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We extend the Ginzburg-Landau (GL) theory of atomically rough bcc-liquid interfaces [Wu et al., Phys. Rev.
B 73, 094101 (2006)] outside of equilibrium. We use this extension to derive an analytical expression for the
kinetic coefficient, which is the proportionality constant μ(n̂) between the interface velocity along a direction n̂

normal to the interface and the interface undercooling. The kinetic coefficient is expressed as a spatial integral
along the normal direction of a sum of gradient square terms corresponding to different nonlinear density wave
profiles. Anisotropy arises naturally from the dependence of those profiles on the angles between the principal
reciprocal lattice vectors �Ki and n̂. Values of the kinetic coefficient for the (100), (110), and (111) interfaces
are compared quantitatively to the prediction of linear Mikheev-Chernov (MC) theory [J. Cryst. Growth 112,
591 (1991)] and previous molecular dynamics (MD) simulation studies of crystallization kinetics for a classical
model of Fe. Additional MD simulations are carried out here to compute the relaxation time of density waves in
the liquid in order to make this comparison free of fit parameters. The GL theory predicts an expression for μ

similar to the MC theory but yields a better agreement with MD simulations for both its magnitude and anisotropy
due to a fully nonlinear description of density wave profiles across the solid-liquid interface. In particular, the
overall magnitude of μ predicted by GL theory is an order of magnitude larger than predicted by the MC theory.
GL theory is also used to derive an inverse relation between μ and the solid-liquid interfacial free energy. The
general methodology used here to derive an expression for μ(n̂) also applies to amplitude equations derived
from the phase-field-crystal model, which only differ from GL theory by the choice of cubic and higher order
nonlinearities in the free-energy density.
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I. INTRODUCTION

A major determinant of the morphology of crystals grown
from the melt far from local thermodynamic equilibrium is the
solid-liquid interface kinetic coefficient [1–4]. For atomically
rough interfaces, this coefficient μ(n̂) is the proportionality
constant, defined by the linear relation

V = μ(n̂)�T, (1)

between interface velocity V and interface undercooling
�T = Tm − T , where Tm is the melting point. The crystal-
lization rate and hence μ generally depend on the direction n̂

normal to the interface with respect to a fixed set of crystal
axes. Both the magnitude and anisotropy of μ have been shown
theoretically, within the framework of solvability theory [5],
and computationally using both front-tracking [6] and phase-
field [7] approaches, to have a crucial influence on dendritic
solidification at large growth rates. To date, major progress has
been achieved in using molecular dynamics (MD) simulations
with embedded-atom-method (EAM) interatomic potentials to
compute μ and its anisotropy for various pure metals (e.g., Ni,
Cu, Mg, and Fe) and different crystal structures (e.g., bcc,
hcp, and fcc) [3,8–12]. Moreover, results of those simulations,
such as for pure Ni [9], have been used as input parameters
in phase field simulations [7], thereby making it possible
to link quantitatively atomistic and continuum length scales
for the prediction of dendrite growth rates that have been
compared with experiments [3,4]. Furthermore, results from
MD simulations have made it possible to test quantitatively

basic theories of crystal growth kinetics, thereby shedding
light on the physical mechanisms that control μ(n̂) (see [4]
for a review). The magnitude of μ has been found to be well
predicted by the expression

μ ≈ C
VT L

kBT 2
m

, (2)

proposed by Broughton, Gilmer, and Jackson (BGJ) to
interpret crystallization rates measured by MD simulations
in the Lennard-Jones system [13]. Here VT = √

3kBT /m

is the thermal velocity of atoms in the liquid, assumed to
limit the rate of atomic attachment at the interface, m is the
atomic mass, and C is a constant of order unity that can
generally depend on the growth orientation; L is the latent
heat per atom. BGJ introduced Eq. (2) based on the finding
that crystallization rates were too large to be explained by the
common assumption that atomic attachment at the solid-liquid
interface is a thermally activated process with the same energy
barrier as liquid-state diffusion. Coriell and Turnbull [14]
independently developed an expression for μ in metallic
systems based on a similar assumption that crystallization is
limited by the rate of liquid-atom collisions at the interface,
but related this rate to the frequency of atomic vibrations in
the solid instead of to the thermal velocity of liquid-atoms,
which yields the expression μ ≈ VSL/kBT 2

