
PHYSICAL REVIEW B 91, 014406 (2015)

Critical exponents and intrinsic broadening of the field-induced transition in NiCl2 · 4SC(NH2)2
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The field-induced ordering transition in the quantum spin system NiCl2 · 4SC(NH2)2 is studied by means
of neutron diffraction, ac magnetometry, and relaxation calorimetry. The interpretation of the data is strongly
influenced by a finite distribution of transition fields in the samples, which was present but disregarded in previous
studies. Taking this effect into account, we find that the order-parameter critical exponent is inconsistent with
the BEC universality class even at temperatures below 100 mK. All results are discussed in comparison with
previous measurements and with recent similar studies of disordered Ni(Cl1−xBrx)2 · 4SC(NH2)2.
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I. INTRODUCTION

Over the past decade, a great deal of attention has been
given to so-called Bose-Einstein condensation of magnons
[1]. These are quantum phase transitions induced in axially
symmetric spin systems by the application of an external
magnetic field. The simplest example is that of “conventional”
antiferromagnets at their saturation fields [2]. For purely
technical reasons, these transitions are easier to study in
gapped quantum antiferromagnets, which in zero field have
a nonmagnetic ground state [3]. An external field drives
the spin gap to zero by virtue of the Zeeman effect, at
which point spontaneous long-range ordering of transverse
spin components may occur, as in the much-studied TlCuCl3
system [4,5]. Quite a few such materials have been studied to
date [30].

An all too common experimental problem is magnetic
anisotropy. In anything but the axially symmetric case, the
field-induced transition is of the Ising (rather than BEC)
universality class. The result is a reopening of the gap in
the high-field phase [6–8] and other features not compatible
with BEC physics [8], including unusual values of critical
exponents [4]. For this reason, experiments on one particular
material, namely NiCl2 · 4SC(NH2)2 (DTN), have been of
special importance [9]. This compound is tetragonal, and
applying the field along the unique crystallographic axis
ensures the required axially symmetric geometry. A number
of studies were aimed at measuring the critical properties of
the corresponding BEC quantum critical point. Specifically,
studies of the H -T phase diagram [9–13] provided data
on the so-called crossover exponent φ, which describes
the temperature dependence of the critical field Hc: T =
[Hc(T ) − Hc(0)]φ [31]. The exponent is expected to have a
particular value φ = 2/3 for the magnon BEC transition in
three dimensions. Several experiments reportedly confirmed
this prediction for DTN [10,11]. Other exponents, particularly
the order-parameter critical index β, have not been studied
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experimentally as yet, although the high-field ordered state
has been investigated with neutron diffraction and inelastic
scattering in some detail [14].

DTN gained renewed attention in the context of BEC in
the presence of disorder. In experiments on Ni(Cl1−xBrx)2 ·
4SC(NH2)2 (DTNX), where randomness is introduced on the
nonmagnetic halogen sites [15,16], disorder was shown to sub-
stantially affect the H -T phase diagram. According to Yu et al.
[15], the crossover exponent changes drastically to φ ∼ 1 in the
low-temperature regime T � 250 mK [15]. This behavior was
interpreted in the context of Bose glass physics [17,18], though
there remains a controversy regarding the value of φ even on
the theoretical side [15,17,19,20]. Confusingly, recent neutron
diffraction experiments have measured the order-parameter
exponent β as well at the crossover exponent φ in DTNX, but
failed to find any indication of Bose glass behavior [16].

The initial purpose of the present study was to use
neutron diffraction and complementary methods to carefully
measure β and the H -T phase boundary in stoichiometric
(disorder-free) NiCl2 · 4SC(NH2)2, for a direct comparison
with previous results on DTNX [16]. Our main finding is
that our measurements, as well as all previous studies, are
significantly influenced by a distribution of transition fields
in the sample. Taking this effect into account, for DTN we
find a critical exponent β that is not consistent with the BEC
universality class all the way down to T < 100 mK. Moreover,
we come to the conclusion that the previously reported [11]
φ ∼ 2/3 is likely due to an inappropriately wide choice of
fitting range, while the actual data support a much larger value
for T < 170 mK. Finally, comparing the results on DTN and
DTNX, we conclude that there is no statistically significant
evidence of any effect of disorder on the critical properties at
low temperatures. These findings cast doubt on the relevance
of the BEC and Bose glass paradigms to the realities of DTN
and DTNX.

