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Spin transport and spin-caloric effects in (Cr,Zn)Te half-metallic nanostructures: Effect of spin
disorder at elevated temperatures from first principles
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An important contribution to the thermoelectric and spin-caloric transport properties in magnetic materials at
elevated temperatures is the formation of a spin-disordered state due to local moment fluctuations. This effect
has not been largely investigated so far. We focus on various magnetic nanostructures of CrTe in the form of
thin layers or nanowires embedded in ZnTe matrix, motivated by the miniaturization of spintronics devices
and by recent suggestions that magnetic nanostructures can lead to extraordinary thermoelectric effects due to
quantum confinement. The electronic structure of the studied systems is calculated within the multiple scattering
screened Korringa-Kohn-Rostoker Green function (KKR-GF) framework. The Monte Carlo method is used to
simulate the magnetization in the temperature induced spin disorder. The transport properties are evaluated from
the transmission probability obtained using the Baranger-Stone approach within the KKR-GF framework. We
find qualitative and quantitative changes in the thermoelectric and spin-caloric coefficients when spin disorder
is included in the calculation. Furthermore, we show that substitutional impurities in CrTe nanowires could
considerably enhance the Seebeck coefficient and the thermoelectric figure of merit.
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I. INTRODUCTION

The rapidly growing field of spin caloritronics [1] has
in recent years given impulse to diverse studies focusing
on a coupling between spintronics and thermoelectricity.
The strong activity in the field is reflected in numerous
conceptual developments, including the spin-Seebeck effect
in ferromagnets [2]; the magneto-Seebeck effect in tunnel
junctions [3], molecular junctions [4], or nanowires [5]; the
spin-orbit-based anisotropy of the Seebeck coefficient [6];
the thermally induced spin accumulation at half-metal/normal
metal interfaces [7]; the thermal spin-transfer torque [8]; the
spin-based Peltier cooling [9–12]; the effect of spin disorder
on the transport coefficients [13] and the transverse-transport
effects (spin Nernst and anomalous Nernst effect) [14–16],
among other studies.

A strong potential for the design of materials with tailored
spin-caloric properties lies in the realm of magnetic nanos-
tructures, which are at the focus of the present paper. The
advantages of nanostructured materials and junctions are well
known. In the first place, quantum confinement effects are
quite pronounced, giving the possibility of electronic structure
design by means of geometrical design. Additionally, targeted
novel-phase design is possible by out-of-equilibrium growth
that can be easily sustained in nanostructures compared to the
bulk. Another advantage is that spin transfer is less volatile
since the electron spin relaxation length can be larger than the
nanostructure diameter. These ideas have been discussed in
several works, as follows.

First, the possibility of an enhanced Peltier effect in
submicron-sized metallic junctions was suggested [9–11].
Secondly, a thermoelectric-cooling mechanism was theoreti-
cally proposed, based on the adiabatic spin-entropy expansion
in a quasi-one-dimensional nanosuperstructure (the so-called
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“Konbu” phase) by injecting a spin current from a ferro-
magnetic to a paramagnetic metal [17]. The realization of
Konbu phases as a result of spinodal nanodecomposition was
extensively studied in wide gap diluted magnetic semicon-
ductors [18–21]. Effective chemical pair interactions between
magnetic impurities were found to be attractive and short
ranged, suggesting a tendency towards the phase separa-
tion [19]. An increase of crossover temperature Tc (either
blocking or Curie temperature) results due to the formation
of magnetic percolation paths [18]. A new crystal growth
method of positioning by seeding and shape controlling was
proposed, with 100 Tb/in2 density of high-Tc nanomagnets in
the semiconductor matrix [20].

Regarding the spin-polarized transport, one point that has
received little attention is the effect of magnetic moment fluc-
tuations at elevated temperatures, known as spin disorder. The
well-known effect of spin-disorder-induced resistivity [22–26]
has also its counterparts in the current spin polarization and
in the Seebeck and spin-Seebeck effects. While in the bulk
of magnetic materials the moment fluctuations are small for
temperatures significantly lower than Tc (even up to 2

3Tc), in
nanostructures the surface-to-volume ratio is large and the
fluctuations are accordingly stronger. In a previous work [13],
we reported calculations on spin transport influenced by
spin-disorder effects in cobalt nanostructures embedded or
not in a copper matrix. In the present study, we shift our focus
towards half-metallic materials, where the absence of states in
the spin-down channel can act in favor of very pronounced
spin-transport effects. Such effects have been studied in
the field of spin caloritronics in the case of half-metallic
Heusler alloys [6,7,27,28]; however, no investigation of the
spin-disorder effect at elevated temperatures has so far been
conducted.

In the present paper we address this issue, focusing on
the effect of temperature-induced spin disorder on the charge-
and spin-current, thermopower, and spin-Seebeck coefficient.
Instead of Heusler alloys, we choose CrTe as a model system,
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as previous studies suggest it can be grown in nanostruc-
tured form, within a ZnTe matrix, retaining its half-metallic
character (see below). We calculate the transport properties
of CrTe thin films and CrTe wires of single-atom cross
section (“monoatomic”) embedded in ZnTe. The motivation
for choosing monoatomic wires as test systems is that quantum
confinement effects should be most pronounced in such struc-
tures, which could be fabricated by seed-induced molecular
beam epitaxy [20] as a limiting case of the Konbu phase. We
work within the Landauer-Büttiker approach, employing the
multiple scattering screened Korringa-Kohn-Rostoker Green
function (KKR-GF) framework [13,29,30], with a realistic
treatment of the real-space spin disorder at finite temperatures
using a supercell [13].

