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Applications of the generalized Langevin equation: Towards a realistic description of the baths

H. Ness,1,* L. Stella,2 C. D. Lorenz,1 and L. Kantorovich1

1Department of Physics, Faculty of Natural and Mathematical Sciences, King’s College London, Strand, London WC2R 2LS, UK
2Atomistic Simulation Centre, School of Mathematics and Physics, Queen’s University Belfast, University Road,

Belfast BT7 1NN, Northern Ireland, UK
(Received 7 November 2014; revised manuscript received 17 December 2014; published 5 January 2015)

The generalized Langevin equation (GLE) method, as developed previously [L. Stella et al., Phys. Rev. B
89, 134303 (2014)], is used to calculate the dissipative dynamics of systems described at the atomic level. The
GLE scheme goes beyond the commonly used bilinear coupling between the central system and the bath, and
permits us to have a realistic description of both the dissipative central system and its surrounding bath. We
show how to obtain the vibrational properties of a realistic bath and how to convey such properties into an
extended Langevin dynamics by the use of the mapping of the bath vibrational properties onto a set of auxiliary
variables. Our calculations for a model of a Lennard-Jones solid show that our GLE scheme provides a stable
dynamics, with the dissipative/relaxation processes properly described. The total kinetic energy of the central
system always thermalizes toward the expected bath temperature, with appropriate fluctuation around the mean
value. More importantly, we obtain a velocity distribution for the individual atoms in the central system which
follows the expected canonical distribution at the corresponding temperature. This confirms that both our GLE
scheme and our mapping procedure onto an extended Langevin dynamics provide the correct thermostat. We
also examined the velocity autocorrelation functions and compare our results with more conventional Langevin
dynamics.
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I. INTRODUCTION

Being able to describe the dynamics and dissipation of
atomic systems, modeled at the nanoscale, as correctly as
possible is central for modern nanoscience. Nanoscale devices
and materials are becoming increasingly important in the
development of novel technologies. In most applications of
these new nanotechnologies, the central system is part of
a more complex setup where driving forces are present to
establish heat and/or particle flows. The understanding of these
corresponding nonequilibrium properties is of utmost impor-
tance. This is especially true when one considers potential
applications based on the thermal conductivity of materials
[1–8] and the heat transport within nanodevices [9–17]. Other
applications include the study of energy dissipation in solids,
or at the interface between gas phase and a solid phase, and
more generally in nanotribology.

In all the examples given above, one has to consider
the central open system surrounded by a heat bath (an
environment) which is in contact with the system and is kept at
a given temperature. The general technique that is specifically
appropriate for treating this kind of setup is based on the
so-called generalized Langevin equation (GLE) [18–40]. The
GLE is an equation of motion for the non-Markovian stochastic
process where the particle (point particle with mass) has a
memory effect to its velocity.

In the conventional Langevin equation, a particle is
subjected to a viscous drag from the surrounding medium,
characterized by some friction force, and to a stochastic force
that arises because of the coupling of the particle to its
surrounding. The friction constant determines how quickly
the system exchanges energy with the environment. For a
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realistic description of the surrounding, it is difficult to choose
a universal value of the friction constant. Indeed, each of the
vibrational modes in the system would require a different
value of the friction to be sampled with optimal efficiency.
Hence, a generalization of the conventional Langevin equation
is needed, thus leading to the so-called GLE.

Whenever we are interested in computing properties of
materials at constant temperatures using classical molecular
dynamics, it is possible to introduce the so-called thermostats,
that introduce fluctuations in the total energy consistent with
the canonical Gibbs sampling of the trajectories of the atoms
of the considered system. The non-Markovian GLE represents
a remarkably flexible framework which permits one to achieve
a better control over the sampling properties of a molecular
dynamics trajectory, to enhance its sampling efficiency for
all the relevant time scales [35,41–43], to control in a precise
manner the disturbance of the dynamics for different frequency
ranges, and to provide physical nonequilibrium trajectories for
the study of nonequilibrium and/or relaxation processes.

The GLE has been derived, by one of us, for a realistic
system of N particles coupled with a realistic (harmonic) bath,
i.e., a bath described at the atomic level [34]. Non-Markovian
dynamics is obtained for the central system with Gaussian
distributed random forces and a memory kernel that is exactly
proportional to the random force autocorrelation function
[34].

Solving the GLE for complex heterogeneous and extended
systems is still a challenge, even when it is known that the
GLE dynamics is fully consistent in the sense that it fulfils the
Chapmann-Kolmogorov equations [44]. A major step towards
the solution of this problem for a realistic application has been
recently given in Refs. [35,41–43,45]. In particular, a very
efficient algorithm has been developed in Ref. [45] to solve the
GLE numerically while taking into account both fundamental
features of the GLE, i.e., a time-dependent memory kernel and
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the presence of a colored noise which are absolutely essential
for a description of the bath at the atomic level.

Such a tool is crucial for the study of nonequilibrium
processes in nanoscale systems by using molecular dy-
namics simulations. In the latter, the dissipative processes
can be correctly described since the system can exchange
energy (heat) with the environment. The environment is
characterized by a bath (or several baths), its (their) own
dynamical properties going beyond conventional thermostats
used in classical molecular dynamics (MD) simulations
[46–50].

In this paper, we present further necessary developments
and applications of the method given in Ref. [45]. Specifically,
we develop a method and algorithm to calculate the non-
Markovian memory kernel and to perform the mapping of such
a kernel onto an extended Langevin dynamics which permits
us to solve the GLE for realistic systems.

This paper is a proof of principle of the general method
described in Ref. [45]. As a first application of our method,
we consider different model systems that are all based
on a crystalline solid. For numerical convenience, we
model the solid using pairwise Lennard-Jones potentials.
The calculations should be considered as a robust test of
the GLE and methodology rather than a purely realistic
application.

However, in comparison with other GLE implementations,
our method includes a realistic coupling between the central
region and the bath which goes beyond the conventionally used
bilinear coupling. Hence, the extended Langevin dynamics de-
veloped in Ref. [45] is described with a Verlet-type algorithm
which takes full account of a functional of the atomic positions
of the central system (which characterizes the coupling with
the bath). The presence of such a functional renders the
extended Langevin dynamics equations highly nonlinear in
terms of the atomic positions of the central system.

The presented applications are obtained for a “simple”
model system, but show that our scheme is stable and provide
the proper description of the essential thermodynamical
properties of the system, i.e., the proper thermalization of
the system, the proper temporal fluctuations of its energy, the
proper canonical distributions of the velocities, and the proper
behavior of the velocity autocorrelation functions.

The paper is organized as follows. In Sec. II, we recall
the central results for the GLE and how the memory kernel is
connected to the polarization matrix �(ω) which characterizes
the vibrational properties of the bath. Section III is devoted to
the scheme we have developed to calculate the polarization
matrix �(ω) and to map such a central quantity onto a specific
analytical form which permits us to develop an extended
Langevin dynamics from the original GLE. In Sec. IV, we
provide examples of the calculation and mapping of the matrix
�(ω) for a model of a Lennard-Jones (LJ) solid. We then
use such results to calculate the dynamics of the LJ solid
using our extended phase-space GLE dynamics (Sec. V).
We provide results for the thermalization of the system and
analyze in detail the corresponding velocity distributions and
velocity autocorrelation functions. We also show how our
extended GLE dynamics is useful in extracting effective
friction coefficients for more conventional Langevin dynamics.

Finally, we discuss further developments and conclude our
work in Sec. VI.

II. GENERALIZATION AND COMPACT FORM

A. Heuristic GLE and generalization

We first start to recall the physical form and contents of the
GLE. For clarity, we consider here a single degree of freedom
(DOF) q(t) with mass m and momentum p(t) = mq̇(t). The
corresponding GLE is given by [18,51]

mq̈(t) = −∂qV (q) −
∫ t

−∞
dt ′K(t − t ′)p(t ′) + η(t), (1)

where V (q) is the potential energy, dependent only on the
DOF q. The memory kernel K(t − t ′) is a characteristic of
the bath and the random variable η(t) represents a stochastic
process. The latter is described by a colored noise and the
autocorrelation function of the stochastic variable is directly
related to the memory kernel, i.e., 〈η(t)η(t ′)〉 = kBT K(t − t ′),
where kB is the Boltzmann constant, and T the temperature of
the system.