II. EXPERIMENTAL

Single-crystal samples of DTN for the present study were
grown from solution using the thermal gradient method, as in

1098-0121/2015/91(1)/014406(7) 014406-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.91.014406


E. WULF et al. PHYSICAL REVIEW B 91, 014406 (2015)

Refs. [9–13]. It is important to stress that virtually all previous
studies used samples from the same source [9], but the crystals
for this work were grown independently. All DTN material
used in the present study was fully deuterated, to facilitate
neutron diffraction measurements. The crystal structure was
verified using single-crystal x-ray diffraction on a Bruker AXS
diffractometer equipped with an APEX-II detector, and found
to be indistinguishable from that of protonated DTN to within
accuracy of the instrument.

Neutron diffraction was performed at the E2 diffractometer
at Helmholz-Zentrum Berlin with λ = 2.38 Å neutrons. The
single-crystal sample had the size 7 × 7 × 6 mm3 and mosaic
spread of 1◦ full width at half maximum (FWHM). We used
a 3He−4He dilution refrigerator in a 4.2 T superconducting
split-coil magnet. The crystal alignment was verified in situ.
The measured angle between the field direction and the
crystallographic c axis was 1.7◦. Most data were collected
in the vicinity of the (0.5,0.5,0.5) reciprocal-space point. It
corresponds to the smallest-angle magnetic Bragg peak in the
high-field ordered phase [14]. The measured Bragg widths
were in all cases resolution-limited. The corresponding peak
intensity was collected by sweeping the magnetic field at
constant temperature. The bulk of the data are visualized in
Fig. 1.

Thermal-relaxation calorimetry was performed on a Quan-
tum Design PPMS with the 3He−4He dilution refrigerator
insert. A deuterated single-crystal sample with a mass of
1.7 mg was aligned using x-ray diffraction. The misalignment
of the applied field with the crystallographic c axis was smaller
than 5◦.

The complex magnetic ac susceptibility of NiCl2 ·
4SC(ND2)2 was measured by using a compensated mutual
inductance mount to the mixing chamber of a 3He4He dilution
refrigerator placed in the bore of a superconducting magnet
system. The sample was a 52 mg single crystal attached to a
silver holder by a small amount of vacuum grease and aligned
to better that 5◦ relative to the field direction. The temperature-

FIG. 1. (Color online) The bulk of neutron diffraction peak
intensity data measured in constant-temperature field sweeps in
NiCl2 · 4SC(ND2)2 at the (0.5,0.5,0.5) reciprocal space point. Larger
symbols highlight the scans shown in more detail in Fig. 5.
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FIG. 2. (Color online) Thin lines: Typical field dependence of
magnetic susceptibility χ = dM/dH (a) and its field derivative
dχ/dH (b) measured in NiCl2 · 4SC(ND2)2 at several temperatures.
The thick lines are Gaussians in (b) which corresponds to an error
function on a sloping background in (a). Except for the highest
temperature, all data are plotted with arbitrary offsets for visibility.

and field-dependent ac susceptibility was recorded by applying
a primary ac field with μT amplitude at a frequency of 2 kHz
to the sample. For that, we used a Stanford Research SR
830 lock-in amplifier to sense the induced picked-up voltage
in the compensated secondary coil pair. The ac field was
superimposed by axially co-aligned static fields up to 14 T.