m where VS is the
speed of sound in the solid. This upper-bound estimate of μ

is much larger than values extracted from MD simulations to
date for pure metals [3,8–12], which are in closer agreement
with Eq. (2).
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Equation (2) has been put on a firmer theoretical footing
by Mikheev and Chernov (MC) [15,16] who derived a
similar form in the theoretical framework of classical density
functional theory of freezing [17–19]. In this density wave
picture, crystal ordering of atoms increases from liquid to
solid through several atomic layers parallel to the interface.
Concomitantly, the amplitude of density waves corresponding
to different reciprocal lattice vectors (RLVs) of the crystal
lattice increases smoothly from zero in the liquid to constant
values in the crystal along the z axis normal to the interface.
The expression for μ in the MC theory is derived by only
considering the contribution of the set of principal RLVs
(with lowest magnitude | �Ki |) to the crystal density field,
and by using a fluctuation-dissipation relation to relate the
rate of interface dissipation to the inverse half-width of the
dynamic equilibrium structure factor S(| �Ki |,ω) [20]. This
theory predicts a magnitude of μ of the form of Eq. (2)
where C depends on growth orientation through the orientation
dependence of the spatial decay rate of density waves into the
liquid, which depends on K̂i · n̂. It should also be noted that,
according to the MC theory, the kinetic coefficient depends on
a relaxation time of density waves in the liquid, which in turn
can be related to the liquid diffusion coefficient. Therefore, the
MC model appears to disagree with the main assumption first
proposed by BGJ. In a recent MD study, Mendelev et al. [21]
showed that, at least in the limit of small undercoolings, μ is
in fact proportional to the diffusivity. The authors speculate
that there is a change in atomic attachment mechanism in the
high and low undercooling limits.

In this paper, we derive an expression for μ within the
framework of Ginzburg-Landau (GL) theory. The analytical
expression for μ is explicitly shown to depend on equilibrium
density wave profiles that vary with crystal orientation. Hence,
like the MC theory, the present time-dependent GL theory
predicts the anisotropy of μ. This is in contrast to previous
theoretical studies based on dynamical density functional
theory of freezing that provide a more realistic description of
the crystal density field by including higher order reciprocal
lattice vectors, but have not explicitly treated the dependence
of the crystallization rate on crystal orientation [22–25]. Like
the MC theory, GL theory is rooted in a density wave picture
of the solid-liquid interface structure and considers a minimal
set of RLV to represent the crystal density field. However
a nontrivial difference between the two theories is that the
MC theory is linearized around the liquid state and hence
neglects the nonlinear interaction between different density
waves. The anisotropy of μ arises solely in this theory from
the orientation dependence of the exponential decay rate into
the liquid of noninteracting density waves. In contrast, GL
theory captures the nonlinear interaction between different
density waves through the inclusion of cubic and quartic terms
in the GL expansion of the free-energy density in density
wave amplitudes. Consequently, the resulting expression for
μ derived here in the GL framework depends explicitly on
the interacting nonlinear density wave profiles through the
entire solid-liquid interface region and, as a result, μ has a
different anisotropy than that predicted by the linearized MC
theory [15,16].

We carry out our analysis for the bcc-liquid interface whose
equilibrium properties, in particular the excess free energy

of the interface γsl and its anisotropy, have been modeled
previously by GL theory [26,27]. This equilibrium theory
is extended to a nonequilibrium situation in the standard
framework of the time-dependent GL (TDGL) theory. We
incorporate a thermodynamic driving force proportional to the
undercooling and a free-energy dissipation time scale that is
related, as in the MC theory, to the inverse half-width of the
dynamic equilibrium structure factor. The kinetic coefficient
μ is calculated explicitly for (100), (110), and (111) interfaces
using parameters obtained from MD simulations for the Fe
EAM potential developed by Mendelev et al. [28] and the
results are compared to the predictions of MD simulations
using this potential [10,12] and the MC theory.