In general, it is difficult to solve the integrodifferential
equation (1), not only because the atomic momentum needs
to be known for all times in the past (t ′ < t), but also because
one has to generate a colored noise η(t) that satisfies the
fluctuation-dissipation relation given above, i.e., the relation
linking the noise autocorrelation function with the memory
kernel.

For some specific analytic forms of the memory kernel, it is
possible to solve exactly the GLE by introducing extra virtual
DOF and working with an extended Langevin dynamics (for
all the DOF) involving new stochastic variables which are then
characterized by a white-noise distribution [26,28].

For example, this can be done with the memory kernel
expressed as a sum of decaying exponentials K(t − t ′) =∑

k e−|t−t ′ |/τk ck/τk [52]. Such a Prony series form of the
memory kernel has been used to enable an extended variable
formalism in Ref. [40]. In this case, different characteristic
times for relaxation and dissipation of energy into the bath
are used. A more evolved model can be obtained by taking
not only different relaxation processes, but also some proper
internal dynamics of the bath, i.e., the bath is also characterized
by some oscillations of frequency ωk . In this case, the memory
kernel has the following form:

K(t − t ′) = g2
∑

k

c(k)2 e−|t−t ′ |/τk cos(ωk|t − t ′|), (2)

with the constant g representing the strength of the coupling
between the system DOF and the bath.

It can be shown [30,31,35,53–55] that the generalized
Langevin equation given in Eq. (1) can be conveniently approx-
imated (for a certain kind of memory kernel) by a Markovian
Langevin dynamics (with white noise) by introducing a set
of auxiliary DOFs. This approximated equivalence becomes
exact in the limit of infinitely many auxiliary DOFs. For
a memory kernel of the type given in Eq. (2), solving the
GLE is equivalent to solving the following extended variable
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dynamics [45]:

mq̈(t) = −∂qV (q) + g
∑

k

c(k)s
(k)
1 ,

ṡ
(k)
1 = − s

(k)
1

τk

+ ωks
(k)
2 − gc(k)mq̇ +

√
2kBT m

τk

ξ
(k)
1 ,

ṡ
(k)
2 = − s

(k)
2

τk

− ωks
(k)
1 +

√
2kBT m

τk

ξ
(k)
2 ,

(3)

where the set s(k)
u are auxiliary DOF [virtual DOF (vDOF), with

u = 1,2] and now the stochastic variables are of the white-
noise type

〈
ξ (k)
u (t)ξ (k′)

v (t ′)
〉 = δuvδkk′δ(t − t ′). (4)

In Ref. [45], we show how to solve Eq. (3) with the white
noise by using a Fokker-Planck (FP) approach. The problem
is solved in a multivariate form [44] and the corresponding
probability density function is explicitly dependent on the
position q, momentum mq̇, and auxiliary DOF s(k)

u . A splitting
approach for the corresponding FP propagator is then used to
obtain a (velocity) Verlet-type algorithm to solve the problem.
The dissipative dynamics hence obtained is strictly equivalent
to the GLE.

A rigorous derivation of the GLE for a complex system
made of N atoms (with positions riα for atom i and Cartesian
coordinate α = x,y, or z) coupled to a realistic bath has
been given by one of us in Ref. [34]. Under rather general
assumptions concerning the classical Hamiltonian of the
system, Eq. (1) can be generalized to many DOF to mimic
the bath. Two important assumptions are used in Ref. [34]:
the fluctuations of the bath atom positions ulγ (for bath atom l

Cartesian coordinate γ ) are taken to be harmonic around their
equilibrium values, and the coupling between the system and
the bath is linear in the bath coordinates. The corresponding
Lagrangian for the interaction between the system and bath
regions is given by

Lint(r,u) = −
∑
lγ

μlflγ ({riα(t)}) ulγ (t) (5)

with μl being the mass of the bath atom l. Hence, for an
arbitrary configuration of the atoms within the system, there
is a force Flγ = μlflγ ({riα(t)}) acting, at time t , on the bath
DOF lγ due to the system-bath coupling.

Under these assumptions, Eq. (1) is generalized for each
riα and one obtains a general kernel Kiα,i ′α′(t,t ′) which is still
related to the noise autocorrelation function as

〈ηiα(t)ηi ′α′(t ′)〉 = kBT Kiα,i ′α′ (t,t ′), (6)

for each noise process ηiα associated with the DOF riα . One
should note that now the memory kernel has a full (t,t ′) time
dependence, and not a dependence on the time difference t − t ′.
This is due to the fact that the system is coupled to the bath via
the function flγ (r(t)) which is implicitly dependent on time.

The memory kernel is expressed in the following manner:

Kiα,i ′α′ (t,t ′)

=
∑
b,b′

giα,b(r(t))
√

μl 
b,b′ (t − t ′)
√

μl′ gi ′α′,b′ (r(t ′)), (7)

where the quantity 
b,b′ (t − t ′) represents the full dynamics
of the bath (with indices b = lγ and b′ = l′γ ′). The quantities
giα,b(r(t)) are obtained the forces fb(r(t)) such as giα,b =
∂fb(r)/∂riα .

Interestingly, the matrix �(t − t ′) follows the time-
translation invariance. If this matrix could be mapped onto
an analytical form of the type given in Eq. (2), one could
develop a corresponding extended Langevin dynamics for
the full GLE. Such a mapping has been done and derived
rigorously in Ref. [45] by using


b,b′ (t − t ′) →
NvDOF∑
k=1

c
(k)
b c

(k)
b′ e−|t−t ′ |/τk cos(ωk|t − t ′|), (8)

and introducing an extra set of NvDOF auxiliary DOF s(k)
u to

solve the GLE in an extended phase space.
Now, a few comments are in order. On the one hand, it

was shown in Ref. [34] that the matrix �(t − t ′) is related
to the dynamical matrix of the bath. The solution of the
eigenvalue problem for the dynamical matrix generates the
eigenmodes of vibration of the system, with frequency ωq and
a corresponding time dependence in cos(ωq |t − t ′|). Such a
result partially justifies the mapping of �(t − t ′) as given in
Eq. (8) as far as the oscillatory behavior in time is concerned.
Note that the mapping in Eq. (8) is used to transform the
Langevin dynamics into an extended phase space where
the solution of such a dynamics is more readily accessible.
The mapping in Eq. (8) does not necessarily imply that all the
ωk parameters associated with the virtual DOF are all equal to
the eigenvalues ωq of the vibrational modes of the infinite bath
region. Crudely speaking, we can consider the ωk as being the
frequencies of “collective” or “coarse-grained” excitations of
the bath. These excitations reduce to the normal modes of the
bath when one considers as many vDOF as there are DOF in
the (actual infinite) bath.

On the other hand, a perturbation introduced in an isolated,
finite-size, harmonic system cannot dissipate and the corre-
sponding induced oscillations will survive forever. However,
for an infinite system in the thermodynamic limit, such
perturbation will fade away in the long-time limit as the system
will equilibrate and return to its thermal equilibrium. In reality,
such a dampening is due to anharmonic effects (phonon-
phonon interaction). Therefore, the exponential decay of the
�(t − t ′) matrix is entirely justified in the thermodynamic
limit. Note that the relaxation times τk are not directly related to
the eigenvalues ωk (e.g., like ωk ∝ 1/τk) since they correspond
to completely different physical processes.

B. Compact matrix form of the GLE

Using the notation of Ref. [45] and the mapping given by
Eq. (8), one can generalize the extended Langevin dynamics
for one DOF given by Eq. (1) to the case of several DOF in the
central system. In a compact matrix form, the corresponding
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extended Langevin dynamics is given by

Mr̈ = −∇rV̄ (r) + m̄Bg(r) c s1,

ṡ1 = −τ−1s1 + ωs2 − mBg(r) c ṙ +
√

2kBT μ̄ τ− 1
2 ξ 1, (9)

ṡ2 = −τ−1s2 − ωs1 +
√

2kBT μ̄ τ− 1
2 ξ 2,

where we recall that r is a vector of components riα for all DOF
of the system (atom i, Cartesian coordinate α = x,y,z), su are
vectors with components s(k)

u corresponding to the extra virtual
DOF for the extended Langevin dynamics, with corresponding
stochastic vectors ξu. Their components ξ (k)

u obey the Gaussian
(white-noise) correlation relation〈

ξ (k)
u (t)ξ (k′)

v (t ′)
〉 = δuvδkk′δ(t − t ′),

〈
ξ (k)
u (t)

〉 = 0. (10)

The quantities M,m̄B,mB are diagonal mass matrices
with elements miδij (for the system atom i), δll′

√
μl/μ̄, and

δll′
√

μlμ̄, respectively, where μ̄ is an effective mass associated
with the virtual DOF s(k)

u . The matrix τ is diagonal, with
relaxation time elements τk associated with each vDOF k.