III. RESULTS AND INITIAL DATA ANALYSIS

A. Magnetic susceptibility

Typical constant-temperature measurements of magnetic
ac susceptibility are shown in Fig. 2(a) (thin lines). The
transition is marked by a distinct step in χ (H ), in agreement
with previous studies [9]. The step is visibly broadened at
all temperatures. Its shape can be approximated by the error
function. The field derivative of the measured susceptibility
dχ/dH is plotted in Fig. 2(b) (thin lines), for a direct
comparison with Fig. 2(a) from Ref. [11], where the raw data
look very similar.

Our χ (H ) data were analyzed using fits with an error
function on a linear sloping background [Fig. 2(a), heavy
solid curves], which corresponds to Gaussian in dχ (H )/dH

[Fig. 2(b), heavy solid curves]. The center of the Gaussian
determined at each temperature is shown in solid squares in
Fig. 3. The FWHM of peak �H is plotted versus temperature
in Fig. 4. �H remains constant below ∼ 300 mK, and
gradually increases at higher temperatures.
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FIG. 3. (Color online) (a) Magnetic field-temperature phase di-
agram of DTN. Circles (neutron diffraction), squares (magnetic ac
susceptibility), and triangles (calorimetry) are data obtained in this
work on deuterated samples. Open squares [9], circles [10], and
triangles [11] are results for protonated DTN reported in the literature.
(b) The low-temperature data shown in more detail. The solid lines
in (a) are power-law fits in a wide temperature range. The solid line
in (b) is a power-law fit to the data of Ref. [11] up to Tmax = 170 mK,
yielding φ = 1.00(14).
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FIG. 4. (Color online) Symbols: Temperature dependence of the
peak in dχ/dH in NiCl2 · 4SC(ND2)2, as determined by Gaussian
fits described in the text. The solid line is a guide for the eye only.
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FIG. 5. (Color online) Symbols: Typical field dependencies of
the neutron diffraction peak intensity at the (0.5,0.5,0.5) reciprocal-
space position measured in NiCl2 · 4SC(ND2)2 at several tempera-
tures. Solid lines are fits to a power-law function convoluted with
a Gaussian distribution of transition fields, as described in the text.
In all cases the fitting range is 4 kOe above Hc. All data for 160
mK and 80 mK are plotted with offsets of 2 × 103 counts/5 min and
4 × 103 counts/5 min, respectively.

The observed transition width exceeds any expected field
inhomogeneities or inaccuracies in setting the field value, all
estimated to be below 5 mT. The broadening is also not a
finite-T effect, as its temperature dependence totally levels off
at T → 0. We conclude that this width is an intrinsic feature
of the samples studied. In fact, in our case it is about 30%
narrower than in the experiments of Refs. [11] and [9].

As will be discussed in detail below, we interpret the
apparent width of the transition as a distribution of transition
fields Hc in the sample. In the analysis of the neutron and
calorimetry data, we shall approximate this distribution as
normal (Gaussian), with FWHM equal to that of dχ/dH at
base temperature: �Hc = 650 Oe.

B. Neutron diffraction

Some representative field sweeps of the (0.5,0.5,0.5)
magnetic Bragg peak intensity are shown in Fig. 5. Similarly
to what was previously done for DTNX [16], and following
the procedure outlined in Ref. [21], each such data set was
analyzed using power-law fits in a progressively shrinking
field window. The fit parameters were the critical field Hc, the
exponent β, and an overall scale factor. The difference in our
present approach was that instead of using a “bare” power-law
function, we convoluted it with a Gaussian distribution of
transition fields with a fixed FWHM �Hc = 650 Oe, as
discussed above. The convoluted function gives comparable
fits to the data and reproduces the slight “rounding” of the
transition clearly visible in some field scans.