This paper is organized as follows. Section II contains a
summary of previous works on CrTe. In Sec. III we define
the studied model systems and describe the methods used in
this work and corresponding computational details. Results are
discussed in Sec. IV and the conclusions are given in Sec. V.

II. SUMMARY OF INVESTIGATIONS ON CrTe AND
(Cr,Zn)Te NANOSTRUCTURES

A promising material to exhibit the Konbu phase formation
is the (Cr,Zn)Te diluted magnetic semiconductor (DMS),
composed of a ZnTe matrix with a Cr impurity concentration
of about 5% [19]. ZnTe is a semiconductor with a direct band
gap of around 2.3 eV [31–33], normally crystallizing in the
zinc-blende (ZB) crystal structure. CrTe in its various phases
has been widely studied in the past. It is a ferromagnetic
transition metal chalcogenide with Tc = 334 K [34]. Although
its most stable crystal structure is that of the hexagonal NiAs
type, it can be grown on various different surfaces adapting
to the underlying cubic crystal structure [35,36]. Theoretical
investigations have predicted half-metallicity in the ZB-CrTe
structure [37].

Electrical and magnetic properties of CrTe were experi-
mentally studied in the bulk form or often in its stable stoi-
chiometric CrN−1TeN compounds with ordered Cr vacancies.
The ferromagnetic phase was found stable under hydrostatic
pressure up to 2.5 GPa, where the Tc dropped to 170 K
linearly from its ambient pressure value [38]. A saturation
of the spin-disorder contribution to the electrical resistivity
ρ in the NiAs structure was observed in the vicinity of Tc

as a characteristic kink in ρ(T ) [39–41]. Seebeck coefficient
measurements were reported for stoichiometric Cr3Te4 [42]
and nonstoichiometric Cr0.8Te and Cr0.9Te [41] compounds in
the NiAs crystal structure, showing a nontrivial dependence
on the Cr/Te ratio.

Room temperature (RT) ferromagnetism (Tc ≈ 300 K)
was reported in Zn1−xCrxTe semiconducting thin films with
x = 0.2 [43]. In a more recent study, structural, magnetic,
and transport properties of the (Cr,Zn)Te compound system
were investigated [36]. The selected-area electron diffraction
method indicated the presence of ZB-CrTe coherent with
the ZB-ZnTe buffer in both the CrTe thin films and in
the CrTe nanocluster precipitates, having a Tc of 247 and
220 K, respectively. Superparamagnetic behavior was found
in the CrTe thin films (Zn1−xCrxTe with x > 0.12) which
further showed metallic conductance (ρ ≈ 10 μ� m at RT),

in agreement with previously published results [39]. The CrTe
precipitates (x = 0.14) exhibited dirty metalliclike character
(ρ ≈ 103 μ� m at RT) with the ρ(T ) spin-disorder kink
coinciding with Tc. Zn1−xCrxTe samples with x � 0.12 were
found to be highly resistive with ρ ≈ 107 μ� m. Further on,
the electronic structure of Zn1−xCrxTe DMS was investigated
by x-ray magnetic circular dichroism and photoemission
spectroscopy. It was concluded that ferromagnetism originates
from Cr ions of a single chemical environment with a spatially
isotropic electronic configuration [44].

Numerous ab initio studies on the bulk properties of
CrTe have been reported [37,45–49]. The stability of the
half-metallicity was studied in the case of bulk ZB-CrTe in the
experimental lattice parameter of several semiconductors [37],
as well as in both Cr and Te terminated (001) surfaces
of ZB-CrTe [50], nonstoichiometric cubic binary chromium
chalcogenides [51], and Cr/Mn chalcogenide interfaces [52]. A
magnetic phase diagram of CrTe based on the Korringa-Kohn-
Rostoker ab initio calculations and Monte Carlo simulations
was reported showing good agreement between theory and
experiment [53]. Recently, the CrTe(001)/ZnTe(001) interface
was studied with ab initio methods showing a coherent change
from ferromagnetic half-metal to nonmagnetic insulator [54].
Further on, the stability of ferromagnetism in quasi-one-
dimensional (quasi-1D) Cr chains embedded in ZnTe was
reported [55].

III. METHOD AND COMPUTATIONAL DETAILS

A. Geometric setup of the model systems

Our model systems are composed of a central region in the
zinc-blende crystal structure (experimental lattice parameter
of ZB-ZnTe alat = 6.1 Å) sandwiched between half-infinite
Ag leads extending in the ±z directions (Fig. 1). The central
region is formed either by a thin layer (TL) of CrTe or by a
monoatomic CrTe wire (W1) embedded in the ZnTe matrix,
with Zn/Cr atoms interfacing the leads. The in-plane unit cell of
the interface with lattice constant alat/

√
2 is shown in Fig. 1(a).

The Ag atoms at the interface assume the positions of the Te
and vacant sites in the ZB structure. Due to the 5% mismatch
between the face-centered-cubic Ag lattice parameter (4.1 Å)
and alat/

√
2, the natural lattice of Ag atoms is compressed in

the z direction in order to preserve the Ag unit cell volume.
A 3 × 3 in-plane supercell is used to model the real-space
spin disorder in the CrTe thin layers [Figs. 1(b)–1(d)] and
as separation between the in-plane periodic images of the
nanowires [Figs. 1(e)–1(g)]. The central region thickness of
13, 9, or 5 Cr layers is chosen to examine the influence of a
quasi-3D to 2D transition (in TL systems) or a quasi-1D to 0D
transition (in W1 systems) on the transport properties.