The potential energy V̄ is given by the nominal potential
energy V inside the system and the potential energy between
the system region and the frozen bath region. There is also
a “polaronic” correction energy due to the coupling between
the system atoms and the harmonic displacements of the bath
atoms around their equilibrium positions:

V̄ (r) = V (r) − 1
2

∑
bb′

√
μlμl′fb(r)
bb′ (0)fb′ (r)

= V (r) − 1
2 f(r)MB

− 1
2 �(0)MB

− 1
2 f(r), (11)

where we use the indices b,b′ for the bath DOF (b = lγ for
bath atom l and Cartesian coordinate γ ), and MB is a diagonal
matrix of the masses of the bath atoms μl . The matrix �(t − t ′)
contains all the information about the dynamics of the bath
region and is related to dynamical matrix of the bath itself. We
provide more detail about � in the following section.

The coupling matrix g(r) with matrix elements giα,b(r) can
be interpreted as a dynamical matrix between the DOF of the
system and the DOF of the bath. As mentioned in the previous
section, these matrix elements are obtained from the derivative
of the forces acting on the bath DOF with respect to the position
of the system DOF, i.e., giα,b = ∂iαfb(r).

Note that, in our notations, the memory kernel
Kiα,i ′α′ (t,t ′; r) entering the definition of the GLE is given by

K(t,t ′; r) = g(r(t))MB

1
2 �(t − t ′)MB

1
2 g(r(t ′)). (12)

Finally, the properties of the bath are characterized by
the matrices τ , ω, and c. They are related to the mapping
performed on � [see Eq. (8) to get the extended Langevin
dynamics, introduced to solve the GLE. Since the � depends
only on the time difference τ = t − t ′, it can be Fourier
transformed. The mapping of �(ω) is then performed using
the following generalized expression [45]:


b,b′ (ω) =
∑

k

c
(k)
b c

(k)
b′

[
τk

1 + (ω −ωk)2τ 2
k

+ τk

1 + (ω + ωk)2τ 2
k

]
,

(13)

which is the Fourier transform of 
lγ,l′γ ′(τ ).

Once more the GLE is solved by considering a multivariate
FP problem. The corresponding probability density function
is now dependent on all positions r, momenta Mṙ, and
auxiliary DOFs s1 and s2 [45]. By using different splitting
for the FP propagator, we obtain [45] the algorithm detailed in
Appendix B.

III. CALCULATIONS OF THE MATRIX �(ω)

As shown in Appendix A, the matrix 
(ω) is related to the
phonon bath propagator D(ω) as follows:


b,b′ (ω) = − 2

|ω| ImDb,b′ (ω), (14)

where the propagator D(ω) is obtained from the dynamical
matrix of the bath D as

Db,b′ (ω) = [ω21 − D + iε]−1
b,b′ , (15)

with ε → 0+.
The aim of the paper is to develop a robust and efficient

numerical scheme to calculate the inverse of the matrix [ω21 −
D + iε] for an infinite bath region, or at least for a very large
bath region. It is clear that direct inversion or diagonalization
of the matrix will be very time and resource consuming.

Furthermore, since the bath region will not generally be a
fully three-dimensional periodic system, a reciprocal k-space
approach is not necessarily best suited for the problem at hand.
Hence, we have chosen a more physically intuitive real-space
approach based on tridiagonalization scheme for inverting the
matrix [ω21 − D].

A. Real-space tridiagonalization approach

We use the Lanczos algorithm

xn+1 = Dxn − anxn − bnxn−1, (16)

where the set of coefficients (an,bn) are constructed from
the iterative Lanczos vectors as follows: an = x†

n Dxn and
bn+1 = ‖xn+1‖ (with b0 = 0, and before each iteration xn+1

is renormalized by 1/bn+1).
The Lanczos algorithm generates the following property:

the mth step of the algorithm transforms the matrix D into a
tridiagonal matrix T (m) = X (m)† DX (m) where Xm is the trans-
formation matrix whose column vectors are x0,x1,x2, . . . ,xm.
The tridiagonal matrix has diagonal elements [T (m)]n,n = an

and off-diagonal elements [T (m)]n+1,n = [T (m)]n,n+1 = bn+1.
It is then easier to calculate the inverse of a matrix when it
is given in a tridiagonal form since it can be expressed as a
continued fraction.

In order to obtain the diagonal elements of [ω21 − D]−1
b,b,

one starts the Lanczos algorithm with an initial Lanczos vector
x0 = ub. The vector ub is a unit vector in the corresponding
vector space. The vector has a length of 3×(NB + Nat) where
NB is the number of atoms in the bath region and Nat the
number of atoms in the central system. The vector ub has all
elements ub[j ] = 0 apart from the component i of interest for
which ub[i] = 1 and which corresponds to the lth bath atom
with Cartesian coordinate γ (b = lγ ).
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After tridiagonalization, we then obtain the element [ω21 −
D]−1

b,b as a continued fraction:

x†
0[ω21 − D]−1x0

= [ω21 − D]−1
b,b = 1

ω2 − a0 − b2
1

ω2 − a1 − b2
2

ω2 − a2 − . . .

.

(17)

In order to calculate the off-diagonal elements
[ω21 − D]−1

b,b′ , one performs two Lanczos iterations starting

with two different initial Lanczos vectors x±
0 = (ub ± ub′ )/

√
2.

The off-diagonal elements are extracted from the difference of
two continued fractions obtained since

[ω21 − D]−1
b,b′

= 1
2 (x+†

0 [ω21 − D]−1x+
0 − x−†

0 [ω21 − D]−1x−
0 ), (18)

and the dynamical matrix is symmetric [D]b,b′ = [D]b′,b.
With this procedure we can calculate all matrix elements


b,b′ from Eq. (14). Another advantage of using the Lanczos
iterative scheme in comparison with exact diagonalization or
inversion comes from the following fact: the correct results
are obtained once the coefficients of the continued fraction
have converged towards an asymptotic value. For the system
we have considered (see the next section), the convergence
is always reached for a level M of the continued fraction
much smaller than the dimension of the dynamical matrix
ND = 3×(NB + Nat). One of the reasons for that is that the
range of the inter-atomic interaction is finite and therefore the
off-diagonal elements of the dynamical matrix decrease with
the interatomic distance between the bath DOF b and b′ quite
rapidly (at least for a nonionic system). In terms of scaling, the
Lanczos scheme appears more efficient since exact diagonal-
ization or inversion scales as N3

D while the Lanczos iterations
involve only matrix-vector multiplication, scaling as N2

D .

B. Mapping the �bb′ (ω) matrix

Once a model atomic configuration for the bath region is
chosen, the corresponding dynamical matrix can be calculated
numerically. Note that in calculating the dynamical matrix of
the bath region which is surrounding the central region (the
system), we have to consider the interactions between the bath
atoms and the central region as well. In doing so, the atoms in
the central system can be placed at their equilibrium positions.

From the knowledge of the dynamical matrix, we can calcu-
late all the matrix elements 
b,b′ using the Lanczos scheme and
then perform the mapping expressed by Eq. (13). We perform
this mapping by fitting the calculated 
b,b′ (ω) functions onto
the sums of Lorentzian functions given by Eq. (13).

Once the mapping is performed, the set of parameters
c

(k)
b , ωk , and τk characterizing the vibrational properties of

the bath region can be used for any extended GLE dynamics
of the central system region. The calculations outlined here
for the virtual DOF associated with the bath are done before
performing any extended GLE dynamics for various systems
coupled to this bath and for different bath temperatures.