We note that the general methodology developed here to
derive an expression for the kinetic coefficient within a TDGL
framework applies directly to amplitude equations for elemen-
tal systems [29–33] and binary alloys [34,35] derived from the
phase-field-crystal (PFC) model [36–39]. As shown previously
by Wu and Karma [32] in a study of the equilibrium bcc-liquid
interface, the set of amplitude equations derived from the
PFC model only differs from the set derived from GL theory
in the coefficients of nonlinear terms that couple different
density waves. In the amplitude equations derived from the
PFC model, all coefficients of nonlinear terms are uniquely
determined by the nonlinear form assumed for the free-energy
density in the PFC model from which the amplitude equations
are derived. In contrast, in the versions of GL theory of
Refs. [26,27], those coefficients are determined by the ansatz
that all geometrically distinct closed polygons with the same
number of sides corresponding to RLVs have equal weight. In
principle, the weight of closed polygons in reciprocal space
can be derived if higher order n-point correlation functions are
provided. However, this information is difficult to obtain. If one
assumes that higher order correlation functions are constant,
then one recovers the nonlinear coefficients in the amplitude
equations derived from the PFC model [32,40]. Differences
in coefficients obtained from an amplitude expansion of the
standard PFC model and this ansatz were found to have only
a small effect on the prediction of γsl and its anisotropy for
the bcc-liquid interface [32]. However, more generally, the
formalism developed in the present work should prove useful in
the development of PFC formulations and amplitude equations
that model different kinetic anisotropies for different crystal
structures.

We first write down the TDGL model of crystallization and
then use this model to derive an analytical expression for the
kinetic coefficient. We detail the procedure for a specific choice
of orientation and state the results for other orientations. Next,
we present a method to compute the relaxation time of density
waves in the liquid that is a key kinetic input parameter for both
the MC and GL theories. We then compare the predictions of
GL theory to the predictions of the linearized MC theory and
previous MD simulation studies.

II. TIME-DEPENDENT GINZBURG-LANDAU MODEL

To construct a TDGL model of crystallization kinetics
for the bcc-liquid system, we start from the expression for
the excess free energy �F for the solid-liquid system in
equilibrium relative to the liquid free energy. Under the
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assumption that the density wave amplitude varies slowly on
the scale of the lattice spacing, this excess has the form [27]

�F ≈ n0kBT

2

∫
d�r

⎛
⎝∑

i,j

1

S(| �Ki |)
uiuj δ0, �Ki+ �Kj

+ b
∑

i

ci

∣∣∣∣dui

dz

∣∣∣∣
2

− a3

∑
i,j,k

cijkuiujukδ0, �Ki+ �Kj + �Kk

+ a4

∑
i,j,k,l

cijkluiujukulδ0, �Ki+ �Kj + �Kk+ �Kl

⎞
⎠ . (3)

The ui’s denote the amplitudes of density waves corresponding
to the RLV with the smallest magnitude | �Ki | in the truncated
expansion of the number density

n(�r,t) = n0

⎛
⎝1 +

∑
�Ki

ui(�r,t)ei �Ki ·�r + · · ·
⎞
⎠ (4)

and have the limits ui = us (ui = 0) in the solid (liquid). Since
the reciprocal lattice of bcc is fcc, there are twelve | �Ki |’s of
equal magnitude pointing in 〈110〉 directions. S(K) denotes the
liquid structure factor and C(K) refers to the Fourier transform
of the direct correlation function C(|�r − �r ′|) and C ′′(K) ≡
d2C(K)/dK2. The coefficients of the gradient square terms are
determined by comparison of the form (3) and the expression
for the free energy of an inhomogeneous liquid, yielding b =
−2C ′′(| �Ki |) and ci = (K̂i · n̂)2/4 [27]. The coefficients a3 and
a4 are determined in the same way as in Shih et al. [26]
and Wu et al. [27] from the two equilibrium conditions that
the solid and liquid phases must have equal free energies at
the melting point and the equilibrium state of the solid is
a minimum of free energy. These two conditions yield the
values a3 = 2a2/us and a4 = a2/u

2
s where a2 = 12/S(| �Ki |).

In addition, the aforementioned ansatz that all closed polygons
of �Ki’s with the same number of sides have equal weight yields
the constants cijk = 1/8 and cijkl = 1/27. The effect of the
fractional density change on interfacial properties is neglected
in the present calculations. If one considers the miscibility gap,
it is equivalent to rescaling the quartic coefficient a4 [26]. The
equilibrium density wave profiles would be slightly modified
due to a small fractional density change which results in slight
changes in kinetic coefficients.