B. Terminology

A few words on the terminology of later sections are due.
We use the term core region for the CrTe/ZnTe region between
the Ag leads in the structures, i.e., either the CrTe film or
the nanowire with the embedding matrix. By interface we
mean the interface between the Ag leads and the core region.
We further indicate by a number in curly brackets the distance
of a given atom to the interface in the z direction, e.g., Cr{7}
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FIG. 1. (Color online) (a) Ag/(Cr,Zn)Te interface unit cell; the
layers are ordered along the z direction as Te, Cr/Zn, and Ag.
CrTe thin layers (TL) [(b)–(d)] and monoatomic Cr nanowires (W1)
embedded in ZnTe matrix [(e)–(g)] sandwiched between Ag leads
(oriented according to the xyz compass). Different elements in (b)–(g)
are depicted as large dark spheres (Cr), large bright spheres (Zn),
medium-size spheres (Te), and small spheres (Ag). The numbers of
Cr layers are 13 [(b),(e)], 9 [(c),(f)], and 5 [(d),(g)]. The structure
representations were plotted using VESTA [56].

is the seventh Cr atom counting from the interface and Ag{1}
is the interface Ag atom. Round brackets are used to declare
the thickness of the core region, e.g., W1(13) is the system
with the 13-atom-long CrTe nanowire.

C. Self-consistent calculations

The electronic structure of the model systems was cal-
culated by the KKR-GF method using the full-potential
formalism [57–60] and the local density approximation [61]
to the exchange-correlation energy functional. The angular
momentum expansion was truncated at lmax = 3. All structural
parameters were kept fixed and the supercell potentials were
constructed following the procedure described in Sec. II B of
Ref. [13]. A well-converged density was reached by using an
18 × 18 k-point mesh for the integration in the unit cell surface
Brillouin zone (SBZ) and a smearing electronic temperature of
800 K [62]. The spin-orbit-coupling effects are not considered
as they become unimportant in comparison with the thermally
induced spin fluctuations already at low temperatures.

It is well known that the local density approximation to
density-functional theory underestimates the band gap of semi-
conductors and insulators. This can pose a practical problem in
the transport calculations in systems with ZnTe, increasing the
tunneling amplitude to unrealistically high values that could
play a spurious role in the thin-spacer systems. We circumvent
the problem by adjusting the self-consistent atomic potentials
of Zn and Te (by rigid positive shift of the Zn potential and
rigid negative shift of the Te potential) such that the band gap

value corresponds to the experimental one [33] and the Fermi
energy is set in its middle.

D. Spin disorder and electron transport

The calculation method used in this study was described in
detail in Ref. [13]. However, for completeness, the key steps
of the procedure are outlined in this section, where the details
specific to the studied systems are also given.

The spin-disorder model is based on adopting the moment
directions at temperature T as they are given by a classical
Heisenberg model

H = −
∑
i,j

Jij Mi · Mj . (1)

Here, Mi and Mj are unit vectors pointing in the direction
of the magnetic moments at sites i and j , respectively,
while Jij are the exchange parameters extracted from the
ground-state electronic structure by means of the method
of infinitesimal rotations [63]. The moment directions are
given in a series of sampling configurations (“snapshots”) at
thermal equilibrium at T by means of the Monte Carlo (MC)
method employing the Metropolis algorithm [64] and using
the Mersenne twister [65] for the random number generation.
The number of MC sampling configurations Nconf necessary
for a statistical convergence of the transport properties was
chosen proportional to the fluctuation amplitude as described
in Ref. [13], yielding typical Nconf ≈ 300 in the vicinity of Tc,
where the moment fluctuations are largest.

The spin-up (majority-spin) and spin-down (minority-spin)
directions in the electronic structure and transport calculations
for each MC snapshot are calculated with respect to the global
magnetization axis of the same MC snapshot and averaged at
the end over all snapshots.

We further define the moment-moment correlation function
CN between moments, averaged over all layer pairs having a
distance of N layers (distance of Nalat/2 in the z direction). For
a given N , let there be Npair of such pairs in the nanostructure;
also, let the first of the layers in the pair be indicated
by c = 1,2, . . ., with the in-plane coordinates of the atoms
indicated by (a,b); this places the second layer at c + N with
in-plane coordinates (a′,b′). The in-plane supercell contains
Nab (Na × Nb) magnetic atoms. Then we define

CN (T ) = 1

Nab

∑
a,b

1

Npair

∑
c

〈M(a,b);c · M(a′,b′);c+N 〉T . (2)

In the calculation of CN we include correlations between pairs
(a,b) and (a′,b′) whose distance, when projected onto the xy

plane, does not exceed alat/
√

2.
In calculating the transmission, we work within the adi-

abatic approximation [66,67], assuming that the electrons do
not exchange energy with the magnetic system while traversing
the nanosized junction and that the magnetic moments can be
treated as frozen in their magnitude and direction during this
short time interval. The same conceptual real-space approach
was applied for the spin-disorder resistivity of ferromagnets in,
e.g., Refs. [24] and [26]. The transmission probability matrix
through the noncollinear magnetic structure is calculated by
the same code that was developed for Ref. [13]; it is based
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on a combination of the Baranger-Stone [68] Green function
approach to the Landauer-Büttiker theory and on the KKR-GF
method [29,57].

A further approximation is that we accept a rotation of the
ground-state magnetic part of the site-dependent potentials in
the instantaneous direction prescribed by the MC. This is done
without a self-consistent calculation of the noncollinear state,
which would result in an increase of computational time by
one to two orders of magnitude. We verified that the magnitude
of the magnetic moments in the non-collinear state differ very
little from their respective values at the ground state. From
this we conclude that the intra-atomic exchange interaction
is dominant over the interatomic interaction for the moment
formation, justifying the non-self-consistent approximation.