There are different ways to perform the fit needed for the
mapping. One could perform a direct brute-force fit of the

b,b′ (ω) functions [NB(NB + 1)/2 functions] altogether onto
the analytical expression used for the mapping and extracting
the relevant parameters c

(k)
b , ωk , and τk . This is, however, a

highly complex task as we have found that reaching local
minima on generalized trajectories in the corresponding phase
space may be impossible to achieve without knowing more
about the location of the expected target in the corresponding
phase space.

The mapping procedure given below is one of many
possible approaches, including conjugated gradient or the
Levenberg-Marquardt algorithm for damped least-square min-
imization which are under consideration [56] or “compressed
sensing” fitting algorithms [57].

In this paper, we use a different method based on a
more intuitive physical approach which can be summarized
as follows. For a finite-size bath, the exact 
b,b′ (ω) is
given by a series of peaks whose positions/amplitudes are
related to the eigenvalues/vectors of the dynamical matrix.
By introducing a Lorentzian broadening of these peaks, the
mapping shown in Eq. (13) is exact when the ωk parameters
are taken to be the eigenvalues of the dynamical matrix, the
c

(k)
b parameters are the components of the eigenvectors on

the basis of the bath DOF b, while the τk parameters are
related to the width of these peaks. For an infinite system
characterizing a realistic bath in the thermodynamic limit,
one would get an infinite number of eigenvalues/vectors,
and the mapping in Eq. (13) becomes approximate since we
consider only a finite number of virtual DOF. In this case,
the mapping corresponds to a “coarse-grained” description of
the bath.

Hence, we have devised the following fitting procedure
of the 
b,b′ (ω) functions (examples of the corresponding
mapping are given in the next section):

(i) Find, numerically, the position of all peaks in all diagonal
elements 
b,b(ω).

(ii) Conserve the most relevant peaks ωk and eventually add
extra peaks, on a denser mesh, around ω → 0 if necessary.
This is a user-dependent choice, the only one in the mapping
procedure. It is very important as it determines the number of
virtual DOF NvDOF.

(iii) For all the diagonal elements 
b,b(ω), use a least-
square fit to determine the amplitude A

(k)
b = |c(k)

b |2 and width
1/τ

(k)
b of each peak corresponding to the virtual DOF k =

1,2, . . . ,NvDOF.
(iv) From the mapping Eq. (13), the τk is independent of

the bath DOF index, hence, take τk = minb{τ (k)
b }.

(v) Determine the sign of the coefficient ±|c(k)
b | from a best

fit on all the NB(NB − 1)/2 off-diagonal elements 
b,b′ (ω).
The algorithm devised above is just one of the many

possible ways of performing the mapping. Our choice clearly
emphasizes a better fit for the diagonal elements 
b,b(ω)
for the mapping Eq. (13). The choice of determining the
sign ±|c(k)

b | is reminiscent of the results obtained for a finite
size system, where the c

(k)
b parameters would be equivalent

to the components of the corresponding eigenvectors of the
dynamical matrix.
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FIG. 1. (Color online) Schematic representation of total systems
under consideration. This includes the finite-size central system (blue)
where the GLE dynamics is performed, and the bath region (pink).
Because the forces fb and the quantities giα,b are of finite range (not
necessarily short ranged), one can perform the mapping of 
bb′ (ω)
on a finite region of space (the bath-reduced region). Furthermore,
the matrix elements 
bb′ (ω) go to zero when the distances between
the two bath DOF b and b′ become large. The central system contains
Nat atoms, the bath region NB atoms, and the reduced-bath region
N red

B atoms, respectively.

Finally, one should note that since the forces fb and
the quantities giα,b are of finite range (not necessarily short
ranged), the kernel built on the quantities giα,b and 
b,b′ [see
Eqs. (7) and (12) does not need to be computed by means of
infinite sums on the bath indices b and b′. Therefore, we can
reduce the number of 
b,b′ components to be calculated. We
perform the mapping of 
b,b′ (ω) on a finite region of space
which we call the bath-reduced region as shown in Fig. 1.
Although this was the strategy adopted in this study, the bath
region used for the mapping and the summation in Eq. (7) with
respect to the bath sites may not necessarily be the same, e.g.,
one may use a larger bath region for the mapping to have a
better representation for the bath when fitting the parameters
(and the number) of the vDOF.

IV. RESULTS FOR THE �(ω) MATRIX

A. Calculation of the polarization matrix �

As a first step in the application of our method, we have
implemented the procedure described above in the classical

MD code LAMMPS [58]. Such a procedure is best suited to study
the dissipative dynamics of the systems schematically depicted
in Fig. 1. These systems are typically either a bulklike cluster
(containing defects or not) coupled to its three-dimensional
surrounding as shown in Fig. 1(a) or any kind of structures
deposited on a surface as shown in Fig. 1(b).

Once the total system is built with a clear distinction
between the central system region and the bath region, we
calculate the dynamical matrix using numerical differentiation
of the forces acting on bath atoms obtained from LAMMPS.
Note that, as mentioned previously, we consider for such
calculations the whole system made of the central system and
the bath region. The dynamical matrix is obtained from the
conventional expression

Db,b′ = 1√
μlμl′

∂2Etot

∂rlγ ∂rl′γ ′
= 1√

μlμl′

∂fb′

∂rlγ

. (19)

In all our calculations, we have verified that the acoustic sum
rule is fulfilled, i.e.,

∑
b Db,b′ = ∑

b′ Db,b′ = 0.
To validate our methodology, we show, in this paper, results

for the mapping of the 
bb′ matrix and for the corresponding
GLE dynamics for a simple model of a Lennard-Jones (LJ)
solid. The interaction between every pair of atoms (i,j ) at
the distance rij is given by the conventional LJ potential
V (rij ) = 4ε[(σ/rij )12 − (σ/rij )6]. For convenience, we take
the LJ parameters (ε = 0.583 eV and σ = 2.77 Å) for a solid
built as a fcc lattice with the lattice parameter a0 = 4.025 Å
(i.e., the nearest-neighbor distance dNN = √

2/2a0 = 2.85 Å)
[59]. In the following, we show results obtained from the
dynamical matrix of the cluster made of 135 atoms (left panel
in Fig. 2).

First, we test the convergence of the calculation of 
b,b′

with respect to the number of Lanczos iterations. Figure 3
shows typical results for the diagonal matrix element 
b,b

(here, b ≡ lx with atom l shown in the left panel of Fig. 2).
As expected, increasing the number of Lanczos iterations
allows us to convergence towards the exact result for 
b,b′

obtained from direct diagonalization. What is very interesting

FIG. 2. (Color online) Model system of a LJ solid, fcc lattice.
(Left) System for the calculation of the dynamical matrix and for
the mapping. It contains the central system (made of Nat atoms) and
the entire bath region (made of NB atoms). It has a corresponding
radius of R = 7.5 Å and NB + Nat = 135. The bath atom labeled l

is colored in yellow, and the bath atom l′ is in light gray (surrounded
by interatomic bonds for clarity). (Right) System for the GLE
calculations. It consists of the system region containing Nat = 19
atoms (yellow), and of the bath-reduced region containing N red

B = 68
atoms (gray-blue).
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FIG. 3. (Color online) Diagonal matrix element 
b,b(ω) for b =
lx, with atom l, shown in the left panel of Fig. 2, calculated from
exact diagonalization of the dynamical matrix, and from the Lanczos
iterative scheme using a different number of iterations. For this
example, one gets good results after 100 iterations which is still much
smaller than Ndim. Calculations are performed with a small imaginary
part ε = 3. Note that, from the definition given in Eq. (A6), the value
of ε has to be compared with the typical ω2

λ values. Only the ω � 0
part of the functions is shown here and below since 
b,b′ (ω) is an
even function.

and useful for numerical applications is that 
b,b′ can be
obtained with a good level of accuracy from a number of
iterations much smaller than the actual dimension Ndim of the
dynamical matrix. We suspect that such a behavior arises from
the structure of the dynamical matrix, which presents the form
of a sparse matrix. This is typical for a system with interaction
of a finite range; however, a similar result may not hold for a
system in which the interaction between atoms is dominated
by long-range Coulomb interactions.