Furthermore, we assume the reciprocal lattice vectors do
not change across the solid-liquid interface. The effect of
the expansion of the lattice spacing is a higher order effect
in a multiscale expansion that treats the ratio of the lattice
spacing to the spatially diffuse width of the atomically rough
solid-liquid interface (the liquid correlation length) as a small
parameter. In a previous amplitude equation analysis [32], it
has been shown that the lattice spacing is a constant across the
interface to lowest order in this small parameter. Therefore,
the small variation of the lattice spacing across the interface
that is present in a real system does not influence the kinetic
coefficient in GL theory.

It is important to note that in the absence of knowledge
of higher order correlation functions there is no general
way to determine the weight for each closed polygon. Thus

we simply assume that geometrically distinct polygons (i.e.,
exclude repetitive polygons) have equal weight. However, if
one assumes that Fourier transforms of higher order correlation
functions are constant, then all polygons (including repetitive
polygons) contribute equally in the free energy and this
yields cijk = 1/48 and cijkl = 1/540 as shown in the PFC
calculations [32,40]. It is straightforward to examine the
relation between these normalization constants. For example,
there are 27 geometrically distinct 4-side polygons. Out of
these 27 polygons, 6 of them contain twice the same RLVs
(e.g., [110], [1̄1̄0], [110], [1̄1̄0]), and 21 of them contain 4
different RLVs (e.g., [110], [11̄0], [1̄10], [1̄1̄0]). Thus if we
choose to count all repetitive polygons, the number of 4-side
polygons is 4!/(2!2!) × 6 + 4! × 21 = 540 (since there are
4!/(2!2!) ways to rearrange RLVs for the 6 polygons that
contain twice the same RLVs and 4! ways for each of the 21
polygons that contain four different RLVs).

To incorporate a driving force for crystallization in the
model, we expand the free energy difference between the solid
and liquid phases near the melting point in the form

FS(T ) − FL(T ) = (SS − SL)(T − Tm) = L
T − Tm

Tm

, (5)

where we have used the thermodynamic relation dF = −SdT

and L denotes the latent heat of melting per atom. Furthermore,
we add this driving force by assuming that this free-energy
difference varies proportionally to the density wave amplitude
through the solid-liquid interface region. This yields the
expression for the free-energy of the two-phase system outside
of equilibrium

�F ′ = �F + n0kBTm

∫
d�r

∑
i

1

12

ui − us

us

L

kBTm

T − Tm

Tm

.

(6)

The linear approximation of the driving force term was used
originally by Langer to formulate a phase-field model for
the solidification of a pure substance [41]. One can also
use a nonlinear interpolation function 4(ui/us)3 − 3(ui/us)4,
instead of the linear function (ui − us)/us , to model the
variation of the driving force through the spatially diffuse
solid-liquid interface region. This nonlinear function has
the advantage that it maintains the amplitudes of density
waves constant in the solid (ui = us) outside of equilibrium.
However, an explicit calculation shows that the expression
for the kinetic coefficient is identical if the linear or the
nonlinear function is used to model the driving force. This
follows physically from the fact that the kinetic coefficient is
defined as the coefficient of proportionality between the crystal
growth rate and driving force in the vanishing undercooling
limit. As a result the expression for the kinetic coefficient
only depends on gradient square terms involving equilibrium
density wave profiles. This sum is proportional to the rate of
interface dissipation in the vanishing undercooling limit and
is independent of the form of the linear interpolation function
used to model the driving force. We therefore only present
here the derivation of the kinetic coefficient for the linear
interpolation function. The normalization constant 1/12 in the
driving force term ensures that for bcc lattices the bulk energy
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difference between solid and liquid has the correct temperature
dependence imposed by Eq. (5).

Next, we assume that the evolution of the order parameters
ui is governed by an equation of the standard TDGL form

τ
∂ui

∂t
= − 1

n0kBT

δ�F ′

δui

, (7)

where the kinetic time scale τ is fixed by the requirement that
density waves in the liquid should relax on a time scale τL(| �Ki |)
corresponding to the inverse half-width of the dynamical
structure factor S(| �Ki |,ω). This requirement is satisfied by
the choice

τ = τL(| �Ki |)/S(| �Ki |). (8)

With the above choice, the TDGL equation (7) reduces in the
liquid to τL(| �Ki |)∂tui = −ui due to the cancellation of the
factor of 1/S(| �Ki |) on both sides of the equation.