The basic quantities in (spin)-thermoelectric calculations
are the well-known transport coefficients Ln (here, boldface
font implies a 2 × 2 matrix in spin space). These were
evaluated by a numerical integration of the transmission
probability �(k‖,E) [13] [which is also a matrix in spin space
with elements Γ σσ ′

(k‖,E)] over the crystal momentum k‖ and
energy E as

Ln = −
∫

dE (E − EF)n
∂fT (E)

∂E

∫
SBZ

dk‖�(k‖,E). (3)

Here, fT (E) = [exp(E−EF
kBT

) + 1]−1 is the Fermi-Dirac distri-
bution function, T is the temperature of the MC simulation,
and EF is the Fermi energy. For each temperature and system,
�(E) = ∫

SBZ dk‖�(k‖,E) was calculated on a mesh of 15
equidistant points in the range −7kBT � (E − EF) � +7kBT ,
beyond which (E − EF)n∂fT /∂E practically vanishes. Tests
on denser grids gave insignificant differences. Finally, 〈Ln〉T
is calculated as an average over the noncollinear MC configu-
rations.

The electrical conductance G, electrical resistance R,
charge-Seebeck coefficient SC and spin-Seebeck coefficient
SS, the thermal conductance K , and the thermoelectric figure
of merit ZT are calculated using the well-known formulas

Gσσ ′
(T ) = e2

h

〈
Lσσ ′

0

〉
T
, (4)

G =
∑
σσ ′

Gσσ ′
, (5)

R = 1

G
, (6)

SC = −
∑

σσ ′
〈
Lσσ ′

1

〉
T

eT
∑

σσ ′
〈
Lσσ ′

0

〉
T

, (7)

SS = −〈L↑↑
1 〉T + 〈L↑↓

1 〉T − 〈L↓↓
1 〉T − 〈L↓↑

1 〉T
eT

∑
σσ ′

〈
Lσσ ′

0

〉
T

, (8)

K =
∑

σσ ′
〈
Lσσ ′

2

〉
T

− ( ∑
σσ ′

〈
Lσσ ′

1

〉
T

)2

T
∑

σσ ′
〈
Lσσ ′

0

〉
T

, (9)

ZT = GT

K
S2

C. (10)

IV. RESULTS AND DISCUSSION

A. Electronic structure of the collinear magnetic state

Before we proceed to the analysis of the transport proper-
ties, we briefly discuss the electronic structure of the model
systems before imposing temperature on the magnetic system
and noncollinear magnetism. The self-consistent calculations
were performed assuming a collinear magnetic ground state.
However, a detailed inspection of the exchange coupling
parameters (not shown here) already indicates that in the thin
layers the interface Cr moments tend to a noncollinear ground
state. Monte Carlo simulations indeed show that while the film-
interior magnetization, i.e., deeper than in the interface layer,
remains practically collinear, moments at the interface tilt away
from the film-interior magnetization but not fully reaching the
spin-flop state. Their projection to the plane normal to the film-
interior magnetization forms a checkerboard pattern. The
noncollinearity at low temperatures is accounted for in the
conductance calculations (see Sec. IV B for more details).
Wires, on the other hand, show a collinear ground state.

The k‖-resolved density of states (DOS) along the X−�−M
path in the surface Brillouin zone is shown for selected sites
and systems in Fig. 2. Each panel in Fig. 2(a) is divided in
left/right subpanels for majority/minority spin channels. The
first four panels from the left in Fig. 2(a) correspond to the
TL(13) system with a 1 × 1 unit cell cross section, i.e., the
system has one atom per layer in the two-dimensional unit cell
in the CrTe part of the slab, as shown in Fig. 1(a). The DOS
at the Cr{7} atom, located at the center of the core region, is
essentially bulklike, characterized by the p bands of Te at 2
to 5 eV below EF, partially occupied majority spin d bands
of Cr, and the bottom edge of the minority spin Cr d bands
just above EF. Similarly, the DOS of Ag{4} (fourth Ag atomic
layer from the interface) already shows bulklike behavior, with
the lower edge of the characteristic s band at 8 eV below EF

crossed by d character bands between 6 and 2.5 eV below EF

and with the DOS at EF dominated by an sp band. The DOS
at the interface Ag{1} and Cr{1} atoms shows well preserved
d bands of the corresponding element. Interface states of sp

character appearing just above EF are completely suppressed
in the Ag{7} layer (not shown).

The first four panels from the left in Fig. 2(b) correspond to
the system which is geometrically identical to the previously
discussed one but the core region consists of ZnTe instead of
CrTe and serves as a matrix for the W1(13) nanowire. The
DOS at the Zn{7} atom, located in the center of the slab, is
characterized by fully occupied d bands of Zn at 6 eV below
EF and the Te p bands right above them, separated from the
Zn s bands by a direct band gap at the � point. Note that the
ZnTe gap was manipulated to reach the experimental value as
described in Sec. III C. The DOS of Ag{4} is very similar to
that of Fig. 2(a) and likewise, the sp interface state is quickly
suppressed with essentially no trace present in the Ag{7} layer
(not shown).

