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Interacting tunneling model for two-level systems in amorphous materials and its predictions for
their dephasing and noise in superconducting microresonators
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We use a tunneling model for two-level systems in insulators that takes into account the interaction between
them and a slow power-law dependence of their density of states. We show that the predictions of this model
are in a perfect agreement with the recent studies of the noise in high quality superconducting resonators. The
predictions also agree with the temperature dependence of the TLS dephasing rates observed in phase qubits.
Both observations are impossible to explain in the framework of the standard tunneling model of TLS. We discuss
the origin of the universal dimensionless parameter that controls the interaction between TLS in glasses and show
that it is consistent with the assumptions of the model.
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I. INTRODUCTION

Thin-film high quality superconducting resonators are
important for a number of applications, ranging from quantum
computation to submillimeter and far-infrared astronomy [1].
The performance of these devices has improved dramatically
over the past decades and resonator quality factors above
106 are now routinely fabricated using single-layer super-
conductors deposited on high quality low-loss crystalline
substrate. Achieving resonators with high quality factors
requires minimization of all potential sources of dissipation
and noise.

The major source of dissipation and noise in the resonators
is two-level systems (TLSs) located in the amorphous di-
electrics. The presence and importance of TLSs was proven
by the measurements of the resonators’ frequency shifts as
a function of the temperature [2]. These experiments have
shown unambiguously that even in the devices that do not
use a deposited dielectric and consist only of a patterned
superconducting film on high quality crystalline substrate,
a thin, TLS-hosting layer is present on the surface of the
device. In particular, TLSs in the thin amorphous surface
layer of the microresonators are responsible for the noise
in the resonator frequency that is the subject of this paper.
This noise has been carefully characterized in the last few
years. The early works reported unusual behavior of the noise
spectral density, S ∼ f −1/2 [2–6], but all recent works [7–10]
agree on a more conventional S ∼ 1/f spectrum. The noise
spectrum also shows a square-root dependence on the applied
power S ∼ P −1/2. Furthermore, the recent work by Burnett
et al. [8] shows that the dependence on the applied power
is also temperature dependent. The most striking feature of
the frequency noise is its spectrum temperature dependence:
S ∼ T −β with β = 1.2–1.73 [4,7,8] which is at odds with the
expectation that any kind of noise should disappear as T → 0.

On the theoretical side, the observations cannot be ex-
plained by the conventional phenomenological model of TLSs
known as the standard tunneling model (STM) [11,12]. This
model was very successful in explaining the anomalous
bulk properties of amorphous glasses at low temperature.

However, its predictions for the frequency noise are in a strong
disagreement with the data. This problem was noted by the
works [4,13] which observed that the data can be fitted by a
single empirical equation that describes the noise dependence
on microwave power and temperature. This equation however
cannot be derived in the framework of the STM.

In this paper we propose a modification of the STM that
is capable of explaining all the features of the noise. The
model develops on our previous ideas [14]; it differs from other
models in that it assumes relatively large interaction between
TLSs. The unusual properties of the frequency noise spectra
are mostly associated with this large interaction. For a better
fit to the data, the model also assumes a slightly nonuniform
density of states of TLSs at low energies which might be a
consequence of the large interaction. In the bulk of the paper we
show that the model explains all features of the noise spectral
density, namely, the frequency dependence of the spectrum
S ∼ f −1, the temperature dependence S ∼ T −β , and the
applied power dependence S ∼ P −1/2 as well as the saturation
of the noise with the power at the temperature-dependent level.
In addition, the model and STM gives the same shifts in the
resonant frequency as a function of temperature that were
originally interpreted as the indication for the presence of
TLSs [2,15]. Thus, the predictions of the model agree well
with the results of most experiments on resonators [16–21].
Furthermore, the model provides the explanation for the
recent spectroscopy data on the temperature dependence of
the dephasing rate of TLSs located in the Josephson-junction
barriers of the phase qubits [22].

The paper is organized as follows. Section II gives standard
(Sec. II A) and generalized (Sec. II B) tunneling models and
discusses the effects of TLS interactions (Sec. II C). The
detailed calculations of the frequency noise spectrum are
given in Sec. III while Sec. IV summarizes the assumptions
and approximations we use in our calculations. Section V
compares the predictions of the model for the noise power
spectrum with that of the STM and with the experimental data.
Finally, Sec. VI gives conclusions and discusses the possible
origin of the larger interaction assumed by the model.

1098-0121/2015/91(1)/014201(11) 014201-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.91.014201


LARA FAORO AND LEV B. IOFFE PHYSICAL REVIEW B 91, 014201 (2015)

II. MODEL

A. Standard tunneling model and its predictions

The existence of TLSs in amorphous materials was conjec-
tured four decades ago [11,12] in order to explain the anoma-
lous bulk properties of these materials at low temperatures,
i.e., the temperature dependence of the specific heat and the
thermal conductivity. The phenomenological model describing
the TLS is known as the STM for its simplicity and wide
application. It assumes the existence of localized excitations
with very low energy E that are visualized as excitations in
double-well potentials that happen to be nearly symmetric.
It is generally believed that the existence of the double-well
potentials is due to the disorder, so that local rearrangement of
atoms might switch the system between adjacent local energy
minima. For a given T , double-well potentials with E ∼ kBT

dominate the thermodynamic properties. In the double-well
potentials a transition between the two minima is due to the
quantum tunneling. Therefore, they are referred to as tunneling
systems which are characterized by an asymmetry � and a
tunneling matrix element �0. The unperturbed Hamiltonian
HTLS of each independent tunneling system is

HTLS = �

2
σ z + �0

2
σx. (1)

Here σa, a = x,y,z are Pauli matrices. In the rotated basis, the
Hamiltonian is simply H = ESz, where E =

√
�2 + �2

0 is
the TLS energy splitting and Sz = 1

2 (cos θσ z + sin θσ x) with
tan θ = �0/�. The STM assumes that the energy distribution
of � is flat while �0 is exponential in the barrier width and thus
has an exponentially wide distribution, so that the probability
density of TLS is given by

P (�,�0) = P̄0

�0
�(�0 − �0,min),

�0,min

kB

� 10−7 K.