Following Ref. [21], for each field sweep, we identified
the “narrowest useful fitting range” around the transition
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FIG. 6. (Color online) Exponent of the power law describing
the field dependence of the order parameter in NiCl2 · 4SC(ND2)2,
plotted as a function of temperature. Solid symbols represent fits
that take the finite distribution of critical fields into account. For
comparison, open symbols are fits using a “bare” power-law function.
In all cases the fitting range in the field is 0.4 T above the transition.
The line is a linear fit to the solid symbols below 700 mK.

point, defined by the maximum field Hmax used in the
fits. Decreasing the fitting range further does not lead to a
statistically significant change in the fitted parameter values,
while the error bar increases. Having compared Hmax − Hc for
all temperatures studied, we chose a common fitting range for
all data sets: Hmax = Hc + δ, δ = 4 kOe.

Analyzing all field sweeps in the common fit range gives
the temperature dependence of Hc and β shown in solid circles
in Figs. 3 and 6, respectively. For comparison, in Fig. 6 open
circles show the values obtained using “bare” power-law fits
in the same range.

C. Calorimetry

Typical measured field dependencies of specific heat are
shown for different temperatures in Fig. 7. The transition is
marked by a well-defined maximum. Compared to similar
features in other organic gapped quantum magnets at a
field-induced ordering transition [32], the peak is somewhat
broadened. Following the logic of the discussion above, we
attributed this broadening to a finite distribution of transition
fields, and analyzed the data accordingly. Our model for
each field scan at a constant temperature was based on a
power-law function, with the critical exponent α = −0.015 for
a thermodynamic XY transition in three dimensions [23]. For
each temperature, the parameters of the fit were Hc, two scale
factors for C(H ) below and above the transition, respectively,
and an overall flat background.

The power-law function was numerically convoluted with
a normal distribution of fixed FWHM �Hc = 650 Oe. In all
cases we used a fitting range of +1250/−850 Oe around the
peak position. Good fits are obtained at all temperatures. Typi-
cal fits are shown as smooth curves in Fig. 7. As a reference, the
sharply peaked curve is the “bare” (nonconvoluted) power-law
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FIG. 7. (Color online) Symbols: Typical field dependencies of
specific heat measured in NiCl2 · 4SC(ND2)2 at several temperatures.
The solid lines through the data points are fits to the data using a
power law convoluted with a finite distribution of transition fields,
as described in the text. The sharply peaked curve is the“bare”
nonconvoluted power law for the T = 72 mK data set. Arrows are
the fitted transition fields.

function corresponding to the fit curve for T = 72 mK. We see
that even if there is a lambda anomaly at the transition, it is
totally masked by the critical field distribution.

The arrows in Fig. 7 indicate the fitted value of Hc at
each temperature. Note that due to the convolution effect, it
is always below the apparent specific heat maximum. The
temperature dependence of the critical field obtained in our
analysis is plotted in solid triangles in Fig. 3.

IV. DISCUSSION

A. Phase boundaries and transition width

What is immediately noticeable are significant differences
between phase boundaries measured with different techniques.
The discrepancies between our measurements and previous
studies of the protonated material may be at least in part
due to us using deuterated DTN in all experiments. However,
this circumstance cannot account for the differences in phase
boundaries that we measure with neutrons, magnetometry,
and calorimetry in deuterated DTN, or between previous
magnetometry [9,11] and magnetocaloric [10] studies of
protonated crystals. A point of concern is the orientation of
the magnetic field in the sample. The phase diagram in fields
applied in the (a,c) plane, at an angle to the unique tetragonal
c axis, has been thoroughly investigated by neutron diffraction
[14]. Approximating that measured phase boundary by an
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ellipse, we conclude that even a 5◦ misalignment will change
the critical field by only about 100 Oe. Therefore, sample
alignment is not an issue in any of our or previous studies.

As pointed out in Ref. [12], a much larger concern is
mechanical stress in the sample. Those measurements have
shown that the transition field in DTN is exceptionally sensitive
to pressure. Indeed, it was estimated that the stress produced
on the sample by a rather gentle dilatometer spring may
alter Hc by as much as 300 Oe. The stress may be much
larger for the samples used in our calorimetry experiments and
magnetometry. They are attached to the calorimeter platform
with vacuum grease that is bound to stress the sample upon
cooling due to different thermal expansion coefficients. The
lowest stress occurs in our neutron experiments, where a large
sample is mounted without any glue, but is simply held in
place with thin Al wire.