Figure 4 shows some typical examples for the off-diagonal
matrix elements 
b,b′ obtained from converged Lanczos
iterations. As expected, the off-diagonal elements have both
positive and negative contributions, only the diagonal matrix
elements are positive functions of ω. Furthermore, each peak
in the 
b,b′ (ω) functions [as well as for the diagonal 
b,b(ω)
functions] corresponds to an eigenvalue of the dynamical
matrix. Note that it does not imply that all eigenvalues are
necessarily represented by peaks in any 
b,b′ (ω) functions.

Another important point concerns the amplitude of the

b,b′ (ω) functions: the amplitude of the off-diagonal elements
is much smaller than the amplitude of the diagonal ones (at
least one order of magnitude smaller for the examples shown
in Figs. 3 and 4). This is even more true when the spatial
separation dll′ between the two-bath DOF b and b′ becomes
larger (dll′ � a0). Such a behavior justifies a posteriori the
fact that one does not need to consider all the matrix elements
of an infinite bath to be able to describe properly its intrinsic
vibrational properties.

We now study the convergence properties of the 
b,b′ (ω)
versus the size of the considered bath region. This is important
as increasing the size of the cluster considered in the Lanczos

10 20 30 40 50 60

ω [ ps-1 ]

-2e-05

-1e-05

0

1e-05

2e-05

b = lx , b′ = ly
b = lx , b′ = l ′x

Πbb′(ω)

FIG. 4. (Color online) Examples of two off-diagonal matrix
elements 
b,b′ (ω) corresponding to a local (in space) matrix element
b = lx, b = ly, and a nonlocal matrix element b = lx, b = l′x where
the distance between the two atoms l and l′ is dll′ = 2.12a0 =
8.54 Å. The diamond symbols represent the exact eigenvalues of the
corresponding dynamical matrix. Calculations are performed with a
small imaginary part ε = 3. The two atoms corresponding to the DOF
b and b′ are shown in the left panel of Fig. 2.

procedure makes more remote atoms of the bath to be available
to the Lanczos iterations. For that, we consider one 
b,b(ω)
for one fixed bath index b located inside the bath-reduced
region (see the yellow atom in the 135 atoms cluster with a
radius of R = 7.5 Å shown in the left panel of Fig. 2). We
then add extra layers of atoms to this cluster to simulate a
larger bath region. The convergence of the 
b,b(ω) function
is shown in Fig. 5. The convergence in the line shape of the
matrix element 
b,b(ω) is achieved for a bath region of radius
R � 12 Å, which corresponds to R ∼ 3a0. These results show
that the vibrational properties of the bath are more long ranged
than initially expected. We believe that the convergence does
depend on the range of the pairwise potential, which in our
case is modeled with a cutoff of Rcutoff = 6.5 ∼ 1.6a0.

Finally, we would like to comment on the behavior of the

b,b′ (ω) functions in the limit of ω → 0. The lowest-frequency
behavior seems to be like ±1/ωa (with a ∼ 1.0). In principle,
one would expect a finite value for 
b,b(ω → 0) as was
shown analytically in Ref. [45] for a simple one-dimensional
model. We argue that the behavior at small ω we observe
in our numerical simulations is due to a finite-size effect.
The acoustic long-ranged vibrational properties of a solid
are not appropriately well described using finite-size cluster
dynamical matrix calculations. This is clear from Fig. 5
that such a behavior becomes less and less dominant in the
line shape of 
b,b(ω) function when the size of the system
increases. The larger systems are considered, the better the
description of the low-frequency, long-wavelength vibrations
will be.

However, we want to stress that such low-frequency
acoustic modes are not the vibrational modes which will be
dominant in the dissipation processes between the system and
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FIG. 5. (Color online) Convergence of the diagonal matrix ele-
ment 
b,b(ω) with respect to the size of the bath region. The bath DOF
b = lx is the yellow atom in the cluster made of 135 atoms (radius
R = 7.5 Å) as shown in the left panel of Fig. 2. By adding extra
layers of bath atoms, the size of the cluster increases further from
225 atoms (radius R = 9.5 Å), 369 atoms (R = 11 Å), 555 atoms
(R = 12.5 Å), 767 atoms (R = 14 Å), 1061 atoms (R = 15.5 Å),
to 1505 atoms (R = 18 Å). The convergence of the line shape of
the matrix element 
b,b(ω) is achieved for a bath region of radius
R � 12 Å. Calculations are performed with an imaginary part ε = 9
to obtain smooth curves.

the bath regions. In the following sections, we show that an
approximate description of the low-frequency range of the

b,b′ (ω) functions does not lead to the wrong physical behavior
of the dynamics of the systems obtained from the GLE, at least
for not too long MD runs.

B. Fitting the diagonal elements of �b,b(ω)

Once we have chosen the number of vDOF we want to work
with, the fitting procedure described in Sec. III B is used to map
the diagonal elements 
b,b(ω) according to the expression
given in Eq. (13).

We chose to consider below the 
b,b(ω) functions which
present a lot of peaks, as opposed to low-features functions
obtained with a large bath region (see Fig. 5). We do this in
order to test the robustness of our fitting procedure.

Figure 6 shows a typical example of our mapping procedure
for a diagonal element of 
b,b(ω). The best fit is given by the
red curves. After fitting all the diagonal elements 
b,b(ω),
we calculated (as explained in Sec. III B) an effective τk value
associated with each peak at ωk , as the extended Langevin
dynamics deals with {τk,ωk} parameters independent of the
bath index b. Using the smallest of all τk (for each peak at ωk),
we still obtain a good fit (blue curves) of the original 
b,b(ω)
result.

Note that as expected for any fitting procedure, the more
elementary functions (Lorentzian of width 1/τk and position
ωk) are used for the mapping, the better the fit is. However,
we show in the following that both sets of fitting parameters
will lead to a proper physical behavior of the system, i.e., as
far as the thermalization of the kinetic energy and velocity
distributions are concerned.

0 20 40 60 80

ω [ ps-1 ]

0

0.0002

0.0004

Lancos
best fit
fit with averaged τk
ωk (33 values)

Πb,b(ω)

0 20 40 6 0

ω [ ps-1 ]

0

0.0002

0.0004

Lanczos
best fit
fit with averaged τk
ωk (117 values)

FIG. 6. (Color online) Typical example for the fit of a diagonal
element of 
b,b(ω) performed by using 33 different values for the
vDOF peak positions ωk (top panel) and 117 values for ωk (bottom
panel). As one would expect for any fitting procedure, the more
elementary functions are put in the fit, here Lorentzian of width 1/τk

and position ωk , the better the fit is.

C. Fitting the off-diagonal elements of �b,b′ (ω)

As explained in Sec. III B, once the parameters τk and |c(k)
b |

are obtained from the fits of the diagonal elements 
b,b(ω),
the proper sign of all the coefficients c

(k)
b is determined from

the best fit of the off-diagonal elements 
b,b′ (ω). A typical
best fit result is shown in Fig. 7.

With such a procedure, we obtain an approximate fit
of the 
b,b′ (ω) function, which is not as good as for the
diagonal elements. However, in some ranges of frequency,
the off-diagonal matrix elements are very well reproduced by
our mapping scheme as shown in Fig. 7.

We would like to stress again that the fitting scheme of
all 
b,b′ (ω) functions is a highly nontrivial multivariable
optimization problem, which includes strong constraints (i.e.,
the parameters {τk,ωk} are independent of the bath indexes
b,b′). In this paper, we have provided one possible scheme to
perform such a mapping, but many more are available. We are
currently investigating other routes [56].
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FIG. 7. (Color online) Typical example for the fit of an off-
diagonal element of 
b,b′ (ω). Fit is performed by using 117 different
values for the vDOF peak position ωk .

V. RESULTS FOR THE GLE IN THE EXTENDED
PHASE SPACE

A. Thermalization of the system

First of all, we study how the system thermalizes in our
model of a realistic bath characterized by a set of parameters
{τk,ωk,c

(k)
b }. Initially, the atomic positions in the central system

are at equilibrium and all velocities are set to zero. We then
run different extended GLE dynamics simulations using the
algorithm described in detail in Appendix B.

We want to stress that all the dynamics we have obtained,
for the different sets of parameters {τk,ωk,c

(k)
b }, are stable. We

do not obtain any pathological behavior in the calculations
of the atomic positions and velocities over thousands of time
steps (runs of up to 80 ps using a time step of �t = 1 fs). In
the following, we present a few selected results from all the
calculations we have performed.