(2)

The form of P (�,�0) implies that the distribution of the en-
ergy splitting P (E) is uniform. Experimentally it turns out that
for most glasses P̄0 is in the range (0.5–3) × 1020 eV−1 cm−3

[23].
In the insulating materials TLSs are coupled to the envi-

ronment by the interaction with phonons and photons that can
excite or relax the TLS eigenstates. The phonon interaction
Hamiltonian reads

HTLS-ph = γ σzε, (3)

where ε is the strain field and γ ∼ 1 eV is the typical
coupling constant. Because of this coupling the TLS acquires
a relaxation rate 	

ph
1 and a dephasing rate 	

ph
2 . The golden rule

formula gives the relaxation rate [24]:

	
ph
1 = γ 2

2πζ�4v5
�2

0E coth[E/2kBT ], (4)

where ζ the density of the glass and v is the sound velocity.
The dephasing rate is due to decay: 	

ph
2 = 1

2	
ph
1 . At low tem-

perature, assuming that �0/E has little or no E dependence,
one concludes that 	1 ∼ E3.

Because in this work we are considering TLSs that are
located in a very thin layer of material on the surface of metals,
we also briefly review STM predictions for the relaxation of
TLSs in metals [25]. In these materials, TLSs also interact with
the conduction electrons. The interacting Hamiltonian reads

HTLS-el = σz

∑
kk′η

Vkk′c
†
kηck′η,

where Vkk′ describes the scattering potential and c
†
kη(ckη)

creates (annihilates) a fermion of wave vector k and spin η.
The coupling between TLSs and electrons is described quite
generally by a parameter K, which for a weak s-wave potential
(Vkk′ = V ) is K = 1

2 (νF V )2, where νF is the electron density
of states at the Fermi level. It is known that in metallic glasses
K must be less than 1/2. This typically strong interaction leads
to a short relaxation time for the TLS:

	el
1 = πKE coth[E/2kBT ]. (5)

At low temperatures, 	el
1 ∼ E.

TLSs can also interact between themselves due to the ex-
change of virtual phonons, photons, or electronic excitations.
In all cases the interaction falls off as 1/r3:

H int
2 = 1

2

∑
i,j

Uijσ
z
i σ z

j , Uij = uij

r3
ij

. (6)

In the case of photon exchange, the interaction is essentially
the instantaneous dipole-dipole one [26]:

uij =
∑

i

∑
i �=j

�di · �dj − 3(r̂ij · �di)(r̂ij · �dj )

4πε
. (7)

In the case of phonon exchange, calculations using elasticity
theory [27] showed that the retardation can be ignored if
the distance between TLSs is less than the wavelength of
the phonon, i.e., rij < (vE)−1. This condition is satisfied for
characteristic distances and energies of relevant TLSs. By
neglecting the retardation, the interaction is [28]

uij =
∑

i

∑
i �=j

γiγj

ζv2
. (8)

The interaction scale is set by U0 ≈ d2/ε (U0 ≈ γ 2/ζv2)
for electric (elastic) interactions. Comparing the interaction
between TLS at a typical distance r3 ∼ 1/P̄0 with the distance
between the levels, one concludes that the effects of the
interaction are controlled by the dimensionless parameter
χ = P̄0U0. The crucial assumption of the STM is that this
parameter is very small, χ 
 1, so that the effect of the
interaction on TLS can be mostly ignored. In particular, one
expects that the TLS density of states remains constant at
low energies, ρ(E) = P̄0. Ultrasound attenuation experiments
that measure the product P̄0U0 show that χ is indeed
small in bulk amorphous insulators and has almost universal
value χ ≈ 10−3–10−2. In metals, the interaction between
TLSs is similar to Ruderman-Kittel-Kasuya-Yosida interaction
between spins, so that U0 = EF /k3

F , where EF is the Fermi
energy and kF is the Fermi wave vector. In metallic glasses
U0 ∼ 105 K Å3; as a result the constant χ has the same order of
magnitude as the phonon mediated interaction. To summarize,
in the framework of the STM the interactions of different
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origins add together to form an effective interaction U0/r3
ij

that is characterized by the constant U0 ∼ 105 K Å3. This
conclusion relies on the assumption that the TLS sizes are
much smaller than the distance between them, that allows one
to estimate r3 ∼ 1/P̄0.

The small value of the dimensionless parameter χ 
 1
implies that the relaxation of the TLS induced by their mutual
interaction is negligible. Indeed, two interacting TLSs (i and
j ) exchange energy if the resonant condition |Ei − Ej | < U0

is satisfied. By computing the number N0 of TLSs that form a
resonant pair with a given one, we get N0 ≈ χ ln(L

a
), where L

is the size of the system and a is the minimum distance between
two TLSs [29]. Because the number of resonant neighbors
N0 
 1 for any reasonable sample size L, the STM assumes
that different TLSs are independent and their relaxation rate
	1 is dominated by phonons.

B. Generalized tunneling model

In this work we show that in order to explain the data we
need to do two modifications to the standard tunneling model.
We shall refer to this model as the generalized tunneling model
(GTM) and the two modifications are the following:

(i) The interaction between TLSs is not neglected. In fact,
we show that the latter has a significant effect on the TLS
relaxation at sufficiently low temperatures even if χ 
 1.

(ii) We allow a nonflat probability density of the asymmetry
energy �:

P (�0,�) = p(�0)

{
(1 + μ)

(
�

�max

)μ
if 0 � � � �max;

0 otherwise,
(9)

where

p(�0) =
{

�−1
0 if �min � �0 � �max;

0 otherwise.
(10)

Here μ < 1 is a small positive parameter whose value will be
discussed in detail below.

We notice that the second assumption might be in fact the
consequence of the first. Indeed, a strong interaction between
discrete degrees of freedom always decreases the density of
states at low energies, ρ(E) = ρ0(E/Emax)μ. For Coulomb
interaction this effect results in a very large suppression of
the density of states and the formation of Efros-Shklovkii
pseudogap [30]. Dipole-dipole interaction is marginal and it
would result in logarithmic corrections of the density of states
for pointlike TLSs which might be difficult to distinguish from
a power law with μ ≈ 0.3 [31]. Because larger than expected
interaction implies that the assumption of pointlike defects is
probably wrong, we do not attempt to derive the probability
distribution (9) in some microscopic picture but take it as an
assumption.

It is worthwhile to mention here that the suppression of
the density of states at low energies was reported previously
by a number of experimental works. Historically, first the
specific-heat measurements performed in the 1980’s indicated
that at low temperatures (T � 1 K) the density of states is
ρ(E) ∼ Eμ with μ ≈ 0.2–0.3 [32]. Another indirect evidence
comes from the old fluorescence experiments [33] that

showed homogeneous line broadening with anomalously large
magnitude and unusual temperature dependence ∼T 1.3 in
glasses. It was argued [34] that this low-temperature anomaly
is due to TLSs. However, to fit the data one needs to assume
a nonconstant density of states ρ(E) = ρ0(E/Emax)μ, with
μ ≈ 0.3. More recently, experiments by Skacel et al. [35]
directly probed the TLS density of states in thin a-SiO
films by measuring losses in superconducting lumped element
resonators and reported that ρ(E) ∝ E0.28 in agreement with
previous measurements in glasses.