Stress, specifically intrinsic residual stress due to defects, is
also the most likely explanation for the observed broadening
of the transition. Since all DTN samples are solution grown,
they all inevitably have cracks, imperfections, and solvent
inclusions [22]. A microscope inspection of our samples
reveled numerous defects of this type [33]. Upon cooling, such
defects, particularly solvent inclusions subject to freezing,
will most certainly generate a distribution of strong strain
fields in the sample, resulting in a distribution of critical fields.
The broadening will be sample-dependent. As mentioned
above, in our samples it is about 30% smaller than reported in
previous studies.

B. Critical exponent β

One of the main results of this work are measurements of
the magnetic order parameter. Compared to previous studies
[14], assuming that the transition is continuous and described
by a power law, our data provide enough statistics to extract
the corresponding critical index β. As shown in Fig. 6, below
∼0.7 K the experimental value slowly increases with decreas-
ing temperature. Averaged over the upper 100 mK of this range,
β = 0.36(1), which is fully consistent with the expectations for
a thermodynamic XY transition in three dimensions [23]. The
temperature dependence could be interpreted as a crossover
to the quantum critical regime at low temperatures. However,
linearly extrapolating the measured exponent to T = 0 (see
solid line in Fig. 6), we get β = 0.39(0.01). This value is
inconsistent with the mean-field expectation for 3-dimensional
BEC of magnons, β = 0.5. If there is a crossover to larger
values, it occurs at still lower temperatures.

How reliable is this conclusion? As always in a diffraction
experiment, the main potential pitfall is that near the transition
some critical fluctuations are picked up due to the finite
resolution of the instrument. However, this has always the
effect of increasing the intensity near Hc, resulting in larger
apparent critical indexes, and cannot explain the discrepancy.
Another concern is whether the field range has been chosen
appropriately, i.e., sufficiently narrow to access the quantum
critical regime. This indeed was a problem for the previous
studies of DTNX [16], where even at T → 0 we expected a
crossover versus field from BEC behavior to that dominated by
disorder. In disorder-free DTN, the only expected crossover is
to the classical (thermodynamic) regime at T > 0. Fortunately,

the field range of the classical transition rapidly tends to zero as
T 1/φ , with the same power-law exponent as the phase boundary
[24]. With the assumption that the field width of the classical
region is of the same order as the change in Hc compared
to zero temperature, for DTN at 200 mK it is narrower than
500 Oe. Our fits over a range of 4 kOe are therefore not af-
fected. At the same time, the maximum Bragg intensity used in
our fits is still three times smaller than the saturation value [14].
Thus, saturation effects are also unlikely to influence the anal-
ysis. We conclude that assuming the transition is continuous
and described by a power law, our estimate of β is quite robust.

C. Critical exponent φ

Previous studies of the phase boundary in DTN in tempera-
tures up to 1 K have given a critical exponent φ ∼ 0.4 [9]. This
result is generally consistent with power-law fits to our neutron
diffraction data up to [0.8 K φ = 0.41(1), Hc = 21.0(1) kOe],
calorimetry up to [0.6 K φ = 0.45(1), Hc = 21.2(1) kOe], and
susceptibility up to 0.55 [K φ = 0.50(1), Hc = 21.0(1) kOe].
The corresponding fits are shown in solid lines in Fig. 3(a).
While these values appear to be at odds with the prediction
φ = 2/3 for a 3-dimensional BEC transition, a likely reason
for the discrepancy was discussed in Ref. [11]. It was suggested
that the BEC value for the crossover exponent is recovered only
for the lowest temperatures, below T ∼ 270 mK. At higher
temperatures one observes classical (thermodynamic) critical
behavior, with a corresponding change in φ.