The rightmost panels in Figs. 2(a) and 2(b) show the
DOS of the Cr site in the nanowire and the Zn site farthest
from the Cr nanowire (second nearest in-plane neighbor),
respectively, in the central layer of the W1(13) system. As
can be seen in the Cr{7}-W1(13) panel of Fig. 2(a), the
dispersion of Cr d bands is narrowed down while it is widened
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FIG. 2. (Color online) The k-resolved density of states (DOS)
along the X−�−M path in the surface Brillouin zone. The first four
panels in (a) and (b) correspond to the total DOS of selected sites
in the Ag/CrTe/Ag (a) and Ag/ZnTe/Ag (b) systems with a 1 × 1
unit cell cross section and 13 Cr (or Zn) layers. The number in curly
brackets in the graph label denotes the distance of the labeled site
from the interface. The rightmost panels in (a) and (b) correspond to
the DOS of the Cr site in the nanowire and the Zn site farthest from the
Cr nanowire, respectively, in the central layer of the W1(13) system.
Panels divided by a vertical line show the majority/minority DOS in
their left/right parts. (c) k-resolved DOS at the central Cr atom of
the W1(5), W1(9), and W1(13) nanowires in a narrow energy range
around the Fermi level (indicated by horizontal line at E = 0 in all
graphs of this figure).

for the Te p bands due to the strong influence of the ZnTe
matrix [compare to the Zn{7}-TL(13) panel in Fig. 2(b)].

As a result, the minority spin band gap is slightly smaller
and shifted upwards. The Zn{7}-W1(13) panel in Fig. 2(b)
shows that the semiconducting nonmagnetic character of ZnTe
DOS is well preserved in the ZnTe matrix surrounding the Cr
nanowire.

While the difference between the DOS of the individual TL
systems in their central layer is rather small, the same is not
true in the case of the nanowires. Figure 2(c) displays the Cr
atom DOS of the nanowire central layer in a narrow energy
range around EF, where the dominant contributions to the
transport properties are calculated. A characteristic pattern can
be recognized for all three systems, with strongly smeared-out
features in the case of the shortest W1(5) nanowire. In addition,
an upward shift of the bands with increasing nanowire length
is evident. Although the shift tends to decrease gradually as
the nanowires get longer, it could potentially lead to a large
difference in the transport properties between the nanowires
of different lengths.

B. Spin-disorder effect on the transport properties

In the following, we use the terms “spin ordered” and
“collinear” as synonyms. We make this clarification because
the true ground state at the interface of the TL systems is
noncollinear but still spin ordered in a checkerboard pattern
(as we discussed in the beginning of Sec. IV A).

Figure 3(a) shows the temperature dependence of the
average magnetization and the magnetic susceptibility χ (T )
per system. While the divergence of χ is associated with
the critical temperature in bulk systems, a falloff of CN

with temperature [Fig. 3(b)] is a good indicator of the loss
of magnetic order in thin layers and nanowires [13]. Here
it is convenient to define a reasonably low threshold below
which the CN associated with the long-range magnetic order
is considered small and the correlation in a distance of N Cr
atoms is practically lost. The choice of the threshold value
is necessarily somehow arbitrary; we set it to 0.1 for CN�3,
shown by a dotted horizontal line in Fig. 3(b), for which the
corresponding temperature of the most bulklike TL(13) system
coincides with the susceptibility peak.

The loss of long-range order can be also identified as
a kink in the resistance-vs-temperature plot [Fig. 3(c)].
Looking first at the TL(13) system, the susceptibility peaks
at T ≈ 400 K. Although the growth rate of R(T ) is reduced at
this temperature, the resistance keeps increasing. The not very
pronounced kink at 400 K can be associated with the decrease
of C3 under 0.1. Further increase of R(T ) is consistent with
a slow falloff of C2(T ). Essentially identical behavior can be
seen in the case of the TL(9) system. For the TL(5) system,
the kink position is slightly shifted to a lower temperature and
the character of C4, i.e., the correlation between Cr moments
in the two interface layers, is significantly changed. In the
case of nanowires, the susceptibility peak cannot be associated
with any significant feature driven by the spin disorder. The
average magnetization stays sizable up to high temperatures
and no clear sign of a kink in R(T ) is present. Although
the C3 < 0.1 condition is fulfilled for the W1(5) and W1(9)
systems in the examined temperature range, the preservation
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FIG. 3. (Color online) (a) Monte Carlo site averages of the Cr atoms magnetic moment m (solid line) and susceptibility χ (dashed line).
(b) Spatial correlation CN of the magnetic moment orientation between N th nearest neighbor layers in the z direction. The thick to thin lines
correspond to the second to N th nearest neighbors, respectively. The vertical dotted line in [(a) and (c)] indicates the temperature for which
C3 drops under 0.1 [intersection with dotted line in (b)]. (c) Electrical resistance multiplied by the number of Cr atoms in the supercell cross
section (9 and 1 for the TL and W1 systems, respectively). (d) Polarization of the electrical conductance. (e) Charge- and (f) spin-Seebeck
coefficients. (g) Thermoelectric figure of merit. In (c)–(g), the dashed and solid lines correspond to the spin-ordered and spin-disordered data,
respectively.

of a strong short-range order (see C2) masks any possible kink
in R(T ).

Assuming that the CrTe layer became thicker and more
bulklike, it would be interesting to evaluate the resistivity
instead of the resistance (practically excluding interface-
resistance effects). The spin-disorder contribution to the
resistivity can be derived from the slope of the linearly
increasing resistance as a function of thickness of the core
region (lead-to-lead distance). We derive it from the resistance

values of the systems with 13 and 9 Cr layers [70] at
T = 500 K (where the spin disorder is almost saturated) as
ρsd = NCralat(R