The importance of the interaction between TLSs was
conjectured by Yu and Leggett in 1988 [36] who argued that
the apparent universality of the dimensionless parameter χ can
be only understood as a consequence of the many-body inter-
actions. In this picture each TLS is a complicated many-body
excitation formed by many local degrees of freedom. However,
despite the effort of many workers [37–41] the consistent
first-principles theory of TLSs is not available. Experimentally,
the first evidence for interactions between TLSs were found in
thin a-SiO2+x layers, where it was shown that dipole-dipole
interactions between TLSs play a key role up to 100 mK
[42]. Very recently experiments performed on superconducting
microresonators showed that the electromagnetic response of
thin oxide layers is not described by STMs. In particular, the
observed weak (logarithmic) power dependence of the loss is
in a striking contrast with the square-root prediction of STMs
but agrees perfectly well with the interacting picture [14].

C. Main predictions of the generalized tunneling model

Non-negligible interactions between TLSs provides a
mechanism for their dephasing and relaxation that might
dominate at low temperatures when relaxation caused by
phonons becomes very inefficient. In this section we compute
the broadening of TLS levels that is due to their mutual
interaction. Then we explain why this width is crucial for
the low-frequency noise of the high quality resonators.

It is convenient to divide the TLSs into coherent (quan-
tum) and fluctuators (classical) TLSs. Coherent TLSs are
characterized by a small phonon induced decoherence rate,
	

ph
2 < E, while fluctuators have 	

ph
2 � E. Among coherent

TLSs we distinguish high-, E � kBT , and low-, E � kBT ,
energy TLSs. The noise in high quality resonators is generated
by the TLSs that have energies close to the resonator frequency
ν0. We shall assume that the frequency of the resonator is
high, ν0 � kBT , so that the TLSs responsible for the noise are
high-energy coherent TLSs. Their properties are affected by
the environment that consists of slow fluctuators and thermally
activated coherent TLSs with energies E � kBT .

The linewidth of an individual high-frequency TLS is due
to the combined effect of the surrounding thermally excited
TLSs that change their state emitting and absorbing phonons.
We begin by evaluating the effect of a single thermally excited
TLS and then sum over many of them.

In the rotated basis the Hamiltonian of the high-frequency
TLS (denoted by subscript 0) interacting with a thermally
excited one (denoted by subscript T ) at distance r is given by
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FIG. 1. (Color online) Schematics of the energy levels of the
Hamiltonian Hint. The solid arrows indicate phonon induced
relaxation.

H = E0S
z
0 + ESz

T + Hph + Hint with

Hint = 4U (r)Sz
0

(
�

E
Sz

T + �0

E
Sx

T

)
, (11)

where U (r) = U0r
−3 is the interaction energy. We denote

the two states of the high-frequency TLS as |0〉 and |1〉
(Sz

0 |0〉 = −1/2 |0〉). In the Hamiltonian (11) we neglected the
terms proportional to Sx

0 that lead to decay of the excited
state. These terms are irrelevant for TLSs with very different
energies, E0 � E.

Hamiltonians of the type (11) have been studied exten-
sively in the context of the anomalous homogeneous optical
linewidths in glasses ([34] and references therein). We now
outline the main assumptions and results of these studies.
Due to the interaction the high-frequency and the thermally
activated TLSs form a four-level quantum system (see Fig. 1)
which can be diagonalized by rotating the basis of thermally
activated TLSs:

|n,−〉 = 1√
2

[
√

1 + ηn|n,0〉 −
√

1 − ηn|n,1〉],
(12)

|n,+〉 = 1√
2

[
√

1 − ηn|n,0〉 +
√

1 + ηn|n,1〉],

Hint =
∑
n=0,1

∑
k=−,+

Ek
n|n,k〉〈n,k| (13)

with eigenvalues

E∓
0 = −E0

2
∓
√(

E

2

)2

+ U (r)� + U (r)2,

(14)

E∓
1 = +E0

2
∓
√(

E

2

)2

− U (r)� + U (r)2,

where

ηn = E + (−1)n2U (r)(�/E)√
E2 + (−1)n4U (r)� + 4U (r)2

.

The width of the sublevels of the four-level system can
be found by evaluating the matrix elements describing the
phonon emission or absorption between the states (12). A
typical thermally excited TLS is characterized by �0 
 � �
E, so these matrix elements are very close to the ones of
noninteracting TLSs with the same energy,

	
0,+
1 + 	

0,−
1 � 	

1,+
1 + 	

1,−
1 � 	

ph
1 (E).

It is convenient to define the effective decoherence rate as
the sum of the widths of the sublevels weighted with their
probabilities:

	eff = 1

2

∑
k=±

pk

(
	

0,k
1 + 	

1,k
1

) � 	
ph
1 (E). (15)

In the limit of significant interaction energy, U (r) > 	eff, the
width of the high-frequency TLS level, 	2, coincides with
the effective rate (15). This can be also seen by arguing that
transition between sublevels changes the energy of the fast
TLS by U (r). After such transition its wave function acquires
the phase δφ = U (r)t and thus leads to dephasing after a time
1/U (r). For large U (r) this time is short compared to the time
between transitions, so the dephasing rate is given by 	eff.
Note that small values of 	eff 
 T and the fast dependence
of U (r) ∼ 1/r3 imply that a typical thermally activated TLS
with U (r) > 	eff has U (r) 
 T .

In the opposite limit of very small U (r) < 	eff the phonon
process does not affect the high-frequency TLS immediately.
After the thermally excited TLS changes its state, the energy
of the fast TLS changes by U (r), so the phase U (r)t that it
acquires is much smaller than unity at a time when the TLS
flips again. As a result the effect of phonon processes averages
out.

Both limits can be treated analytically for thermally excited
TLSs with �0 
 �, in which one can neglect the rotation of
the basis (12) induced by phonon processes. In this case the
fluctuations of the TLS energy are given by

〈δE(t)δE(0)〉 = U (r)2 cosh−2(E/2T ) exp
(−	

ph
1 t
)
.

