines denote the number of degenerate states
for the level. These will therefore split in magnetic field by gμBBSz.

(typically dimers and trimers). Since each spin state has a
specific basis associated with its excitations, the different
state excitations are bound by that basis. Within a larger
system, individual dimer excitations will always have the same
functional form of 1 − cos(qa) multiplied by a structure factor
coefficient that is dependent on the specific dimer system that
is being excited. Each spin state excited within the dimer
determines a unique constant.

To calculate the inelastic neutron scattering excitations for
a given magnetic system, a standard Heisenberg Hamiltonian
was considered to examine spin-spin exchange correlations
for a generalized spin dimer of S1-S2. As shown in Fig. 1,
the spin dimer consists of two objects with distinct spins that
interact through the isotropic Heisenberg interaction, where
the Hamiltonian can be written as

H = J S1 · S2 − μBBz(g1Sz,1 + g2Sz,2), (1)

where J is the superexchange parameter between spins S1 and
S2. The second term shows the application of a z-axis external
magnetic field Bz, where g is the gyromagnetic tensor for each
specific magnetic ion, μB is the Bohr magneton, and Sz is
the z component of the spin operator. From the Hamiltonian,
the energy eigenstates and eigenvalues may be found by
diagonalizing the magnetic Hamiltonian on a convenient basis.
The usual set of ẑ-polarized magnetic basis states would
then be employed. From the Clebsch-Gordon series, the spin
decomposition of the general spin dimer is given as

S ⊗ S =
S∑
0

S. (2)

Therefore, any magnetic state will have 2Stot + 1 degenerate
states and overall (2S1 + 1)(2S2 + 1) total states. The energy
eigenstates can be written as a function of the Stot of that state
and S1 and S2 as given by

EStot,S1,S2 = 1
2J [Stot(Stot + 1) − S1(S1 + 1) − S2(S2 + 1)]

−EZeeSz, (3)

where EZee = gSz
μBBz, and gSz

is a linear combination of
the local g tensors [19]. While the g tensors can produce a
spin mixing between states, there typically has to be a large
crystal-field or aniostropic effect, which is not considered
in this model. Therefore, we are considering only states that
have little or no spin mixing. As illustrated in Fig. 1, any
excitation from a Stot state in the dimer is given by

�E = (Stot + 1)J − EZee

(
S2

z − S1
z

)
, (4)

where Si
z is the magnetic quantum number for each state.

Once the energy eigenstates of the system have been
determined, the inelastic neutron scattering cross section
can be calculated by evaluating the inelastic structure factor
S(q,ω). It should be noted that the applied field will produce
a Zeeman shift in the Sz > 0 energy levels and produces
critical fields that will alter the overall spin ground state. As
the Zeeman shift pushes high spin states to lower energy, the
system transitions towards a ferromagnetic ground state. The
first critical field occurs at

EZee = (Sg + 1)J, (5)

where Sg is the original spin ground state equal to S1-S2 for
S1 � S2. At this critical field, the first exciting state will become
the ground state. Therefore, for clarity, we examine excitations
from the first excited state levels as well, since the excitation
matrix elements are reversible. However, with increasing field
strength, the system will become completely ferromagnetic
when

EZee = Smax
tot J, (6)

where Smax
tot = S1 + S2 is the highest total spin for the dimer

system.
In “spin only” magnetic neutron scattering, the differential

cross section for the inelastic scattering of an incident neutron
from a magnetic system in an initial state �i , with momentum
transfer �q and energy transfer �ω, is given by

d2σ

d�dω
= R(q)

∑
ba

(
δba − qbqa

q2

)
S

(f i)
ba (q ,ω), (7)

where

R(q) = (γ r0)2 k′

k
e−2W (q). (8)

In the equation above, γ = 1.91, r0 is the classical electron
radius, and e−2W (q) is the Debye-Waller factor [22,36]. For
transitions between discrete energy levels, the standard time
integral gives a trivial delta function in the energy transfer.
Therefore, for cluster excitations, the energy component can
be pulled out and the structure factor becomes dependent only
on q. Therefore, we define the polarized neutron scattering
structure factor

S
(f i)
ba (q) =

∑
λi ,λf

pλ〈�i(λi)|V †
b |�f (λf )〉

× 〈�f (λf )|Va|�i(λi)〉, (9)

where the vector Va(q) is a sum of spin operators over all
magnetic ions in a unit cell,