(13)
500K − R

(9)
500K)/4. Here, NCr is the number of

Cr atoms in the supercell cross section (9 for TL and 1 for W1
systems). The calculation results in values of 12 and 5 μ� m
for the CrTe slab and monoatomic wire, respectively. The
former value is in reasonable agreement with the experimental
estimate of the joint spin disorder and phonon contribution
to the resistivity (20 μ� m) of bulk Cr0.9Te in the NiAs
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FIG. 4. (Color online) (a) DOS at the Cr atoms in the central
layer of the TL systems (positive and negative values correspond to
the ↑ and ↓ spin, respectively). The transmission probability Γ for
(b) ↑ and (c) ↓ spin, (d) total transmission probability, and (e) its
polarization (Γ ↑ − Γ ↓)/(Γ ↑ + Γ ↓). Dotted and solid lines in (a)–(e)
correspond to the spin-ordered and disordered data, respectively; the
energy range of spin-disordered data corresponds to ±7kBT around
EF, where T is the MC simulation temperature. (f) The transmission
probability as a function of k‖ within the surface Brillouin zone in the
systems with 1 × 1 unit cell cross section. The irreducible wedges
of the SBZ in the upper and lower halves of the plots represent
Γ ↑ + Γ ↓ and Γ ↑ − Γ ↓, respectively, while from left to right the
wedges correspond to the collinear case and the temperatures 100,
300, and 500 K.

structure measured at 400 K [41,71], as well as with the more
recent measurement of the CrTe thin film resistivity at RT
(≈ 10 μ� m) [36].

In order to further analyze the transport properties, we
present the energy-dependent and spin-resolved DOS in the
core region central layer and the transmission probability Γ ,
as well as the k‖-resolved Γ , for the thin layers in Fig. 4 and
for the nanowires in Fig. 5. The up and down spin projected
transmission probabilities are calculated from the individual
matrix elements as Γ ↑ = Γ ↑↑ + Γ ↑↓ and Γ ↓ = Γ ↓↓ + Γ ↓↑,

FIG. 5. (Color online) DOS at the central layer Cr atom of the W1
systems. For (a)–(e) plots, the corresponding description in Fig. 4 is
valid. (f) The Γ ↑ + Γ ↓ and Γ ↑ − Γ ↓ are shown in the upper and
lower halves of the plots, respectively, as a function of the energy
around EF and k‖ within the surface Brillouin zone. The left and
right parts of the SBZ correspond to the temperatures of 0 and 500 K,
respectively.
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respectively [72]. All data sets in the graphs as a function
of energy are plotted as solid lines in the energy range of
EF ± 7kBT in the case of spin disorder, while dotted lines in the
energy range EF ± 7kB × 500 K are used for the spin-ordered
(magnetic collinear) case. Although it is well established that
DOS features are not sufficient to determine the character of
the transmission probability, we examine first whether such
connection could be found in our systems. For brevity, we
refer to the majority and minority spin channels as ↑ and ↓
(see Sec. III D for the spin axis convention).

The DOS of all TL systems is very similar, not only at
the T = 0 K calculations but also at elevated temperatures
[Fig. 4(a)]. The DOS↑ at 0 K exhibits an asymmetry around
EF which is not reflected in the character of Γ ↑(E) at 0 K
[Fig. 4(b)]. The bottom edge of the Cr d minority spin band that
can be seen in the DOS↓ at 0 K for E − EF > 0.2 eV manifests
itself only very weakly in Γ ↓(E) [Fig. 4(c)]. The spin disorder
leads to almost equal DOS↑ and DOS↓ above Tc as expected,
but the onset of the spin mixing at low temperatures is very
slow. The effect of spin disorder on Γ ↑ has also a slow onset
at low T but gradually a clear asymmetry around EF develops,
consistently with the DOS↑. The Γ ↑ suppression due to the
spin disorder is obviously proportional to the thickness of the
core region (i.e., the system is in the Ohmic regime at high T ).

A very different picture can be seen for Γ ↓, which displays
an immediate fast onset at low T that then remains almost
temperature independent. This effect originates from the Cr
atoms at the interface layer favoring the noncollinear ground-
state configuration described in Sec. IV A. Since the self-
consistent electronic structure was calculated in the collinear
state and the spin-ordered calculations refer to this state, they
show a suppression of Γ ↓ by the half-metallic gap.

When accounting for the noncollinear state at the interface
at T → 0 (where the interior of the spacer is half-metallic),
spin-flip processes occur, during which an incoming spin-
down electron from the lead is flipped at the first interface
to spin up, passes the magnetic spacer and may or may not
be flipped back to spin down at the second interface (where
again the moments form a noncollinear state). Thus Γ ↓ can
be nonzero even if the central part of the spacer is perfectly
half-metallic.

Overall, this effect leads to an increased conductance
(decreased resistance) at low T as can be seen in Figs. 4(d)
and 3(c), especially pronounced in the thin quasi-2D TL(5)
system. While it may, in general, go unnoticed when looking
at the resistance of thicker systems, the effect leaves an almost
identical fingerprint in the conductance polarization at low
T for all different TL systems irrespective of their thickness
[Figs. 3(d) and 4(e)]. Further temperature increase affects the
conductance polarization [Fig. 3(d)] of the TL systems also in
a similar way. A weakly pronounced kink at Tc can be seen,
above which the polarization is negligible. The transmission
probability as a function of k‖ is shown in Fig. 4(f) only for
EF, since no qualitative differences can be observed in the
considered energy range. In this figure, each triangular region
corresponds to the irreducible part of the SBZ for different
temperatures and for the sum or difference of Γ ↑ and Γ ↓,
as described in the caption. The region with no conductance
around the M point slightly enlarges with increasing T .
The fine structure of both Γ and its polarization can still

be recognized at T = 100 K, while it is almost completely
smeared out due to the spin disorder at the room temperature.