III. ANALYTICAL CALCULATION OF THE KINETIC
COEFFICIENT

To derive an expression for the kinetic coefficient, we look
for a steady-state propagating solution of the TDGL equation
that corresponds to planar crystallization fronts moving at
constant velocity V . Those solutions have the general form
ui(�r,t) = ui(n̂ · �r − V t) where n̂ is the crystal growth direc-
tion normal to the solid-liquid interface. To analyze those
solutions, we transform Eq. (7) to a moving frame translating
at velocity V along the normal direction through the coordinate
transformation z = n̂ · �r − V t , which yields the set of coupled
nonlinear ordinary differential equations

−V τ
dui

dz
= − 1

n0kBT

δ�F ′

δui

, (9)

for the time-independent profiles ui(z). For a given direction
of the interface n̂, an analytic expression for μ can be
obtained by looking for solutions of Eq. (9) in the limit
of small driving force where V ∼ �T and the propagating
density wave profiles deviate only slightly from the stationary
equilibrium profiles for V = 0. In this limit, the problem
of finding solutions to Eq. (9) can be transformed into a
linear problem by linearizing Eq. (9) around the equilibrium
profiles, i.e., by substituting ui(z) = ui0(z) + ui1(z) + · · · ,
where ui0(z) denote the stationary equilibrium profiles and
ui1(z) denote small linear perturbations of those equilibrium
profiles due to interface motion. An expression for μ is then
readily obtained from the solvability condition of finding the
solutions ui1(z) to a set of coupled linear differential equations
with some nonconstant coefficients that depend on the ui0(z)
profiles. This procedure is a straightforward generalization
of the standard procedure used to derive an expression for
the interface kinetic coefficient in the standard single order
parameter phase-field model of crystal growth (e.g., see [42]).
We carry out this calculation explicitly below for the three
low-index crystal faces generally considered in characterizing
the anisotropy of interface properties in fcc- and bcc-forming
systems.

To start, we use the results of previous work on capillary
anisotropy for bcc-liquid interfaces [27]. This analysis shows
that the amplitudes of density waves can be categorized

TABLE I. Classifications and the values of square gradient term
ci for different orientations of bcc crystal interfaces.

100 110 111
(K̂i · n̂)2 0 1/2 1/4 1 0 0 2/3
Number of �Ki’s 4 8 8 2 2 6 6
ci = (K̂i · n̂)2/4 0 1/8 1/16 1/4 0 0 1/6

into different groups according to the relative orientations
of different principal RLVs. Those orientations determine
the values of K̂i · n̂ and hence the coefficients of the square
gradient terms appearing in the GL free-energy functional (3)
as summarized in Table I for the three crystal faces considered.
To exemplify our calculation in detail, we choose the (110)
crystal face for which the amplitude of propagating density
waves are denoted as u, v, and w with corresponding values
of (K̂i · n̂)2, 1/4, 1, and 0, respectively.

We write down explicitly Eq. (9) for the three order
parameters u, v, and w:

−4V τ
du

dz
= −

(
1

2
fu + 2 C ′′(| �K110|)(K̂u · n̂)2 d2u

dz2
+ 4α

)
,

−V τ
dv

dz
= −

(
1

2
fv + 1

2
C ′′(| �K110|)(K̂v · n̂)2 d2v

dz2
+ α

)
,

−V τ
dw

dz
= −

(
1

2
fw + 1

2
C ′′(| �K110|)(K̂w · n̂)2 d2w

dz2
+ α

)
,

(10)

where we have defined the dimensionless parameter

α = L(T − Tm)

12uskBT 2
m

(11)

that measures the departure from equilibrium and used
the shorthand notation of partial derivatives of the bulk
free-energy density f at equilibrium [defined as �F =
n0kBT

∫
d�rf (u,v,w)] with respect to the order parameters

fu ≡ ∂f/∂u, fv ≡ ∂f/∂v, and fw ≡ ∂f/∂w. As outlined
earlier, we now expand the moving profiles for a temperature
slightly below the melting point around the equilibrium
profiles at the melting point in the form u = u0 + u1 + · · · ,
v = v0 + v1 + · · · , and w = w0 + w1 + · · · , where u0,v0, and
w0 denote the equilibrium profiles that are solutions of Eq. (10)
for V = α = 0 and u1,v1, and w1 denote the perturbation of
those profiles due to interface motion below the melting point.
Linearizing Eq. (10) around the stationary equilibrium profiles,
we obtain a set of coupled linear equations for u1,v1, and w1. It
is convenient to write those linearized equations in the matrix
notation