Figures 8 and 9 represent the evolution of the total kinetic
energy for the system shown in the right panel of Fig. 2. The
system on which the GLE is performed contains Nat = 19
atoms, and the bath-reduced region contains 68 atoms. The
mapping of the 
bb′ (ω) functions is performed by using 33
vDOF (see Fig. 8) and 117 vDOF (see Fig. 9). We recall
that during the mapping procedure, the dynamical matrix is
obtained for a bath region of radius R = 7.5 Å which contains
135 atoms (see left panel of Fig. 2).

The results of our GLE calculations show that the system
thermalizes towards the proper equilibrium temperature as
expected since the averaged total kinetic energy follows the
equipartition principle and oscillates around the expected value
of ETOT

kin = 3/2NatkBT . Such a behavior is obtained for all
the temperatures T = 100, 300, 600, and 800 K we have
considered and for different sets of fitting parameters. The
time taken by the system to reach the thermal equilibrium
depends strongly on the values of the fitting parameters, more
specifically on the relaxation times {τk} associated with the
vDOF.

0 5000 10000 15000 20000 25000 30000
time step [ 0.001 ps ]

0

0.05

0.1

0.15 T = 100
T = 300
T = 600
T = 800

Ekin
TOT / Nat

FIG. 8. (Color online) Total kinetic energy of the system region
containing 19 atoms shown in the right panel of Fig. 2. The GLE
calculations are performed for different bath temperatures T (in K)
and for a set of fitting parameters obtained with 33 vDOF, and for the
bath region of radius R = 7.5 Å (135 atoms) (see Fig. 6). The system
thermalizes to the proper equilibrium temperature after t ∼ 15–18 ps.
The horizontal lines correspond to the different values of 3/2kBT and
show that the GLE dynamics properly equilibrates the system region
according to the equipartition principle. The energies are given in eV.

Further examples for the thermalization of the system are
provided in Appendix C.

B. Velocity distributions

From the time evolution of the total kinetic energy, we can
extract an effective velocity veff from the relation 1/2mv2

eff =
ETOT

kin /Nat. Using the time series of such a velocity, we can
build up a histogram of the velocity in a range of the time
span [t1,t2] for which the system is thermalized. Figure 10
represents such a histogram for different temperatures, using
the values of the total kinetic energy shown in Fig. 9 and for
the range [t1,t2] = [20,32] ps.

We have checked that the full width at half maximum
(FWHM) follows the behavior of a Gaussian distribution
in e−βmv2

eff/2, i.e., the ratio between two FWHMs for two
different temperatures is like �veff(T1)/�veff(T2) = √

T1/T2.
In other words, such a result can be understood as follows:
the system thermalizes to the expected bath temperature, and
the corresponding effective temperature fluctuates around the
mean value according to a Gaussian distribution.

More importantly, we can also study the statistics of the
velocity of individual atoms in the central region. For that,
we build the velocity distribution Pv(ti) of the velocities
vi = (

∑
α = x,y,z v2

iα)1/2 of each individual atom i in the central
region for the set of velocities obtained at time ti when the
system is thermalized. In order to obtain a better statistical
representation of such a distribution, we calculate an averaged
distribution

P̄v =
Nts∑
i=1

Pv(ti)/Nts (20)
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FIG. 9. (Color online) Total kinetic energy of the system region
containing 19 atoms shown in the right panel of Fig. 2. The
GLE calculations are performed for different bath temperatures
T (in K) and for the set of fitting parameters obtained with
117 vDOF (see Figs. 6 and 7). The results are quantitatively different
from the calculations performed with 33 vDOF (Fig. 8), but are
qualitatively similar. The system thermalizes, as expected, to the
proper equilibrium temperature after a shorter time t ∼ 12–15 ps in
comparison with Fig. 8.

over a set of Nts different times ti in the time range [t1,t2] for
which the system is thermalized.

An example of the velocity distribution P̄v is shown in
Fig. 11. The GLE calculations were performed by using
the set of parameters {τk,ωk,c

(k)
b } based on 117 vDOF. In

the calculation of P̄v , we used Nts = 220 different time
steps ti equally spaced in the time range t = [30,52] ps.
We also compared the calculated distribution P̄v with the

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
veff  - 〈veff 〉 [Å ps-1 ]

0

0.1

0.2

0.3

0.4

co
un

t (
ar

b.
 u

ni
t)

T = 100
T = 300
T = 600
T = 800

FIG. 10. (Color online) Histograms of the effective velocity built
from the time series of the kinetic energy shown in Fig. 9. The
histograms are centered around the corresponding mean effective
velocity 〈veff〉. The widths of the distributions follow a Gaussian
distribution in exp(−βmv2

eff/2).
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FIG. 11. (Color online) Histograms of the velocity distribution
P̄v calculated from a GLE dynamics based on the use of 117 vDOF.
P̄v is obtained from Nts = 220 different time steps ti taken in the
range t = [30,52] ps. The broken curves correspond to the Maxwell-
Boltzmann distribution fv and represent an almost perfect fit between
the two velocity distributions.

corresponding Maxwell-Boltzmann distribution defined as

fv =
√(

mβ

2π

)3

4πv2e−mv2/2β. (21)

From Fig. 11, we can see an almost perfect match between the
two distributions P̄v and fv .

To conclude this section, we can confidently say that our
extended GLE calculations provide a good thermostat model,
in the sense that the central system thermalizes towards the
expected temperature, with expected Gaussian fluctuations
around the mean value of the effective temperature. More
importantly, the thermostat provides the correct canonical
distribution of the velocities in the central region once the
system is thermalized.

C. Velocity autocorrelation functions

One last dynamical quantity that we need to examine is the
velocity autocorrelation functions of the central system. The
velocity autocorrelation functions (VACF) are calculated from

〈v(t0)v(t + t0)〉 =
∑
iα

viα(t0)viα(t + t0)/(3Nat) (22)

for all atoms i of the central region and with t > t0.
For the two times t0 and t being within the time range where

the system is thermalized, the VACF should be dependent
only on the time argument difference �t = (t + t0) − t0, i.e.,
independent of the initial time t0. In order to obtain a better
statistical representation of the VACF, we also calculate an
averaged VACF from different Nsamp samplings of the initial
time t0 in a time range where the system is thermalized:

〈v(0)v(t)〉 =
Nsamp∑
{t0}

〈v(t0)v(t + t0)〉/Nsamp. (23)
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FIG. 12. (Color online) Velocity autocorrelation functions for the
central system region containing 19 atoms. Calculations for the
averaged VACF 〈v(0)v(t)〉 are obtained with the set of fitting
parameters corresponding to Fig. 9 and for two temperatures T =
100 K (top panel) and 600 K (bottom panel). The average is obtained
from 300 different samplings of the initial time t0 over the time range
[40,41.5] ps. The different thin lines correspond to different sets of
sampling. The dotted lines in the upper panel are a guide for the eye
to show the decaying of the VACF with the time difference �t .

Figure 12 represents the corresponding averaged velocity
autocorrelation functions 〈v(0)v(t)〉 for the central system
containing 19 atoms shown in Fig. 2 and for the temperature
T = 100 K. The GLE calculations were performed with the
set of fitting parameters based on 117 vDOF. The averaged
VACF was calculated for t0 ∼ 40 ps and t ∼ 40.5 ps and
using 300 different samplings of the initial time t0 over the
time range ∼ [40,41.5] ps. Our GLE results show the proper
decaying behavior of the VACF with the time difference �t .
It is interesting to note that the loss of the velocity correlation
occurs on a much shorter time scale than the time scale
corresponding to the thermalization of the system (starting
from zero velocities).

D. Simplified Langevin dynamics with a single
friction coefficient

To further confirm the validity of our approach, we now
compare our GLE results with the more conventional approach
of the Langevin dynamics, using a more heuristic description
of the dissipation in the system:

ṗ = −∇rV̄ (r) − γ p + ξG (24)

with the momentum vector p = Mṙ and the random noise
vector ξG. The latter follows a Gaussian distribution [44,52].
The random noise has the dispersion which is related directly
to the friction coefficient via the well-known expression σ 2

i =
2Miγ kBT /�t , where �t is the time step of the dynamics.
Note that the friction and random forces are applied here to
all the atoms of the central system. The Gaussian Langevin
dynamics has already been implemented in the code LAMMPS

[50,58].
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FIG. 13. (Color online) Total kinetic energy of the system region
containing 19 atoms shown in the right panel of Fig. 2. The plots
show a comparison between GLE calculations and conventional
Langevin dynamics with a simple friction constant γ for bath
temperature of T = 100 K. All total kinetic energies converge towards
the expected thermodynamical equilibrium value. One obtains a
good correspondence between the conventional Langevin dynamics
and the GLE dynamics for a friction constant γ = 1/τdamp, with
τdamp ∼ 9.0–9.5 ps. Initially, all velocities are set to zero.