Va =
∑

i

Fi(q)Sa(xi) eiq·xi . (10)
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Here, Fi(q) is the normalized spin density for each magnetic
moment and pλ is the thermal population factor which is
described by

pλ = 1

Z
e
− Eλ

kB T . (11)

This provides a temperature dependence on the magnetic ex-
citations. However, it should be mentioned that as temperature
increases, the overall structure factor intensity will decrease
due to thermal fluctuations until the magnetic order breaks
down above a critical thermal energy

Ethermal = kBTc = 1
2J

[
Smax

tot

(
Smax

tot + 1
) − Sg(Sg + 1)

]
= J (2S1S2 + S2). (12)

However, in the case of larger spin dimers, these fluctuations
can increase the thermal populations of the first excited state,
which can lead to excitations from those higher spin states.
However, for simplicity, we assume the system is within the
well-established ground state around T = 0.

The polarized structure factors describe the excitations for
specific z-polarized transitions. However, in the case of a
magnetic system with no energy splitting, it is necessary to
take an unpolarized average of the polarized bases, which
will give the unpolarized structure factor, 〈S(q)〉. This is an
average over the polarized transitions and not a sum due to the
probability of populated excitations.

While the aforementioned result applies to neutron scatter-
ing from single crystals, many molecular magnetic are actually
in powder form. Therefore, to interpret neutron experiments
on powder samples, we require an orientation average of the
unpolarized single-crystal neutron scattering structure factor.
We define this powder average by

S̄(q) =
∫

d�q̂

4π
S(q). (13)

III. UNPOLARIZED STRUCTURE FACTOR
COEFFICIENTS

For any dimer excitation, the structure factor always takes on
the functional form of

S(q) = ξ̄S1,S2

[
F 2

1 (q) + F 2
2 (q)

2
− F1(q)F2(q) cos(q · �r)

]
,

(14)

where F1(q) and F2(q) are magnetic form factors for each ion
and ξ̄S1,S2 is an unpolarized spin coefficient that is described by

averaging the polarized spin correlations ξ
|S1,S2,S

f
tot,S

f
z 〉

|S1,S2,S
i
tot,S

i
x 〉 between

all possible initial and final states. If one assumes a symmetric
dimer, then the equation is simplified to

S(q) = ξ̄S1,S2F
2(q)[1 − cos(q · �r)]. (15)

To find the powered averaged structure factor, the integra-
tion over all angles simply change cos(q · �r) to j0(qa) =
sin(qa)/qa, where a is the distance between the two interact-
ing spin systems and q is the magnitude of the momentum
transfer.

However, by evaluating and examining the polarized
matrix coefficients for various dimer combinations and fitting

FIG. 2. (Color online) The INS unpolarized structure factor co-
efficients grid for the ground state and first excited state excitations
in general S1-S2 dimer. The colored diagonals denote the various
spin ground states from Stot = 0 to 5/2. Larger spin coefficients can
be determined by the analytical representations given in Eqs. (16)
and (17).

calculated coefficients for specific ground state values to a
functional form, an analytical solution for any excitation from
the spin ground state Sg = S1-S2 is deduced by examining cor-
relations between multiple ground state functionals. Therefore,
the unpolarized structure factor coefficient can be given by

ξ̄S1,S2 = 2

3

S2(S1 + 1)

S1 − S2 + 1
, (16)

which provides a generalized formula for any spin combination
of S1 and S2 using the above expression for Sg and assuming
that S1 � S2. Furthermore, this methodology allows us to
calculate the neutron scattering coefficients for the first
excited state, S∗

g = S1 − S2 + 1. However, the equation varies
slightly and can be written as

ξ̄ ∗
S1,S2

= 2

3

(S1 − S2 + 1)(2S1 + 3)(2S2 − 1)

(S1 − S2 + 2)[2(S1 − S2) + 3]
. (17)

Therefore, dimer excitations from the ground state or the first
excited state can be easily determined.

Figure 2 shows the unpolarized neutron scattering coeffi-
cient ξ̄S1,S2 as a function of S1 and S2 for excitations from the
ground state and the first excited state. Here, the colors of the
diagonals indicate the initial total spin state for each transition.
These values allow for easy determination of dimeric excita-
tions and provide a better understanding of how the individual
spins of the dimer dictate the overall intensity. It is shown
that symmetric dimers S1 = S2 have the largest intensities and
deviations from the symmetric configuration will decrease
the overall structure factor coefficient. Therefore, if one is
examining molecular magnets that consist of multiple dimer
configurations (symmetric and asymmetric), then an analysis
of the intensity difference can distinguish between them.