The energy dependence of the DOS and Γ is much richer
in the case of the monoatomic wires. The spin disorder has,
in general, a small effect on the DOS [Fig. 5(a)] and even at
T = 500 K, the DOS↓ is significantly lower than the DOS↑.
The gradual decrease of Γ ↑ as a consequence of the spin
disorder [Fig. 5(b)] is accompanied by the corresponding
increase of Γ ↓ [Fig. 5(c)]. The resulting total Γ is therefore
only weakly temperature dependent [Fig. 5(d)]. The character
of Γ as a function of energy seems to be completely
uncorrelated with the DOS, with a possible exception in the
peak at E − EF = 0.25 eV for the W1(9) system, which is
strongly suppressed in both Γ and DOS. Only the W1(5)
system loses half-metallicity at T = 0 K, possibly due to a
penetration of Ag states throughout the core region.

The conductance polarization [Figs. 3(d) and 5(e)] de-
creases gradually with temperature similarly to the total
magnetization [Fig. 3(a)], remaining sizable at T = 500 K. It
is worth noting that an energy shift of about 0.15 eV between
the characteristic Γ peak of the W1(13) and W1(9) systems is
very similar to the energy shift observed in the corresponding
structure of k‖−resolved DOS [Fig. 2(c)]. This shift of about
3kBT can also be identified in the k‖-resolved Γ . While the
W1(13) and W1(9) systems exhibit rather rich fine structure
of Γ (k‖), the features of Γ (k‖) are mostly smeared out in the
case of the W1(5) system [Fig. 5(f)].

Now we proceed to discuss the charge- and spin-Seebeck
coefficients shown in Figs. 3(e) and 3(f), respectively. The
charge-Seebeck coefficient SC of the TL systems in the
collinear magnetic case is very low owing to no significant
asymmetry in Γ [dotted line in Fig. 4(d)]. The spin disorder has
a very similar effect for all TL systems, SC is positive [negative
slope of Γ in Fig. 4(d)] and grows with increasing temperature.
The corresponding spin-Seebeck coefficient SS also becomes
consistently positive due to the spin disorder but is almost
completely suppressed already at the room temperature. No
systematic trend on the nanowire length can be observed for
the Seebeck coefficients given the strongly changing character
of Γ among the nanowires. Also, while the spin disorder
increases both SC and SS in the case of W1(5), it induces
their decrease for the W1(9) or has just a small effect in the
case of W1(13). In Fig. 3(g), we show the resulting figure of
merit (ZT ). Clearly, its value in all cases is still too low for
practical applications; however, the role of spin disorder in
its enhancement [except the W1(9) and W1(13) systems] is
noteworthy.

C. Substitutional impurity effect on the transport properties
of W1(13) nanowire

The strong modulation of Γ (E) in the case of the nanowires
motivated us to further investigate the effect of a substitutional
impurity, as a source of extra scattering, on the transport
properties of the nanowire. We chose the W1(13) nanowire
as a representative system. The main criterion was the
robustness of the Seebeck coefficients of W1(13) with respect
to the spin disorder. Furthermore, an energy shift or a shape
modulation of the Γ (E) peak around EF could lead to a large
enhancement of the Seebeck coefficients as a result of an
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FIG. 6. (Color online) Properties of the W1(13) nanowire with the substitutional impurity in its central layer. (a) Majority spin d orbitals
occupation of the impurity site (solid line). Magnetic moment m (μB) of the impurity site (if m > 0.4μB) is represented by a vertical arrow,
pointing up/down in the case of parallel/antiparallel orientation with the nanowire magnetization. (b) The transmission probability as a function
of the energy around EF and k‖ within a section of the surface Brillouin zone (double the irreducible part) defined by � (bottom left and top
right corner) and M (bottom right and top left corner) high symmetry points, with the X point in the center. The gradient color code [equivalent
to Figs. 4(f) and 5(f)] corresponds to a linear range of Γ between 0 and 0.37. (c) The k‖-integrated transmission probability as a function
of the energy around EF. (d) The transport coefficients L0 and L1 (RK = h/e2 is the von Klitzing constant). (e) Charge-Seebeck coefficient.
(f) Thermoelectric figure of merit.

arising asymmetry. In the W1(13) nanowire, the Cr atom in the
wire center was substituted by an element of the fourth period,
systematically from potassium to germanium. The electronic
structure of each nanowire with the substitutional impurity was
calculated self-consistently using the impurity Green function
method [57,69]. Due to the already mentioned Seebeck
coefficient robustness with respect to the spin disorder, we
first calculated the transport properties for the spin-ordered
case with a temperature of 470 K entering via the Fermi
smearing, the main results of which are summarized in
Fig. 6.

A sizable magnetic moment at the impurity site was
stabilized for all elements from Ti to Ni [Fig. 6(a)]. While
the magnetic moments of Ti and V impurities were aligned
in parallel with the overall nanowire magnetization, the
antiparallel alignment was energetically much more favorable
for the Mn, Fe, Co, and Ni impurities. The resulting majority
spin d character occupation of the Mn-Ni sequence is therefore
qualitatively similar to the Sc-Cr one. The k‖-resolved trans-
mission probability is shown in Fig. 6(b) at several energy
values around EF. The character of Γ (k‖) not only looks
remarkably alike for the wires with the impurity d shell
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TABLE I. Charge- and spin-Seebeck coefficients (in μV/K) and
figure of merit for the W1(13) nanowire with selected substitutional
impurities (Sc and Ti). Note that in the spin-ordered case, SC ≈ SS

due to negligible L↓↓
n , L↑↓

n , and L↓↑
n terms in comparison to L↑↑

n for
both n = 0 and n = 1.