They result in the dephasing of the high-frequency TLS,

〈S+
0 (t)S−

0 (0)〉 ∼
〈
exp

[
−i

∫ t

0
dt1δE(t1)

]〉
.

In the limit 	
ph
1 t � 1 the energy δE(t) experiences many

fluctuations and the average can be evaluated in the Gaussian
approximation,

〈S+
0 (t)S−

0 (0)〉 ∼ exp

(
− u2

	
ph
1

t

)
,

where u = U (r) cosh−1(E/2T ). In this approximation the
level width is 	2 = u2/	

ph
1 . The assumption 	

ph
1 t � 1 is valid

provided that 	2 
 	
ph
1 which is correct for u 
 	

ph
1 .

To summarize, the level width of the high-frequency TLS
is given by

	2(u) =
⎧⎨
⎩

	
ph
1 if u � 	

ph
1 ,

u2

	
ph
1

if u 
 	
ph
1 .

(16)

The full level width of the fast TLS is given by the sum
over thermally activated TLSs in its environment:

	2 =
∑

k

	2(uk),

which should be averaged over positions [that control u(r)],
energies, and relaxation rates of the thermally excited TLS.
These averages can be performed independently. Because
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u ∼ 1/r3 the average of (16) over positions is dominated by
u(r) ∼ 	

ph
1 . Estimating the integral over r we get

	2 = c

∫
d	1dEP (E,	1)U0 cosh−1(E/2T ), (17)

where c ∼ 1 and P (E,	1) is the probability density of the
TLS characterized by energy E and relaxation rate 	1.

Combining the probability distribution (9) and expression for
the relaxation rate (4) we get

P (E,	1) = P0
Eμ

2E
μ
max	1

(18)

for 	1 < 	max
1 where 	max

1 = 	1(�0 ∼ E) is the maximum
rate possible for the TLS with energy E. Performing the
average in (17) with the distribution (18) we get

	2 = cχ ln

(
	max

1

	min
1

)
T 1+μ

E
μ
max

, (19)

where c ∼ 1 and 	min
1 is the minimal relaxation rate,

ln(	max/	min) = 2 ln(E/�min
0 ). The largest value of 	max

associated with the thermally excited TLS is of the order of
107–108 s−1 for E ∼ 11–12 GHz [43] and correspondingly
104–105 s−1 for T ∼ 50 mK. There is no information available
on the precise value of the minimal rate 	min for thermally
activated TLSs in glasses, but the electrical noise data show
that 1/f noise generated by these TLSs extends to very
low frequencies f � 1 mHz beyond which the dependence
changes. This implies that 	min � 10−3 s−1, so the value of
ln(	max/	min) ≈ 20.

A large ln(	max/	min) factor appears only for TLSs that are
distributed uniformly through a three-dimensional volume so
that the integral over the volume produces factor U0 for any 	1

in (17). This factor is expected to be much smaller for surface
insulators. In the case of amorphous two-dimensional layers of
thickness d with three-dimensional interaction [U (r) ∼ 1/r3]
between the TLSs the logarithmic contribution comes from
	1 > U0/d

3, which provides the lower cutoff of the logarith-
mic divergence 	min

1 → U0/d
3. In real materials, however,

the interaction between TLS might have a two-dimensional
character at intermediate scales, d < r < deff, which cuts off
the logarithmic divergence at smaller 	min

1 → U0/d
3
eff. For the

estimates below we shall assume that ln(	max/	min) � 1 in
surface oxides formed in superconducting microresonators.

In a typical low-temperature experiment the dephasing rate
	2 given by (19) dominates over decoherence rate 	

ph
2 ∼ 	

ph
1

due to phonons. In fact, for E ∼ T we estimate the phonon
mediated relaxation rate given in (4),

	
ph
1 ≈ U0

a3

(
E

ωD

)3

, (20)

where a ∼ 0.3 nm is the atomic distance and
ωD = (cs/a)(6π2)1/3 ∼ 103 K is the Debye frequency.
Estimating the interaction one gets U/a3 ≈ 300 K [44]. A
typical high-frequency TLS probed by superconducting
resonators or phase qubit experiments has energy
E ∼ 5–10 GHz; for these TLSs the relaxation rate due
to phonon is 	

ph
1 ∼ 	

ph
2 ∼ 102–103 s−1. At T ∼ 100 mK, the

dephasing rate given by (19) is much larger: 	2 ∼ 106 s−1,
assuming that μ ≈ 0.3, Emax ≈ 100 K, and χ ≈ 10−3. Note

that the STM assumption of μ ≈ 0 would make this rate even
larger by a factor of ∼10.

In contrast to the dephasing rate, the relaxation of high-
frequency TLSs due to interaction with others is small. The
relaxation rate is proportional to the square of the interaction,
which falls off as 1/r6. It is thus dominated by the closest
TLS which is in resonance with the given one. Because the
level width of the TLS is given by 	2, the resonant condition
implies that the typical distance between resonant TLSs is r3 ∼
1/[	2ρ(E)], and the interaction between them is U0	2ρ(E).
Applying Fermi’s “golden rule” we estimate that the relaxation
rate due to this interaction is

	TLS
1 ≈ [U0ρ(E)]2	2 = χ2

(
E

Emax

)2μ

	2. (21)

The relaxation rate (21) is much smaller than 	2 because
it contains two extra factors of χ which, in contrast to
	2, are not compensated by large logs. Estimating it we
get 	TLS

1 ∼ 10−2–100 s−1, which is much smaller than the
phonon relaxation rate. We conclude that the phonon relaxation
mechanism dominates, i.e., 	1 ≈ 	

ph
1 .

This dephasing rate (19) is in a perfect agreement with the
direct experimental observations [22] that used phase qubits to
study individual TLSs with energies E ∼ 6–8 GHz. This work
observed the temperature dependence 	2 ∝ T 1.24 and absolute
values 	2 ∼ 106 s−1 at T ∼ 50 mK.

The discussion above does not differentiate between co-
herent and incoherent thermally excited TLSs. The small
fluctuations of the energy of the high-frequency TLS created
by coherent and incoherent TLS far away from the fast TLS are
indistinguishable. The crucial assumption in the derivation of
the level width 	2 (19) was the Gaussian nature of the effective
energy fluctuations δE which is the sum of the effects produced
by many fluctuators. This assumption is confirmed by the large
factor ln(	max

1 /	min
1 ) that appeared in (19).