Figure 2 also shows the structure factor coefficients for the
excitations from the first excited state, ξ ∗

S1,S2
, where the excited

state may have been thermally or electrically populated.
Analysis of excited state coefficients can provide increased
understanding and characterization of exchange interactions.
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FIG. 3. (Color online) The degenerate energy levels of the 1-1/2 isotropic dimer can be split through the application of an external z axis
magnetic field. Here, the spin-1/2 ground state and spin-3/2 excited states shift by the standard Zeeman energy, where g 3

2
and g 1

2
denote the

mixed valence gyromagnetic tensor constants. The two lower panels show the change in the inelastic neutron scattering spectra for (left) zero
field and (right) an applied z-axis magnetic field on a simulated V3+-V4+ dimer (spin 1 and spin 1/2), where J = 4.0 meV, �gμBBz = 1.0 meV
[37]. The magnetic form factor produces a drop off of intensity, but the main peaks remain for comparison.

IV. POLARIZED STRUCTURE FACTOR COEFFICIENTS

While having the unpolarized transition coefficients is
useful for understanding the trends and overall describing
of isotropic dimer excitations, they provide only information
for those single excitations which are typically normalized
in inelastic neutron scattering measurement. However, these
highly degenerate states are typically split either through the
application of a magnetic field (shown in Fig. 3) or a single-
ion anisotropy through crystal-field interactions (specifically
along the z axis). When these interactions break energy-level
degeneracy, then the individual transitions become apparent.

It should be noted that not all applied fields and anisotropies
are applicable, because they will produce mixing between
spin states, which will affect the eigenfunctions of the spin
Hamiltonian. While these affects could be small or negligible,
especially in systems with weak anisotropy, it is important to
note the distinction.

To determine the coefficient of the structure factor for each
possible excitation, we must calculate the probability for each
transition from the initial to final spin states, which provides
the polarized transitions that are averaged together to get the
unpolarized structure factor. These coefficients make up a spin
transition matrix (similar to that in Table I.) Here, the matrix
contains the information needed for any polarized transition
from the |Si

tot,S
i
z〉 state to the 〈Sf

tot,S
f
z | state for a specific

dimeric system. Because of specific symmetries, only the ξ 1,1

entry is needed to calculate the unpolarized spin correlation
coefficient,

ξ̄S1,S2 = 〈
S

f
tot,S

f
z

∣∣V +∣∣Si
tot,S

i
z

〉2 2S
f
tot + 1

3
(
2Si

tot + 1
)

= ξ 1,1 2S
f
tot + 1

3
(
2Si

tot + 1
) . (18)

Therefore, it is useful to be able to determine the po-
larized matrix coefficients that describe individual transition

TABLE I. Correlation space for excitations between initial and
final spin states. The polarized spin correlations coefficients are shown

as ξ
|S1,S2,S

f
tot,S

f
z 〉

|S1,S2,Si
tot,S

i
z〉 = ξm,n, where m and n denote the corresponding row

and column.

S1,S2 |Si
tot,S

i
z〉 |Si

tot,S
i
z − 1〉 · · · |Si

tot,−Si
z〉

〈Sf
tot,S

f
z | ξ 1,1 ξ 1,2 · · · ξ 1,2Si

tot+1

〈Sf
tot,S

f
z − 1| ξ 2,1 ξ 2,2 · · · ξ 2,2Si

tot+1

...
...

...
...

〈Sf
tot, − Sf

z | ξ 2S
f
tot+1,1 ξ 2S

f
tot+1,1 · · · ξ 2S

f
tot+1,2Si

tot+1
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coefficients (illustrated in Fig. 3). Through an analysis of
these transitions, the intensity ratios of the split excitations
can be used to distinguish and characterize the specific dimer
being excited. Typically, these coefficients require a detailed
analysis of the eigenstates within the dimer system. However,
due to specific symmetries in the coefficient matrix, it is
possible to reproduce all transition coefficients through a
system of linear equations determined by the unpolarized
average and either Sg , for integer ground states, or 2Sg+1