All our experiments lack sufficient data at the lowest
temperatures for a reliable power-law analysis in this regime.
An additional problem is posed by the distribution of critical
fields. A 650 Oe variation of Hc in the sample corresponds to
a ∼200 mK variation of Tc. Any measurements of the “critical
exponent” φ in this range may be strongly affected. In fact, the
transition field at each temperature cannot be unambiguously
extracted from the data without an implicit assumption
regarding the shape of the singularity in the susceptibility. For
example, taking the maximum of the derivative dχ/dH as a
measure of the “average” Hc, as was done here and in Ref. [11],
implies a BEC-like step of χ (H ) and a symmetric distribution
of transition fields. A rather different definition of Hc was used
in Ref. [9], and may potentially lead to a different extraction of
φ. The ambiguity becomes acute if the shape of the measured
χ (H ) curve is itself temperature-dependent. Fortunately, for
DTN, at low temperatures this does not appear to be the case.
However, for DTNX, χ (H ) curves become visibly broadened
at low temperatures [15], which may severely impact the
determination of φ.

For DTN, at best, one can assume the transition corresponds
to BEC, analyze the data accordingly, and check whether the
outcome is consistent with the BEC interpretation. In this
spirit, analyzing the data measured up to Tmax = 270 mK,
the authors of Ref. [11] obtained φ = 0.68(1), in excellent
agreement with BEC. However, given that at higher tempera-
tures there is a crossover to φ � 0.5, is 270 mK low enough?
Apparently not. For the same data, reducing Tmax to 170 mK
gives a statistically significant change in the fitted value:
φ = 1.00(0.14) [solid line in Fig. 3(b)] [34]. This behavior
is consistent with the obvious observation that the data in
Fig. 3(b) of Ref. [11] appear almost linear at low temperatures.

014406-5



E. WULF et al. PHYSICAL REVIEW B 91, 014406 (2015)

The same is actually true for the upper critical field Hc2 as well,
as shown in Fig. 3(a) of Ref. [11]. In fact, for Hc2 the authors
note an “abnormal change in slope” at 150 mK, but fail to
note a very similar feature in the lower critical field. In this
context, for both critical fields, the data of Ref. [11] point to
φ ∼ 1 at low temperatures, with a crossover to φ ∼ 0.4 at high
temperatures. The reported φ ∼ 2/3 simply corresponds to an
accidental choice of fitting range and a crossover between the
two regimes.

D. Comparison with DTNX

Our neutron diffraction data for DTN can be directly
compared to those for DTNX (8% Br) reported previously
[16]. Apart from the substantial difference in critical field
(Hc ∼ 12 kOe in DTNX vs Hc ∼ 21 kOe in DTN), the
behavior observed in the two compounds is remarkably similar.
In DTNX, the observed exponent β is somewhat larger,
β = 0.52(3) [16], versus DTN’s β = 0.39(1). However, this
discrepancy may be due to limitations in the analysis of DTNX
data: (i) a much larger fitting range δ = 10 kOe and (ii) not
taking into account the finite distribution of critical fields.
Indeed, by roughly estimating the width of the transition from
the measured specific heat curves in DTNX, and then using
the result to reanalyze the corresponding neutron data, for 8%
DTNX at T < 300 mK we obtain β = 0.32(5) [35].

At this point, the only experimentally observed effect of
disorder on the field-induced phase transition in DTN is the
claim of Ref. [15] that in the low-temperature limit φ changes
from φ ∼ 2/3 in the pure material (as estimated in Ref. [11])
to φ ∼ 1 in DTNX. As discussed above, the former result is
an artifact of an accidentally selected fitting range. In fact, the
existing data suggest φ ∼ 1 in disorder-free DTN as well. Of
course, this value of φ seems to govern the phase boundary
in DTN below ∼300 mK, and only below ∼170 mK in pure
DTN. This difference in range is, however, not unexpected.
These are different materials, after all, with even critical fields
differing by a factor of two.