The effect of the slow fluctuators requires a separate
analysis for those fluctuators that are located so close to the
high-frequency TLS that they shift its energy by an amount
larger than the width 	2. As mentioned above, the presence
of slow fluctuators is revealed by the omnipresent 1/f charge
and critical current noise that extends to the lowest frequencies
[45]. Some of these fluctuators interact strongly with the
fast TLS: U (r) > 	2 for r < R0, where R3

0 = U0/	2. These
fluctuators create highly non-Gaussian noise that cannot be
regarded as a contribution to 	2. Qualitatively, the slow strong
fluctuators result in the chaotic motion of individual TLS levels
around their average positions as shown in Fig. 2 where we
sketch the effect of different fluctuators on high-frequency
TLSs. Strongly coupled fluctuators (a) are located within the
sphere of radius R0 and brings TLSs in and out of resonance
with the external probe. The fluctuator (b) is weakly coupled
and contributes to the level width. The fluctuator (c), although
strong enough to be non-Gaussian, is not sufficiently strong
to bring the TLSs in resonance with the external probe.
The chaotic motion of TLS energy level due to the strong
fluctuators causes the noise in the external probe, such as
resonator frequency. We discuss this noise in the following
section.
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FIG. 2. (Color online) High-frequency TLS (dark small circle)
and fluctuators that are coupled to it. The strongly coupled fluctuator
(a) brings the TLS in and out of resonance with the external probe.
This translates into a large noise measured by the probe. The
weakly coupled fluctuator (b) only contributes to the linewidth of
the high-frequency TLS. The strongly coupled fluctuator (c) is not
strong enough to bring the fast TLS in resonance, so its effect is not
observable.

III. EFFECT OF SLOW FLUCTUATORS ON THE
RESONATOR NOISE

The frequency noise in the microresonator is ultimately
due to the switching of classical fluctuators that are strongly
coupled to TLSs that are in resonance with the resonator
electromagnetic mode. The coupling is strong in the sense that
the resulting energy drift of the resonant TLS is larger than
the broadening of its level, 	2, i.e., U (r) > 	2. The condition
U (r) > 	2(T ) is satisfied for all fluctuators in the sphere of
radius R0 around the resonant TLS. Because the width 	2(T )
decreases at low temperatures, the volume of the sphere of
radius R0 grows at low temperatures. This compensates the
decrease in the density of thermally activated fluctuators. The
effect of each TLS on the dielectric constant and thereby on
the resonator frequency is proportional to 1/	2. Thus, as the
temperature goes down, the noise increases: a conclusion that
seems to contradict the intuition. We illustrate the mechanism
of the resonator noise in Fig. 3. The motion of levels in
and out of resonance does not affect the average dielectric
constant of the material because the average number of TLSs

FIG. 3. (Color online) Schematics of the frequency noise gen-
eration in microresonators. The noise is due to fluctuators that are
strongly coupled to resonant TLS and can induce energy drifts for
the resonant TLS larger than the broadening width 	2 by bringing the
resonant TLS in and out of resonance with the resonator.

in resonance with the external frequency remains the same.
Thus, one expects that in contrast to temperature-dependent
noise, neither internal loss nor average frequency shift of the
resonators show anomalous temperature dependence.

The classical fluctuators responsible for the effects dis-
cussed in this section might be slow TLSs that are characterized
by small �0 and 	1 or have a different nature. The main results
of the following discussion do not depend on the assumption
that classical fluctuators have the same nature as TLSs, but
when estimating the magnitude of the effect we shall assume
that they have similar densities.

We now provide the detailed computation that confirms this
qualitative conclusion and provides quantitative estimates of
the noise. The interaction between TLSs and electrical field,
�E(t) = �E cos ν0t , in the resonator is due to its dipole moment
�d0:

H int
field = �d0 · �E(t)σ z. (22)

The dynamics of the coherent TLS can be described by
the Bloch equations [46], which coincide with the equation
for the TLS density-matrix evolution. These equations includes
the phenomenological description of the decay and decoher-
ence process with rates 	1 and 	2. The effect of the classical
fluctuators is described by an additional time-dependent con-
tribution to the effective “magnetic” field acting on the pseu-
dospin representing the TLS: �B(t) = �B ′ + �B ′′(t), where �B ′ =
[0,0,E − ξ (t)] and �B ′′(t) = 2(sin θ,0, cos θ ) �d0 · �E(t). The ac
electric field �E(t) = �E cos ν0t is a small perturbation, so one
can linearize the Bloch equations by keeping terms of the first
order in the applied electric field. We look for solutions of the
Bloch equations of the form �S(t) = �S0(t) + �S1(t), where S0 is
the solution in the absence of electric field and S1 ∝ �E(t). The
linearized equations become

dS0
z (t)

dt
= ImS+(t)� cos ν0t − 	

ph
1

[
S0

z (t) − m
]
,

(23)

i
dS+(t)

dt
= [E + ξ (t) − i	2] S+(t) + �S0

z (t) cos ν0t.

Here we have introduced the raising operator
S+ = S1

x + iS1
y , � = 2 sin θ �d0 · �E is the Rabi frequency,

and m = tanh(E/2kBT )/2. The presence of fluctuators
(weakly and strongly coupled to the TLS) is accounted by the
energy drift ξ (t).

The physical quantity that we need to get from the solution
of (23) is the average polarization Pν0 (t) produced by the
resonant TLS:

Pν0 (t) = 1
2 〈 �d0 sin θ〈S+(t)〉f 〉 = εχ (ν0,t) �E, (24)

where 〈·〉f denotes the average over the distribution of the
strongly coupled fluctuators responsible for the energy drift
and the average 〈·〉 is taken over the distribution of all the
coherent TLSs and their dipole moments. The coefficient
χ (ν0,t) gives the permittivity which is responsible for the
variation of the complex resonance frequency [47]:

δf ∗

f ∗ = −
∫

Vh

χ (ν0,t)| �E |2dV

2
∫
V

| �E |2dV
, (25)
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where Vh is the TLS host material volume and V is the
resonator volume. The real part of (25) gives the relative
frequency shift

δν(t)

ν0
= −

∫
Vh

Re[Pν0 (t)] · �EdV

2ε
∫
V

| �E |2dV
(26)

while the imaginary part is responsible for the internal quality
factor Q: (

1

Q
− 1

Q0

)
=
∫
Vh

Im[Pν0 (t)] · �EdV

2ε
∫
V

| �E |2dV
. (27)

The frequency noise spectrum measured in the microresonator
is defined as

Sδν

ν2
0

= lim
τ→∞

1

τ

∫ τ

0

∫ τ

0

〈δν(t1)δν(t2)〉
ν2

0

eiω(t1−t2)dt1dt2. (28)

Notice that both the frequency shifts and the noise are related
to the real part of the susceptibility.