2 ,
for half-integer ground states, additional starting coefficients.
Note that the unpolarized average can be deduced from only
the first coefficient in the correlation matrix and the value
of the two interacting spins, making these initial conditions
very easily attainable. This methodology is discussed in more
detail in the appendices, where we provide specific examples
for the determination of the coefficients for two spin-dimer
combinations. It should be noted that these calculations
apply to any spin-dimer system of S1 and S2. This includes
spin systems with S > 5/2. Our analysis in Fig. 2 and the
appendices is kept to S � 5/2 because many nanomagnetic
materials include only transition-metal elements, for which
S = 5/2 is applicable. One of our goals is to provide a
simplified manner that can be used for larger spin systems,
since their calculations can be very tedious. Therefore, our
analytical representations for the unpolarized structure factor
coefficients [Eqs. (16) and (17)] also hold for systems of
S > 5/2. The actual numbers are just not given. Furthermore,
the methodology for the polarized values also extends to those
larger systems.

With the polarized coefficients known, individual excita-
tions can be characterized through z-axis magnetic-field or
single-ion anisotropy splitting. Figure 3 shows the degenerate
energy levels of the 1-1/2 isotropic dimer being split through
the application of an external magnetic field. Here, the single
transition is split into six separate transitions as the Sg = 1/2
doublet and S∗

g = 3/2 quartet are shifted by the applied
field (EZee). Therefore, the unpolarized average coefficient of
ξ̄1,1/2 = 4/9 will split into three polarized coefficients of 2/3,
4/9, and 2/9. This splitting will impact the observed neutron
scattering excitations, which is shown in the lower panels of
Fig. 3, where an analysis of the INS intensities will allow for
the characterization of the spin dimers by looking at the ratios
of the individual transition coefficients.

We focus on the isotropic case because it provides the
fundamental foundation for all interactions. While many real
systems include complex anisotropy and zero-field effects,
these interactions tend to be weakly coupled to the overall
system. Therefore, any complex spin mixing will be a small
perturbation of the isotropic Hamiltonian, and given the
resolution limits of many experimental probes (i.e., neutron
scattering), the isotropic case is usually a good approximation
and beginning metric for the characterization of the systems.

V. CONCLUSION

In conclusion, we provide a detailed understanding of the
energy eigenstates and inelastic neutron scattering structure
factors for the ground state and first excited state excitations
of the generalized S1-S2 spin dimer. We provide an analytic
representation for the unpolarized structure factors, as well

as produce a general methodology for the determination of
the individual polarized structure factors, which are needed
for systems that have nondegenerate energy levels in the case
of anisotropy or the application of a magnetic field. Overall,
these calculations can help push the identification and charac-
terization of magnetic systems such as molecular magnets and
quantum nanostructures and dots. However, in systems that
are beyond the dimer model, larger geometry excitations will
affect the energies and structure factor coefficients in various
ways. Since large systems are dependent on the subgeometries
of the smaller systems, we expect that the ratios of the localized
excitation coefficients in those smaller systems should be
closely aligned. Therefore, examining the overall effects of
other geometries needs further understanding.

While these calculations are performed within the context
of condensed matter magnetic systems, the general context and
methodology of spin excitations for two interacting spins may
be useful for the understanding spin excitations in quark matter,
particularly meson excitations [38,39]. The generalization of
the spin interactions is independent of probing source and
simply investigates the general operations on a local moment.
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APPENDIX A: DIMER COEFFICIENT TABLE

To determine the coefficient of the structure factor for each
possible excitation, we must calculate the probability for each
transition from the initial to final spin states. This provides
the polarized transitions, which are then averaged together to
get the unpolarized structure factor. These coefficients make
up a spin transition matrix (similar to that in Table I). Here,
the matrix contains the information needed for any polarized
transition from the |Si

tot,S
i
z〉 state to the 〈Sf

tot,S
f
z | state for

a specific dimeric system. Because of specific symmetries,
only the ξ 1,1 entry is needed to calculate the unpolarized spin
correlation coefficient,

ξ̄S1,S2 = 〈
S

f
tot,S

f
z

∣∣V +∣∣Si
tot,S

i
z

〉2 2S
f
tot + 1

3
(
2Si

tot + 1
)

= ξ 1,1 2S
f
tot + 1

3(2Si
tot + 1)

. (A1)

While having the unpolarized transition coefficients is good
at describing isotropic dimers, the highly degenerate states can
be split either through the application of z-axis magnetic field
or single-ion anisotropy. When these energies break energy
level degeneracy, the individual transitions become apparent.
Therefore, it is useful to be able to easily determine the
polarized matrix coefficients. Due to specific symmetries in
the coefficient matrix due to the Clebsch-Gordon coefficients,
it is possible to reproduce all transition coefficients from only
a few coefficient values. Specifically,

ξ
|S1,S2,S

f
tot,S

f
z 〉

|S1,S2,S
i
tot,S

i
z〉 = ξ

|S1,S2,S
f
tot,−S

f
z 〉

|S1,S2,S
i
tot,−Si

z〉 , (A2)
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TABLE II. Necessary starting coefficients, by spins, to determine
the correlation space matrix.