Figure 13 shows the time evolution of the total kinetic
energy of the system region containing 19 atoms (right panel
of Fig. 2). Both GLE and conventional Langevin dynamics
provide a total kinetic energy that converges towards the
expected thermodynamical equilibrium value of 3/2NatkBT

(with T = 100 K). One can see that the conventional Langevin
dynamics results can fit fairly well the results obtained from
the GLE calculations by adjusting the friction coefficient γ .
For the target temperature of the bath T = 100 K and the initial
temperature Tinit = 0 (initially, all velocities are set to zero),
we obtain the best correspondence between the conventional
Langevin dynamics and the GLE dynamics for the friction
constant value γ = 1/τdamp with τdamp ∼ 9.0–9.5 ps.

Such a range of values for the friction constant of the
conventional Langevin dynamics seems to provide the ap-
propriate behavior of the total kinetic energy for the model
bath we have used. We have checked that the range τdamp ∼
9.0–9.5 ps provides the appropriate behavior of ETOT

kin when
the dynamics is started with initial velocities different from
zero. Furthermore, we have also checked that such a range of
τdamp is appropriate for a range of temperatures going from
T = 100 to 600 K.

Finally, we can compare the VACF obtained from the
conventional Langevin dynamics with our GLE calculations.
Figure 14 shows the averaged VACF for one temperature. The
averages of the VACF are performed in exactly the same way
for all the calculations. We can observe a good correspondence
between the GLE and conventional Langevin calculations. The
loss of correlation in the velocities appears slightly earlier for
the GLE calculations. The dependence of the VACF upon the
friction constant seems weaker than for the kinetic energy,
however, the best correspondences are obtained for the range
of damping τdamp ∼ 9.0–9.5 ps.
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FIG. 14. (Color online) Velocity autocorrelation functions for the
central system region containing 19 atoms. The plots show the
averaged VACF 〈v(0)v(t)〉 for a temperature T = 100 K for the GLE
runs based on 117 vDOF and for the conventional Langevin dynamics
(LGauss) with different friction constants γ = 1/τdamp. The average
is obtained from 600 different samplings of the initial time t0 over
the time range [48.5,49.0] ps. All averaged VACF are performed in
exactly the same manner.

It should be noted that, for the present model of a
homogeneous LJ solid used in our calculations, the results
obtained with the conventional Langevin dynamics are indeed
very similar to the results obtained with our more general and
complex GLE method. However, there is one fundamental
difference between the two approaches: the conventional
Langevin dynamics requires an a priori unknown input
parameter, i.e., the friction constant γ , which is not the case
for our GLE approach. As shown above, our GLE approach
can be used to extract such an input parameter for the heuristic
Langevin equation.

VI. SUMMARY AND DISCUSSION

In this paper, we have implemented the GLE scheme
developed in Refs. [34,45] and have shown several applications
for systems described at the atomic level. We recall that this
GLE scheme goes beyond a bilinear coupling between the
central system and the bath, and permits us to have a realistic
description (i.e., at the atomic level) of both the dissipative
central system and its surrounding bath. This implementation
of the GLE scheme is done in the classical MD code
LAMMPS.

We have shown how to obtain the vibrational properties
of a realistic bath and how to convey such properties into an
extended Langevin dynamics by the use of the mapping of
the bath vibrational properties onto a set of auxiliary DOF
[see Eq. (13)].

Different applications of such a mapping scheme and of the
corresponding extended Langevin dynamics were given for
different models of a LJ solid. In this paper, the implementation
of our GLE method is done for pairwise interatomic potential.
The use of such potentials makes the calculations of the

different quantities, such as fb({riα}) and giα,b({riα}), to be
evaluated twice at each time step, much faster. Implementation
for any type of N -body potential is under consideration.

All our calculations show that our GLE scheme provides
a stable Langevin dynamics, with the dissipative/relaxation
processes properly described. The total kinetic energy of the
central system always thermalizes toward the expected bath
temperature, with appropriate fluctuation around the mean
value. More importantly, we obtain a velocity distribution
for the individual atoms in the central system which follows
the expected canonical distribution at the corresponding
temperature. This confirms that both our GLE scheme and
our mapping procedure onto an extended Langevin dynamics
provide the correct thermostat. We have also examined
the corresponding VACF and found that the velocities lose
correlations as expected, however, the corresponding time
scale is much shorter than the time taken by the system to
reach thermalization.

We have also compared our GLE results with respect to
more conventional Langevin dynamics based on a single re-
laxation time (i.e., single friction coefficient). Our calculations
have shown the possibility of extracting an effective friction
coefficient from our realistic bath model, which then could be
used a posteriori in a much less expensive Langevin dynamics.
Our calculations have shown that the obtained effective friction
coefficient is independent on the initial distribution of the
velocities and on the temperature of the system (at least for the
range 100–600 K we have considered).

One has to have in mind, however, that it is only for the
rather simple model system considered here that the friction
coefficient of the heuristic Langevin dynamics was found to
be temperature independent. There is no reason to believe that
this is a general rule and that for other systems, e.g., highly
inhomogeneous, it will still be the case. Furthermore, in the
cases of heterogeneous systems, different values of the friction
coefficient for different species need to be found. It is not clear
a priori what value is to be used, and also how the right value
can be chosen in practice. Indeed, as was shown in Ref. [60],
any value of the friction coefficient, even if applied not to all
atoms of the system, would always bring the system to the
equilibrium state described by the corresponding canonical
distribution. Hence, the value of the friction parameter(s)
can only be obtained by running genuinely nonequilibrium
simulations, e.g., on heat transport, rate of equilibration, and
so on. It seems that using GLE eliminates all these problems by
providing a clear and fundamentally sound platform for either
running (more expensive) GLE-type calculations or using GLE
for fitting the value(s) of the friction coefficient(s). If necessary,
temperature-dependent friction is also within reach.

Finally, we would like to comment on two different
points. First, the results presented in this paper were obtained
for a homogeneous “rather simple” system (i.e., made of
only one chemical species); furthermore, the system does
not have a complicated geometry. Our GLE scheme is,
however, applicable to much more complex systems (i.e.,
highly heterogeneous, and with complex structures such as
biolike molecules deposited on rough surfaces). The results
presented in this paper should be mostly understood as a proof
of principle of our methodology.
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For complex systems, we expect that the bath vibrational
properties will present more specific features which will lead
to more specific properties of the memory kernel. In turn, the
properties of such a kernel will strongly affect, by some kind of
selective processes, the efficiency of some vibrational modes
of the central region to exchange energy with the surrounding
bath. We expect that such specific bath properties will be
central in the thermalization and relaxation processes of (small
to large) molecules grafted onto surfaces or clusters (and into
the presence or not of solvents).

Second, a large number of equilibrium thermostats has been
designed up to date (see Ref. [50] and references therein).
The GLE can be used to provide exactly the same results as
obtained from these equilibrium thermostates, albeit with a
higher computational cost. However, the main advantage of
the GLE, as compared with the other available equilibrium
thermostats, is that it is also applicable to the study of
nonequilibrium processes. For instance, the GLE technique
is, by essence, naturally applicable for studying the phonon
contribution to thermal transport through bulk materials or
nanojunctions. Such nonequilibrium processes can be treated
by coupling the central system to more than one bath. Each
bath would be at its own equilibrium, and one cannot define
a single temperature for the whole system. In that case, the
central system does not evolve towards an equilibrium state,
but will eventually reach a steady state regime characterized
by heat flows between the central system and the baths. To
study such processes, the GLE equation (9) can be generalized
to include the nonequilibrium conditions when the different
baths are independent (i.e., not coupled to each other in any
way). For that we simply need to extend the number of virtual
DOF to obtain a set of parameters {τk,ωk,c

(k)
b }ν for each bath

ν at temperature Tν . Each bath ν will also be characterized
by its own dynamical matrix and matrix elements 
ν

b,b′ . The
implementation of such nonequilibrium extended Langevin
dynamics is currently under development.
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APPENDIX A: BATH VIBRATION PROPAGATOR
AND � MATRIX

In Ref. [34] it is shown that, in the time representation, the
matrix �(t − t ′) is related to the bath propagator D(t − t ′) via
∂τ�(τ ) = −D(τ ).