Our goal is to get the physical quantities (26)–(28) from
the solution of the Bloch equation (23). The assumption
that relevant fluctuators are slow implies that we can solve
Eq. (23) in the stationary approximation:

ReS+(t) = �m [ν0 − E − ξ (t)]

[ν0 − E − ξ (t)]2 + 	2
2 + �2	2

(
	

ph
1

)−1 . (29)

In order to calculate the average polarization Pν0 (t) given by
(24) we need to average (29) first over the distribution of
fluctuators and then over the distribution of coherent TLSs.

Generally, the energy drift caused by fluctuators can be
written as ξ (t) =∑Nf

k uknk(t), where Nf is the number
of coupled fluctuators, uk = U0/r−3

k denotes the interaction
strength of the kth fluctuator coupled to the resonant TLS
and nk(t) = ±1 is a random telegraph signal with associated
switching rate γk . Effectively each fluctuator produces a
random telegraph signal with the following properties:

(i) nk(t) = ±1 with probabilities p(nk(0) = ±1) = 1/2;
(ii) the number N∗ of zero crossings in the interval (0,t) is

described by a Poisson process with probabilities:

p(N∗ = even number) = e−γkt cosh γkt,

p(N∗ = odd number) = e−γkt sinh γkt.

We now show that weakly coupled fluctuators do not contribute
either to the frequency noise or the frequency shifts because
their contribution to the real part of the response is equivalent
to a mere additional broadening for the resonant TLS. The
solution (29) implies that in this computation we can neglect
the time dependence of ξ (t), which we emphasize by writing
its argument as the subscript ξ (t) = ξt . In order to average over
weakly coupled fluctuators the real part of the response

〈ReS+(t)〉f =
∫

ReS+(t)PNf
(ξt )dξt (30)

we need to compute the distribution PNf
(ξt ) defined by

PNf
(ξt ) =

Nf∏
k=1

[∫
dzkP (zk)

]
δ

⎛
⎝ Nf∑

k′=1

zk′ − ξt

⎞
⎠ , (31)

where zk = uknk and P (zk) is the distribution of the kth
Random Telegraph Signal (RTS). The constraint imposed by
the δ function can be simplified by finding first the Fourier
transform, GNf

(λ) = ∫ PNf
(ξ ) exp [iλξ ] dξ :

GNf
(λ) =

[∫ ∞

−∞
eiλzk (t)P (zk)dzk

]Nf

=
[

1

Vh

∫
dr3

k cos

(
U0λ

r3
k

)]Nf

, (32)

where Vh is the fluctuators host material volume. Integrating
(32) we find

GNf
(λ) = exp

{Nf

Vh

∫
dr3

k

[
cos

(
U0λ

r3
k

)
− 1

]}
= exp[−	f |λ|], (33)

where 	f = Cρ0f U0, ρ0f ≈ ρ0T
1+μ/E

μ
max is the

density of thermally activated fluctuators and
C = 4π

3

∫∞
0 dy(1 − cos 1

y
) ≈ 6.57 is a constant. By

performing the inverse Fourier transform of Eq. (33)
we get the distribution

P (ξ (t)) =
∫ +∞

−∞
dλe−iλξ (t)−	f |λ| =

√
2

π

	f

	2
f + ξ (t)2

(34)

that is Lorentzian. By substituting (29) and (34) into (30) we
get the response:

〈ReS+(t)〉f =
√

2π�m (ν0 − E)

(ν0 − E)2 + (√	2
2 + �2	2

(
	

ph
1

)−1 + 	f

)2
that shows the additional contribution 	f to the dephasing
width. Unlike 	2 (19) this contribution does not contain a
large logarithmic factor, so 	f 
 	2 for bulk materials. As
explained in Sec. II C the logarithmic factor might become
of the order of unity for surface dielectrics, so in this case
	f � 	2.

We now discuss the effect of strongly coupled fluctuators
on the real part of the susceptibility. Estimating the number of
strongly coupled fluctuators by Nf = 4π

3
U0
	2

ρ0 we get Nf ∼ 1
for two-dimensional surface dielectrics and Nf ∼ 10−1 for
three-dimensional materials characterized by a large value
of ln(	max

1 /	min
1 ). The same estimate can be obtained di-

rectly from the experimental values ρ0 ≈ 1020 cm−3 eV−1,
	2 ≈ 2 × 10−4 K and U0 ≈ 10 K nm3. A strongly coupled
fluctuator brings the resonant TLS in and out of resonance
inducing a dynamical change of the susceptibility that is
described by a random telegraph signal:

wres
k = lim

uk→0

�m [ν0 − E − uk]

[ν0 − E − uk]2 + 	2
2 + �2	2

(
	

ph
1

)−1 ,

(35)
woff

k = 0

with the switching rate γk of the strongly coupled fluctuator.
As a result, it contributes to the average susceptibility as
wres

k (tanh E/2T + 1)/2. By substituting (35) into (26) we
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estimate the induced frequency shift of the resonator:

δν

ν0
= 1

3

〈 �d2
0

〉 ∫Vh
v(ν0, �E,T )| �E |2dV

2
∫
V

ε| �E |2dV
, (36)

where

v(ν0, �E,T ) =
∫ Emax

0
dE

P (E) tanh
(

E
2T

)
(E − ν0)

(E − ν0)2 + 	2
2 + �2	2

(
	

ph
1

)−1 .

(37)

Notice that the frequency shift given by (36) is very similar to
the ones predicted by the STM. The only difference between
(36) and the STM predictions is associated with the different
probability distribution assumed for the energy splitting of
the resonant TLS but the shifts are completely insensitive
to the presence of weak and strong fluctuators coupled to
resonant TLS. As a result, the presence of strongly interacting
fluctuators cannot be detected by the measurements of the
frequency shifts as a function of temperature. However, as we
have already shown in a previous work [14] the presence of
fluctuators is revealed by the power dependence of the losses in
a high quality microresonator. The fluctuators result indeed in
a weaker (logarithmic) dependence of the losses on the applied
power which is in very good agreement with data, in contrast
with the square-root dependence predicted by the STM theory
[15,18,20].