S1 S2 Sg ξS1,S2
ξ ii

1
2

1
2 0 1

2
1
2

1 1
2

1
2

4
9

2
3

3
2

1
2 1 5

12
3
4

2 1
2

3
2

2
5

4
5 , 12

25
5
2

1
2 2 7

18
5
6 , 5

9

1 1 0 4
2

4
3

3
2 1 10

9
1
2

5
3

2 1 1 1 9
5

5
2 1 3

2
14
15

28
15 , 4

7
3
2

3
2 0 5

2
5
2

2 3
2

1
2 2 6

2
5
2

3
2 1 7

4
63
20

2 2 0 4 4
5
2 2 1

2
28
9

14
3

5
2

5
2 0 35

6
35
6

which provides a mirror symmetry to the asymmetric matrix.
In addition to this rule, the sum of all row values is given by

2Si
tot+1∑
i=1

ξ 1,i = ξ 1,1 (A3)

and the sum of all column values gives

2S
f
tot+1∑
i=1

ξ i,1 = 3ξ̄S1,S2 . (A4)

Finally, the diagonal values provide another constraint, which
can be written as

2Si
tot+1∑
1

ξ i,i = (
2Si

tot + 1
)
ξ̄S1,S2 . (A5)

With these symmetries, one can produce a system of linear
equations for all transition values of ξm,n given the diagonal
values.

APPENDIX B: DIMER COEFFICIENT EXAMPLES

In this section two specific mixed valence dimer situations,
S1 = 1, S2 = 1

2 and S1 = 5
2 , S2 = 1

2 , are discussed in further
detail to elaborate the procedure to determine the polarized
coefficients. Determination of the average, nonpolarized, co-
efficient, the use of symmetries of the correlation coefficients,
and the implementation of linear equations are all explored
through these two examples.

As discussed earlier, the sum of each of the rows of the
correlation matrix add to the same number. The top row,
however, contains only one value and therefore must be the
value the rows add to. Using this information, the value of
the first entry, ξ 1,1, times the number of rows, 2S

f
tot + 1,

must equal the sum of all the polarized coefficients. To find

TABLE III. Correlation space for S1 = 1, S2 = 1
2 with initial

conditions and unknown variables.

〈 1
2 , 1

2 | 〈 1
2 ,− 1

2 |
〈 3

2 , 3
2 | ξ 1,1 = 2

3 0

〈 3
2 , 1

2 | ξ 2,1 ξ 3,1

〈 3
2 , − 1

2 | ξ 3,1 ξ 2,1

〈 3
2 , − 3

2 | 0 ξ 1,1 = 2
3

the average, note that each column contains 3 and only 3
correlation coefficients. Therefore there are 3 times the number
of columns or 3(2Si

tot + 1) coefficients. Hence,

ξ̄S1,S2 = 〈
S

f
tot,S

f
z

∣∣V +∣∣Si
tot,S

i
z

〉2 2S
f
tot + 1

3
(
2Si

tot + 1
)

= ξ 1,1 2S
f
tot + 1

3
(
2Si

tot + 1
) . (B1)

For the case of S1 = 1 and S2 = 1
2 only the value of ξ 1,1 and

the average ξ , which can be deduced from ξ 1,1, is required to
find all polarized constant. From Table II, we find that ξ 1,1 = 2

3

and ξ = 4
9 .

As shown in Table III, the symmetry

ξ
|S1,S2,S

f
tot,S

f
z 〉

|S1,S2,S
i
tot,S

i
z〉 = ξ

|S1,S2,S
f
tot,−S

f
z 〉

|S1,S2,S
i
tot,−Si

z〉 (B2)

can be used to deduce that

ξ 1,1 = ξ 4,2 = 2
3 , ξ 2,1 = ξ 3,2, ξ 3,1 = ξ 2,2. (B3)

Additionally, the sum of all column values given by

2S
f
tot+1∑
i=1

ξ i,1 = 3ξ̄S1,S2 (B4)

allows us to set up the equation
2
3 + ξ 2,1 + ξ 3,1 = 4

3 . (B5)

Due to symmetry, there is only one unique equation that can
be determined from this condition. The sum of all row values
given by

2Si
tot+1∑
i=1

ξ 1,i = ξ 1,1 (B6)

allows us to set up the equation

ξ 2,1 + ξ 3,1 = 2
3 , (B7)

TABLE IV. Completed correlation space for S1 = 1, S2 = 1
2 .