LU = F, (12)

where we have defined

L =
⎛
⎝fuu + 4Du fuv fuw

fvu fvv + Dv fvw

fwu fwv fww + Dw

⎞
⎠, (13)
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and

Di ≡ C ′′(| �K110|)(K̂i · n̂)2 d2

dz2
, (14)

U =
⎛
⎝u1

v1

w1

⎞
⎠, F = 2

⎛
⎜⎝

4V τ du0
dz

− 4α

V τ dv0
dz

− α

V τ dw0
dz

− α,

⎞
⎟⎠. (15)

A solvability condition for the existence of a solution to this
inhomogeneous linear problem can be readily obtained by
noting two properties of the linear operator. First, owing to
the translational invariance of the TDGL equation, the right
column vector function U0 with components du0

dz
, dv0

dz
, and dw0

dz

is a solution of the homogeneous linear problem LU0 = 0,
which can be seen explicitly by differentiating Eq. (10) at

the melting point (V = α = 0) with respect to z. Second,
the operator L is self-adjoint so that left zero modes are
identical to right zero modes. This implies that, for any U , L

satisfies the property (UT
0 ,LU ) = (UT ,LU0) = 0 where UT

0

is the transposed left row vector function UT
0 = ( du0

dz
, dv0

dz
, dw0

dz
)

and (g,h) = ∫ +∞
−∞ dz g · h denotes the inner product of a left

row vector function g and a right column vector function
h. The first equality (UT

0 ,LU ) = (UT ,LU0) can be easily
verified using the fact that L is a symmetric matrix and
integrating by parts twice over z the diagonal second derivative
terms; boundary terms vanish owing to the property that
spatial derivatives of u0, v0, and w0 vanish at z = ±∞. The
second equality (UT ,LU0) = 0 follows from the first property
LU0 = 0. Hence, for Eq. (12) to have a nontrivial solution, we
must have (UT

0 ,F ) = (UT
0 ,LU ) = (UT ,LU0) = 0, yielding

the solvability condition

(
UT

0 ,F
) =

∫ ∞

−∞
dz 2V τ

{[
4

(
du0

dz

)2

+
(

dv0

dz

)2

+
(

dw0

dz

)2]
− 2α

[
4
du0

dz
+ dv0

dz
+ dw0

dz

]}
= 0. (16)

Setting the boundary conditions for a solid-liquid system u0(−∞) = v0(−∞) = w0(−∞) = 0 and u0(∞) = v0(∞) = w0(∞) =
us , the density wave velocity V can be further simplified into [here the subscript of V indicates the crystal face normal (110)
specific to this case]

V110 = 12αus

τ

[ ∫ ∞

−∞
dz 8

(
du0

dz

)2

+ 2

(
dv0

dz

)2

+ 2

(
dw0

dz

)2 ]−1

. (17)

The growth velocity for other crystal orientations can be
computed using the same analysis with references to different
sets of density wave amplitudes and square gradient terms
listed in Table I. It is clear that the kinetic anisotropy
of the solid-liquid interface is a result of different density
wave profiles for different crystal orientations. The kinetic
coefficient μ is obtained accordingly by dividing the growth
velocity by the undercooling,

μ = 12αus

τ (T − Tm)

⎡
⎣∫

dz
∑

�Ki

(
dui

dz

)2
⎤
⎦

−1

= L

kBT 2
m

S( �Ki)

τL( �Ki)

⎡
⎣∫

dz
∑

�Ki

(
dui

dz

)2
⎤
⎦

−1

. (18)

IV. COMPUTATION OF THE LIQUID RELAXATION TIME
FROM MOLECULAR DYNAMICS SIMULATIONS

In order to quantitatively compare the GL model with the
results from MD simulation the relaxation parameter τL(| �Ki |)
must be determined for the Fe MH(SA)2 potential. In principle
an MD simulation can be performed to determine the dynamic
structure factor and, as discussed above, the relaxation time can
be found from the inverse half-width of S(| �Ki |,ω). However,
we have utilized an alternative method that provides a more
convenient and more direct computation of τL(| �Ki |). The MD
procedures are as follows.