We now demonstrate that interaction between resonant TLS
and strongly coupled fluctuators affects significantly the noise
in a microresonator. As it is evident from (28), the noise spec-
trum of the microresonator is the Fourier transform of the
autocorrelation function of the susceptibility. Each fluctuator
that is strongly coupled to a resonant TLS contributes to
the autocorrelation function of the susceptibility as 1

4 (wres
k −

woff
k )2e−2γk (t2−t1) and consequently to the noise spectrum of the

microresonator as a Lorentzian. By summing over different
TLSs coupled to strongly coupled fluctuators we find that the
noise spectrum is

Sδν

ν2
0

(ω) = 8

15

〈 �d4
0

〉
P(ν0, �E,T )

∫
γP (γ )

γ 2 + ω2
dγ. (38)

Here P (γ ) is the probability distribution of the switching rates
of the strongly coupled fluctuators,

P(ν0, �E,T ) =
∫
Vh

s(ν0, �E,T )| �E |4dV

4(
∫

ε| �E |2dV )2
,

which depends on the volume Vh taken by the amorphous
material and

s(ν0, �E,T ) =
∫

(ν0 − E)2 tanh2
(

E
2T

)
dEP (E)[

(ν0 − E)2 + 	̃2
2 + �2	̃2

(
	

ph
1

)−1]2 , (39)

which depends on the temperature and the power applied to
the microresonator.

The frequency dependence of the noise spectrum given in
(38) is 1/f if the switching rate γ has P (γ ) ∼ 1/γ distribution.
Such distribution is expected for practically all realistic models
of fluctuators. For instance, fluctuators that represent slow
TLSs flipped by phonons have P (	1) ∼ 1/	1 as explained

in Sec. II C. More generally, any process whose rate de-
pends exponentially on a physical quantity l with a smooth
distribution is characterized by P (γ ) ∼ 1/γ distribution in
the exponentially wide range γmin 
 γ 
 γmax. For instance,
such distribution for the switching rate appears for a particle
trapped in a double-well potential whose quantum tunneling
rate through the potential barrier depends exponentially on
both the height and the width of the barrier, as well as for a
thermally activated tunneling with rate γ0e

−Ea/KBT , where Ea

denotes the activation energy.
The dependence of the noise spectrum on the temperature

and the power applied to the microresonator can be found
by performing the integral given in (39). The result has
different structure at low and high temperature. Because√

	̃2
2 + �2	̃2(	ph

1 )−1 
 ν0, at low temperature T 
 ν0 the
integral is dominated by small vicinity of ν0:

s(ν0, �E,T ) �
(

ν0

Emax

)μ
P̄0

	2

√
1 + | �E/Ec|2

, (40)

where Ec has a physical meaning of the critical field for the
TLS saturation. It is defined by

Ec =
√

	
ph
1 	2

2〈 �d0 |sin θ |〉 . (41)

The important property of the generalized tunneling model is
that the critical electric field Ec is temperature dependent and
it scales as as Ec ∝ T (1+μ)/2.

By substituting (40) into (38), we find that in the low-
temperature limit the noise spectrum is

Sδν

ν2
0

(ω) ∼ χ

ω

(
ν0

Emax

)μ
U0

	2

⎧⎪⎨
⎪⎩

∫
Vh

Ec| �E |3dV

4(
∫
V

ε| �E |2dV )2
if | �E | � Ec;∫

Vh
| �E |4dV

4(
∫
V

ε| �E |2dV )2
if | �E | 
 Ec.

(42)

At all radiation powers the spectrum of the noise has 1/f

dependence. In a strong electric field the spectrum scales
with the applied power as ∼P −1/2 and with temperature as
∼T (1−μ)/2 while in the weak electric-field regime it is power
independent and scales with temperature as ∼T −(1+μ).

At high temperatures, T � ν0, the 1/f frequency depen-
dence of the noise power remains intact but its temperature
dependence changes. Evaluating the integral (39) in this limit
we find

s(ν0, �E,T ) � cP̄0
T μ−1

E
μ
max

, (43)

where c =
∫ ∞

0
dxxμ−2 tanh2(x/2) ≈ 1.2. By substituting

(43) into (38) we find the noise spectrum in this regime,

Sδν

ν2
0

(ω) ∼ χ

ω

U0

T

(
T

Emax

)μ
∫
Vh

| �E |4dV

4(
∫
V

ε| �E |2dV )2
. (44)

In this regime the noise spectrum has weaker temperature
dependence, ∼T μ−1, and has no power dependence.

In the intermediate temperature T ∼ ν0, one expects a
smooth crossover between the limits (42) and (44), leading

014201-8



INTERACTING TUNNELING MODEL FOR TWO-LEVEL . . . PHYSICAL REVIEW B 91, 014201 (2015)

to predictions for the noise spectrum that is in agreement with
the data.

IV. SUMMARY OF THE ASSUMPTIONS AND
APPROXIMATIONS OF THE GTM

Before moving to the discussion and conclusions of this
paper it might be useful to summarize the assumptions and the
approximations we made on the derivation of our results.

(i) We use a tunneling model for TLSs in an insulator that
takes into account the interaction between them [26,27,31]
and a slow power-law dependence of their density of states
ρ(E) = ρ0(E/Emax)μ, with parameter μ ≈ 0.3 derived from
the experiments.

(ii) We distinguish between different TLSs: (i) coherent or
quantum TLSs characterized by dephasing rate 	

ph
2 < E and

(ii) fluctuators or classical TLSs characterized by 	
ph
2 � E.

Among the coherent TLSs, we distinguish between high-
energy TLSs with E � T , and low-energy (thermally ac-
tivated) TLSs with E � T . Resonant coherent TLSs have
energy splitting E ≈ ν0. Here μ0 is the frequency of the
superconducting microresonator. It is assumed that ν0 � T .

(iii) An important quantity entering the theory is the
linewidth 	2 of resonant TLSs due to their interaction with
surrounding thermally excited TLSs that change their state
emitting and absorbing photons. We calculate the width 	2

by assuming that the typically thermally excited TLSs are
characterized by �0 
 � � E and by averaging over their
distributions of the positions, energies, and the relaxation rates.
We find that

	2 = cχ ln

(
	max

1

	min
1

)
T 1+μ

E
μ
max

, c ∼ 1.

We use Fermi’s golden rule to estimate the relaxation rate
of the resonant TLSs due to the interaction with surrounding
thermally excited TLSs. We find that

	TLS
1 � χ2

(
E

Emax

)2μ

	2.

In a typical low-temperature experiment, the dephasing rate 	2

due to the interaction with thermally activated TLSs dominates
over the decoherence rate 	

ph
2 ∼ 	

ph
1 due to phonons. In

contrast, the relaxation rate 	TLS
1 is negligible compared to

the relaxation rate 	
ph
1 due to phonons. We conclude that

resonant TLSs are relaxed by phonons and have dephasing
width 	2 ∝ T 1+μ.