〈 1
2 , 1

2 | 〈 1
2 ,− 1

2 |
〈 3

2 , 3
2 | 2

3 0

〈 3
2 , 1

2 | 4
9

2
9

〈 3
2 ,− 1

2 | 2
9

4
9

〈 3
2 ,− 3

2 | 0 2
3
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TABLE V. Correlation space for S1 = 5
2 , S2 = 1

2 with initial
conditions and unknown variables.

〈2,2| 〈2,1| 〈2,0| 〈2,−1| 〈2,−2|
〈3,3| ξ 1,1 = 5

6 0 0 0 0

〈3,2| ξ 2,1 ξ 2,2 = 5
9 0 0 0

〈3,1| ξ 3,1 ξ 3,2 ξ 3,3 0 0

〈3,0| 0 ξ 4,2 ξ 4,3 ξ 4,2 0

〈3,−1| 0 0 ξ 3,3 ξ 3,2 ξ 3,1

〈3,−2| 0 0 0 ξ 2,2 = 5
9 ξ 2,1

〈3,−3| 0 0 0 0 ξ 1,1 = 5
6

where we have substituted ξ 2,2 for ξ 3,1. Again because of
symmetry there is only one equation that can be determined
from this constraint. The final condition on the values of the
diagonals provides no further information since there are 2
unique equations and only 2 unique unknowns. Solving the
above system of two equations yields

ξ 2,1 = ξ 3,2 = 4
9 , ξ 2,2 = ξ 3,1 = 2

9 .

The completed correlation space for S1 = 1, S2 = 1
2 is

given in Table IV for reference. A more complicated system
of equations occurs for S1 = 5

2 , S2 = 1
2 . The space matrix is

demonstrated in Table V.
From Table II, ξ 1,1 = 5

6 , ξ 2,2 = 5
9 , and ξ = 7

18 . Similarly to
the earlier case, symmetry is used to find that

ξ 1,1 = ξ 7,5 = 5
6 , ξ 2,1 = ξ 6,5,

ξ 3,1 = ξ 5,5, ξ 2,2 = ξ 6,4 = 5
9 ,

ξ 3,2 = ξ 5,4, ξ 4,2 = ξ 4,4,

ξ 3,3 = ξ 5,3.

(B8)

Now there are only 5 unique unknowns. The first set of
equations is given from the sum of the columns:

TABLE VI. Completed correlation space for S1 = 5
2 , S2 = 1

2 .

〈2,2| 〈2,1| 〈2,0| 〈2,−1| 〈2,−2|
〈3,3| 5

6 0 0 0 0

〈3,2| 5
18

5
9 0 0 0

〈3,1| 1
18

4
9

1
3 0 0

〈3,0| 0 1
6

1
2

1
6 0

〈3,−1| 0 0 1
3

4
9

1
18

〈3,−2| 0 0 0 5
9

5
18

〈3,−3| 0 0 0 0 5
6

5
6 + ξ 2,1 + ξ 3,1 = 7

6 , (B9)

5
9 + ξ 3,2 + ξ 4,2 = 7

6 , (B10)

2ξ 3,3 + ξ 4,3 = 7
6 . (B11)

The next set of equations comes from the sum of the rows:

ξ 2,1 + 5
9 = 5

6 , (B12)

ξ 3,1 + ξ 3,2 + ξ 3,3 = 5
6 , (B13)

2ξ 4,2 + ξ 4,3 = 5
6 . (B14)

The final set of equations comes from the diagonal values,
which can be written as

2Si
tot+1∑
1

ξ i,i = (2Si
tot + 1)ξ̄S1,S2 . (B15)

This yields the equations

25
9 + ξ 3,3 = 14

9 , (B16)

2ξ 2,1 + 2ξ 3,2 + ξ 4,3 = 14
9 . (B17)

Therefore, the complete correlation space for S1 = 5
2 ,

S2 = 1
2 is given in Table VI for reference.
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