The bath propagator D(t − t ′) is the solution of the
harmonic dynamics of the bath DOF:

∑
b1

[
∂2
t + Db,b1

]
Db1,b′ (t − t ′) = δ(t − t ′)δb,b′ , (A1)

where [D]b,b′ are the elements of the dynamical matrix of the
bath region.

The elements of the matrix � are given by [34]


b,b′ (t − t ′) =
∑

λ

e
b†
λ eb′

λ

cos ωλ(t − t ′)
ω2

λ

, (A2)

where λ labels the eigenstates of the dynamical matrix D with
eigenvalues ω2

λ and eigenvectors eλ with component eb
λ in the

bath region.
As all quantities depend only on a single time argument, one

can pass into the energy representation after using the Fourier
transform. The bath propagator D(ω) is then the solution of

∑
b1

[(iω)21 + D]b,b1Db1,b′ (ω) = δb,b′ (A3)

and


b,b′ (ω) =
∑

λ

e
b†
λ eb′

λ

1

ω2
λ

[δ(ω − ωλ) + δ(ω + ωλ)]
2π

2

=
∑

λ

e
b†
λ eb′

λ

2π

|ωλ|δ
(
ω2 − ω2

λ

)

= 2π

|ω|
∑

λ

e
b†
λ eb′

λ δ
(
ω2 − ω2

λ

)
. (A4)

It is now easy to find the relationship between �(ω) and
D(ω):


b,b′ (ω) = − 2

|ω| Im[ω21 − D + iε]−1
b,b′ , (A5)

by introducing a small imaginary part in

Db,b′ (ω) = −
∑

λ

e
b†
λ eb′

λ

(
ω2 − ω2

λ + iε
)−1

(A6)

and using the fact that iω�(ω) = −D(ω).

APPENDIX B: VERLET-TYPE ALGORITHM
FOR THE EXTENDED LANGEVIN DYNAMICS

Following the prescriptions given in Ref. [45], we use the
following algorithm for a single time step �t . The algorithm
is derived, in a Verlet style, from a different splitting and
a Trotter-type decomposition of the total Liouvillian for the
extended Langevin dynamics of the system DOF riα and
the virtual DOF s

(k)
1,2. Such a decomposition has been shown

to provide a more appropriate description of the velocity
correlation functions [39].

Algorithm:

(A) Randomize and propagate the vDOF

s(k)
x ← aks

(k)
x + bkξ

(k)
x .
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(B) Calculate all fb({riα}) and giα,b({riα}).
(C) Propagate the DOF and vDOF

viα ← viα +
(
fiα + f

pol
iα + f

pGLE
iα

) �t

2mi

,

s
(k)
2 ← s

(k)
2 − ωks

(k)
1

�t

2
,

riα ← riα + viα�t.

(D) Recalculate all fb({riα}) and giα,b({riα}).
(E) Propagate the DOF and vDOF

s
(k)
1 ← s

(k)
1 +

(
ωks

(k)
2 + f sGLE

k

)
�t,

viα ← viα +
(
fiα + f

pol
iα + f

pGLE
iα

) �t

2mi

,

s
(k)
2 ← s

(k)
2 − ωks

(k)
1

�t

2
.

(F) Randomize and propagate the vDOF

s(k)
x ← aks

(k)
x + bkξ

(k)
x ,

(B1)

where the different forces fiα,f
pol
iα ,f

pGLE
iα ,f sGLE

k are explained
in the following. The force

fiα = −∂V (r)

∂riα

(B2)

is the force acting on the system DOF iα due to the interaction
between the atoms in the system and in the bath region(s); the
“polaronic” force f

pol
iα ,

f
pol
iα =

∑
b,b′

√
μlμl′ giα,b 
bb′ (0)fb′

=
∑
b,b′,k

√
μlμl′ giα,b({riα}) c

(k)
b c

(k)
b′ fb′ ({riα}) (B3)

(with b ≡ lγ for the bath DOF) is the force acting on the
system DOF iα due to the interaction between the system and
bath regions which induces a displacement of the positions of
the harmonic oscillators characterizing the bath. In Eq. (B3),
we used the fact that 
bb′ (0) is the inverse Fourier transform
(evaluated at τ = 0) of 
bb′ (ω) given by Eq. (13).

The force f
pGLE
iα acts on the system DOF iα and arises from

the generalized Langevin equations

f
pGLE
iα =

∑
b,k

√
μl

μ̄
giα,b({riα}) c

(k)
b s

(k)
1 (B4)

and the force f sGLE acts on the vDOF s
(k)
1 and also arises from

the generalized Langevin equations

f sGLE
k = −

∑
iα,b

√
μlμ̄ giα,b({riα}) c

(k)
b viα. (B5)

The integration of the dissipative part of the dynamics of
the vDOF [see steps (A) and (F) in the algorithm] includes the
coefficients ak = exp(−�t/2τk) and bk = [kBT μ̄(1 − a2

k )]1/2

and the uncorrelated random variable ξ
(k)
1,2 corresponding to the

white noise.

APPENDIX C: FURTHER EXAMPLES FOR
THE SYSTEM THERMALIZATION

Figure 15 shows another example of the time evolution
of the total kinetic energy of the central system. For these
calculations, the set of parameters {τk,ωk,c

(k)
b } correspond to

48 vDOF, and the mapping is performed for the larger bath
region of radius R = 12.5 Å (555 atoms) (for an example of
the corresponding 
bb functions, see the red curve in Fig. 5).
Once more, we can observe the thermalization of the system
towards the expected equilibrium thermodynamical values for
the two different temperatures. However, the overall dynamics
is slower than in the previous two cases. Such a behavior
depends on the values of the parameters {τk,ωk,c

(k)
b } obtained

from the mapping.
We would like to mention that we can perform an analysis of

the temporal evolution of kinetic energy in terms of the values
of the relaxation times. Such an analysis is approximate, but
still good enough when the spreading of the different values of
the parameters τk , for a given fit, is not too large. In such a case,
all τk values are almost the same. For the example of a poor fit
shown in the inset of Fig. 15, we have τk ∼ 0.05 ps for all the
27 vDOF. The corresponding total kinetic energy (blue curve
in Fig. 15) approaches the thermal equilibrium value more
quickly than for the mapping obtained with 48 vDOF. Indeed,
for the mapping done with 48 vDOF, we have τk parameters
with more spread values and an averaged relaxation time is
around 2–3 ps which is much larger than ∼0.05 ps and explains
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FIG. 15. (Color online) Total kinetic energy of the system region
containing 19 atoms shown in the right panel of Fig. 2. The GLE
calculations are performed for different bath temperatures T (in K)
and for the set of fitting parameters obtained with 48 vDOF, and for
a larger bath region of radius R = 12.5 Å (555 atoms) (see a corre-
sponding 
b,b function given by the red curve in Fig. 5). The system
thermalizes, as expected, to the proper equilibrium temperature after a
time t ∼ 30 ps. The inset represents a poor fitting of the 
bb′ functions
with 27 vDOF, with the dashed curve representing the fit and the
red curve the exact result. The corresponding GLE calculations for
the total kinetic energy (blue broken line) are shown for T = 100.
The system thermalizes much faster because the corresponding
values of the τk parameters are much smaller than for the fit using
48 vDOF.
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why the system (described with the 48 vDOF) thermalizes on
a longer time scale than the system described by a poor fit with
27 DOF.

For the results presented in Figs. 8 and 9, the distribution
of the values of the parameters τk is substantially broader

with values ranging from τk ∼ 0.06 to ∼6 ps for the mapping
made with 117 vDOF, and from ∼0.06 to ∼14 ps for the
mapping made with 33 vDOF. Correspondingly, the time
taken by the system to thermalize is intermediate between
the thermalization times shown in Fig. 15.
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