Thus, there is no statistically significant evidence that
disorder is at all relevant for the phase transition in DTNX.
The only real difference is the value of Hc. It is most likely
due to a change in the exchange parameters and anisotropy, due
to the effect of “chemical pressure.” Considering the extreme
sensitivity of Hc to strain [12,25], a substantial change of Hc

on Br “doping” is only to be expected.

E. Is the transition continuous?

It is often overlooked that, based on very robust symmetry
arguments, the field-induced transition in DTN is necessarily
not a BEC of magnons, but a discontinuous transition [8]. In a
tetragonal crystal, due to magnetoelastic coupling, a first-order
transition that lifts the crystal symmetry occurs just before the
spin gap closes. The spin gap never closes completely, and
increases again beyond the transition, since broken tetragonal
symmetry implies Ising-like anisotropy in the system. This
mechanism for a quantum phase transition is akin to the
famous argument of Larkin and Pikin that certain magnetic
thermodynamic transitions involving a coupling to acoustic
phonons must be discontinuous [26]. Usually, the hope is that

the discontinuity is very slight, in which case the transition
may be studied as a continuous one. However, for DTN, where
magnetoelastic coupling is enormous [25], there are no obvious
theoretical grounds for such optimism.

Due to the ever-present distribution of transition fields, the
question of the continuity of the transition appears impossible
to resolve experimentally. Simply put, a continuous distribu-
tion of transition fields will lead even a discontinuous transition
to look continuous. Magnetic-susceptibility measurements are
hardly an indicator since χ (H ) is discontinuous already in
the ideal BEC case for the T → 0 limit. Specific heat may
have been more sensitive to the continuity of the transition.
However, the weak lambda anomaly in the case of small
negative α, when convoluted with the normal distribution of
transition fields, is indistinguishable from a discontinuous step
function. A further complication is that such a discontinuity
will be superimposed on a peaklike feature due to an almost
vanishing spin gap in the vicinity of Hc.

Neutron diffraction could in principle provide the most
direct measure of the discontinuity. However, a finite Hc

distribution will smear out any jump of the Bragg peak
intensity as well. From the known �Hc, we can say with
certainty that a 5% jump of Bragg peak intensity compared to
the saturation value [14] would be undetectable in our data.
Since Bragg intensity scales as the square of the ordered
moment, this corresponds to an order-parameter jump as
large as 20% of saturation. The same inhomogeneity of
residual stress will ensure an abundance of nucleation sites and
eliminate any hysteresis even for a discontinuous transition.

As a side remark, discontinuous magnetoelastic transition
of the type described in Ref. [8] would be the most natural
explanation to another established feature of DTN, namely
the gap in the spin excitation spectrum observed with both
ESR [27] and neutron spectroscopy [14]. To date, it is not
clear whether there are Goldstone modes in addition to the
gap mode as follows from the model in Ref. [27], or whether
the system is truly gapped. The latter scenario is exactly
what follows from symmetry arguments, but would be totally
inconsistent with BEC.

V. CONCLUSION

The above discussion can be summarized as follows:
(1) A finite distribution of transition fields is a major compli-

cation for any experimental studies of DTN. Without specific
assumptions regarding the functional form of singularities at
the transition, a meaningful discussion of critical exponents in
DTN in the low-temperature regime is hardly possible. In fact,
none of the new or previously published data can even prove
that the transition is continuous. The order-parameter jump
may be absent, but may also be as large as 20% of saturation.

(2) Assuming a continuous field-induced transition at
temperatures below ∼170 mK, our neutron diffraction data
for the order-parameter exponent β, as well as the previously
published data for the phase boundary [11], are not consistent
with the BEC universality class.

(3) Neither the neutron experiments on DTNX and DTN
nor the previously published susceptibility data contain any
evidence that disorder significantly influences the critical
behavior below T ∼ 170 mK. In particular, the assertion that
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BEC criticality in DTN gives way to Bose glass criticality in
DTNX at present lacks experimental justification.

All in all, DTN demonstrates some fascinating physics at
low temperatures, but appears not to be a particularly good
BEC prototype system, by any measure.
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