Spin order Spin disorder

Impurity SC ≈ SS ZT SC SS ZT

Sc (290 K) 71 0.27 80 38 0.35
Sc (470 K) 56 0.21 58 25 0.19
Ti (290 K) 47 0.09 58 26 0.12
Ti (470 K) 59 0.18 64 28 0.18

being essentially empty (K and Ca) or fully occupied (Ga
and Ge) but also for the pairs of the transition metal impurities
with a similar majority spin d character occupation (with a
possible energy shift of the prominent features); namely, Sc
is alike to Mn, Ti to Fe, V to Co, and Cr (no impurity) to
Ni. The k‖−integrated transmission probability Γ (E) around
EF depicted in Fig. 6(c) indeed shows that certain impurities
lead to a significant asymmetry of Γ at EF. Apart from the Ni
impurity, which causes a shape preserving energy shift of Γ

[compared to the original W1(13) wire], all other impurities
lead to a strong Γ modulation. The transport coefficient L1 as
a measure of the Γ asymmetry around EF is strongly enhanced
in the case of Sc, Ti, and Ni impurities while the L0 coefficient
is generally reduced by all impurities except Ni [Fig. 6(d)].
The Sc and Ti impurities thus lead to an overall enhancement
of SC by an order of magnitude in comparison with the W1(13)
nanowire [Fig. 6(e)] and two orders of magnitude increase of
ZT , reaching values of about 0.2.

The spin-disorder influence on the transport properties was
examined in the case of Sc and Ti impurities at room (290 K)
and elevated (470 K) temperatures, with results summarized
in Table I. While the Γ (E) shape is affected only weakly by
the spin disorder, the slightly suppressed conductance leads to
a further enhancement of the charge-Seebeck coefficient. For
the Sc impurity, an additional increase at room temperature
leads to an SC of 80 μV/K and a corresponding ZT of 0.35.
The spin-Seebeck coefficient is reduced to about 45% of the
respective SC value due to the spin disorder, remaining sizable
even at elevated temperatures.

V. SUMMARY AND CONCLUSIONS

We have modeled the electron and spin transport properties
through CrTe nanostructures (thin layers and monoatomic
wires) at elevated temperatures. We focused on the effects
of spin disorder, i.e., on the effects of the fluctuating magnetic
moments at T > 0.

Our calculations show the importance of these effects,
both quantitatively and qualitatively. Examining the resistance,
current polarization, and charge-Seebeck and spin-Seebeck
coefficients in a number of structures and temperatures, we
find that they depend on system dimensionality (thin layer vs
nanowire), system size (film thickness or wire length), and
temperature. Simplifying the calculation by accounting for the
electronic temperature (i.e., the Fermi smearing) alone is in

many cases not even qualitatively adequate for a description of
the transport coefficients; but there are notable exceptions, e.g.,
in the Seebeck coefficients and ZT of the longer (13-atom)
nanowire. Unfortunately, nothing indicates the validity of
this simplified and computationally less expensive approach
beforehand; it can be verified only a posteriori, after the full
calculation with spin disorder.

A few general observations can be made about our
results. In the thin films, the crossover temperature Tc (at
the magnetic susceptibility peak, signaling the strongest
magnetic fluctuations) coincides with a change of slope in
the resistance-vs-temperature curve, as is known from bulk
systems. However, this is not the case in the nanowires,
where also the susceptibility peak is less pronounced and the
magnetization drop is much smoother. The difference stems
possibly from the fact that the fluctuations at Tc in the wires
are long ranged (due to their lower dimensionality) compared
to the films, causing a smoother gradient of magnetization
(e.g., infinitely long wires show long-range critical fluctuations
at Tc = 0). As T grows beyond Tc, the fluctuations in wires
become gradually short ranged, increasing the resistance. In
films, Tc is at a point where the fluctuations are already short
ranged (as can be seen from the correlation functions), so
that an increase of T does not produce proportionally more
scattering; thus the kink is created.

A second observation is that, although the current spin
polarization seems to consistently drop with increasing spin
disorder, this is not always the case for the spin-Seebeck
coefficient, especially for the nanowires. At the same time,
the current spin polarization of the nanowires is not fully
suppressed even at high temperatures. The reason again lies in
the long-ranged correlations in the nanowires. The magnetiza-
tion of a short nanowire behaves to an extent as a macrospin,
i.e., a superparamagnetic entity, so that the fluctuations play
a smaller role. Obviously, at very high temperatures or for
very long nanowires the transmission as a function of energy
must become spin independent, suppressing the spin-Seebeck
coefficient. However, as presented in this study, this is not the
case at moderate temperatures or short lengths.

A third observation is that ZT may increase by orders
of magnitude either by the effect of spin disorder or if an
impurity is placed in the middle of the nanowire. The effect of
a substitutional impurity strongly depends on its type, with Sc
and Ti being the best candidates through the 3d series for an
increased ZT .

Finally, our results contribute to the question on the
usefulness of half-metallic ferromagnets in order to achieve
spin-polarized electron transport. We see from the thin-film
calculations that if the interface of a half-metallic magnet to the
leads develops a noncollinear magnetic phase, then the current
spin polarization drops drastically: Under these conditions,
the half-metallic character in the interior does not improve the
current spin polarization compared to the values of a regular
ferromagnet. Additionally, noncollinear states at T > 0 due
to local-moment fluctuations, further reduce the current spin
polarization. We also verify the (expected) result that even
in the absence of fluctuations, half-metallicity does not imply
a strong spin-Seebeck effect, since the same spin channel
can contribute positively or negatively to the spin-Seebeck
coefficient.
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[13] R. Kováčik, P. Mavropoulos, D. Wortmann, and S. Blügel, Phys.
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