(iv) The frequency noise in the superconducting microres-
onators is due to the switching of classical fluctuators that are
strongly coupled to resonant TLSs.

A fluctuator is strongly coupled to a resonant TLS when
it is located within a sphere of radius R0 = (U0

	2
)1/3 centered

around the resonant TLS. Because the width 	2 decreases
at low temperature, the volume of the sphere grows at low
temperature.

Strongly coupled fluctuators induce energy drifts for the
resonant TLSs larger than the broadening width 	2 by bringing
the resonant TLSs in and out of resonance with the resonator.
Each fluctuator is described as a random telegraph signal
with switching rates γ . A superposition of random telegraph

signals having switching rates distributed with 1/γ distribution
translates into a large noise 1/f for the resonator.

(v) Calculations of the resonator noise spectra are done
by resorting to the Bloch equations. These equations in-
clude the phenomenological description of the decay and
decoherence processes with rates 	

ph
1 and 	2. The effect

of the classical fluctuators is described by an additional
time-dependent contribution to the effective “magnetic” field
acting on the pseudospin representing the TLS. We linearize
the Bloch equations by keeping terms of the first order
in the electric field applied to the resonator. We solve the
linearized Bloch equations in the stationary approximation by
assuming that the relevant strongly coupled fluctuators are
slow.

V. DISCUSSION

The theoretical expectations derived in the previous sec-
tion are in a very good agreement with main features
of the data [1,3,7–10,47]. Most importantly Eqs. (42) and
(44) give correct power and temperature dependence of
the noise spectra. In particular, these spectra display the
very unusual behavior, observed experimentally, of the noise
increasing at low temperatures. There is no contradiction
between this growth and the Nernst theorem, because
it is due to the fact that the sensitivity of individual
TLSs to the slow fluctuators increases dramatically at low
temperatures.

The growth of the noise at low temperatures is a clear
evidence of the importance of the interactions between
TLSs. Indeed, the STM gives completely different predic-
tions for the temperature dependence of the noise, as we
show now. We focus on the weakly driven TLS in which
computations are straightforward. The Bloch equations (23)
become

dS0
z (t)

dt
= −	1

[
S0

z (t) − m
]
,

(45)

i
dS+(t)

dt
= [E − i	2] S+(t) + �S0

z (t) cos ν0t,

whose solutions are

S0
z (t) = m + [S0

z (0) − m
]
e−	1t , (46)

S+(t) = � [(E − i	2) cos ν0t − iω sin ν0t] m

ν2
0 − (E − i	2)2

+ � [(E − i	+) cos ν0t − iν0 sin ν0t] δSz
t

ν2
0 − (E − i	+)2

, (47)

where δSz
t = [S0

z (0) − m]e−	1t and 	+ = 	1 + 	2. The first
term in (47) describes the average response, the second the
relaxation after the spin-flip process which is responsible
for the noise. Because the frequency shift of the resonator
is due to 〈ReS+(t)〉, the noise in this quantity is given by
〈ReS+(t)ReS+(0)〉 which is proportional to 〈(Sz(0) − m)2〉 =
1 − m2 = cosh−2(E/2T ). In the low-temperature regime T 

ν0, at relevant energies E 
 ν0 and 	 
 E, we find that the
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noise spectrum is

Sδν

ν2
0

(ω) ∼ P̄0

ω

∫
E2dE

ν4
0 cosh2 E/2T

∫
Vh

| �E |4dV

4(
∫
V

ε| �E |2dV )2

∝ [P̄0VhT ]
T 2

ω
= NTLS

T 2

ω
, (48)

where NTLS is the number of thermally activated TLS located
in the dielectric volume Vh. Although the noise spectrum has
the correct, 1/f , frequency dependence, its power decreases
quickly at low temperatures in sharp contrast to the data.

VI. CONCLUSIONS

The predictions of the generalized tunneling model for the
noise spectra of the resonator frequency derived in the previous
sections agree very well with recent detailed measurements
performed in high-Q superconducting microresonators [8].
Reversing the logic one can extract the phenomenological
parameter μ from these data. The resulting value μ ≈ 0.2–0.4
is in a very good agreement with the value that was found
in many bulk glasses [34]. This value agrees perfectly well
with the direct measurements of the dephasing rate of TLSs
in the insulating barrier of phase qubits that give 	2 ∝ T 1+μ

with μ ≈ 0.24 [22]. The absolute values of the dephasing rate
observed in these experiments agree well with the theoretical
expectations assuming χ (T/Emax)μ ∼ 10−3.

As was emphasized repeatedly by Leggett the apparent
universality of the dimensionless parameter χ ∼ 10−3 in the
STM is very strange and asks for theoretical explanation. In the
GTM considered in this paper this puzzle becomes less striking
because the parameter that controls the interaction between

the TLSs has a weak energy dependence: χeff = χ (T/Emax)μ.
At low temperatures T ∼ 100 mK this parameter becomes
much smaller than its high energy (bare) value. Assuming
that the power law (E/Emax)μ extends to the atomic energy
scales, Emax ∼ 103 K, one deduces the bare value of the
parameter χ0 ∼ 10−1–10−2. The fact that the value of χ0 at
high temperature is somewhat small is not surprising, because
larger values would imply melting. Indeed, the average thermal
displacements, δu, of all TLSs per atomic volume is 〈δu2〉Th ∼
d2T P0a

3 where a is interatomic spacing and d is a typical
displacement caused by TLSs. The Lindemann melting crite-
rion demands that 〈δu2〉Th < (cLa)2 where cL ≈ 0.1–0.2 is the
Lindemann parameter. Estimating the interaction parameter
U0 ∼ ωDd2a we can rewrite the Lindemann melting condition
as (T/ωD)χ0 < c2

L which implies that the maximal values of
χ0 consistent with the glass stability are χ0 ∼ 10−1–10−2.

In conclusion, the data and their theoretical analysis
remove the mystery of the universality of the dimensionless
parameter χ ∼ 10−3–10−4 at low temperatures replacing it
by the phenomenological law ρ(E) = ρ0(E/Emax)μ with a
small μ ≈ 0.3. It is very likely that this law is a consequence
of a more complicated, than assumed usually, nature of the
TLSs in physical glasses. The data also indicate that interaction
between TLSs is responsible for their dephasing and the noise
generated by them.
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