An 8000-atom simulation cell was melted and subsequently
equilibrated for 100 ps at the melting temperature of MH(SA)2

Fe. During the equilibration the x dimension was held fixed
whereas the other two cell dimensions were allowed to vary,
such that the pressure in the system was maintained at
zero. The equilibrated liquid was further equilibrated in an
NVT ensemble where, in addition to the usual interatomic
forces, a force of the form f = a cos(| �Ki |x) was imposed.
Application of the external force results in a one-dimensional
number density profile in the liquid with the desired wave
number | �Ki | and the simulation cell length along the x

direction, Lx , was chosen such that a total of 36 number
density peaks are commensurate with the cell dimension (i.e.,
Lx = 36(2π )/| �Ki |). The optimal choice of the force amplitude
a results in a number density amplitude that is sufficiently
high to be resolved above the usual thermal fluctuations in
density, yet small enough such that the density profile can be
accurately described by the form A(t) cos(| �Ki |x) + no. By trial
and error we found that a value of 0.06 eV/Å was ideal. The
final step of the τL computation is a short (2 ps) simulation in
an NVT ensemble where the external potential is removed. The
exponential decay of A(t) yields directly the relaxation time.

In the final simulations a standard Nose-Hoover thermostat
was employed. However, considerable care must be taken
in choosing a relaxation time for the thermostats. If the
response time is too fast the dynamics of the system may
be affected. Also, the one-dimensional applied force implies
that the momentum of particles in the x direction will not be
equal to that of the other two directions, whereas a Nose-
Hoover thermostat acts on the average momentum of the
system. To test these effects a range of thermostat relaxation
parameters from 0.1–1.0 ps were tested. It was found that the
results were unchanged for thermostat settings above 0.5 ps
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FIG. 1. (Color online) The number density in the liquid plotted
vs the position x for a portion of the MD simulation cell. Solid
lines are the number densities obtained from the simulation and the
dashed lines are best fits to the function A(t) cos(| �Ki |x) + no. The
difference from the initial profile (t = 0) and a later snapshot (t =
0.5 ps) illustrates the decay of A(t) with time.

and, due to the fact that the imposed density amplitudes are
small, the overall temperature rise of the system was small.
The independence of τL on the imposed thermostat setting
also indicates that similar results would be obtained using a
microcanonical (NVE) ensemble.

Figure 1 shows the number density profile at two different
times during the decay process. For clarity, only a portion of the
simulation cell is plotted along the x direction and the number
density represents the average of five separate runs using
different starting configurations. The high-amplitude profile
corresponds to the initial profile established in the liquid due
to the imposed external force and the dashed line shows the best
fit to a cosine function. The lower-amplitude curve corresponds
to a time of 0.5 ps and the decay in amplitude is clearly evident.
Figure 2, plotted on a semilog scale, illustrates the decay of the
best-fit amplitude versus time. The data are well represented by
an exponential decay and for this simulation a relaxation time
of τL = 0.58 ps was found. In order to assess the statistical
uncertainty the above procedure was repeated six times and
each computation utilized five different starting configurations
for the liquid under an imposed external force. The final value
of the relaxation time was found to be τL = 0.57 ± 0.05 ps
where the error denotes a 95% confidence limit.

V. RESULTS AND DISCUSSION

In this section, we compare kinetic coefficients predicted
by the MC theory, the GL theory, and MD simulations with
the MH(SA)2 potential for Fe. The values of input parameters
from MD simulations are listed in Table II. To compare the

0 0.2 0.4 0.6 0.8 1
Time (ps)

0.01

A
m

p
lit

u
d

e 
(Å

-3
)

τL = 0.58 ps

FIG. 2. Semilog plot of the amplitude A(t) vs time for a typical
MD simulation.

main result of the last section Eq. (18) to the prediction of the
MC theory [15,16], it is convenient to express μ in terms of
the effective widths ξ �Ki

of density wave ui profiles defined by

ξ−1
�Ki

=
∫

dz

(
dui

dz

)2

(19)

and also introduce explicitly the correlation length of the liquid
corresponding to the inverse half-width of the liquid structure
factor, ξb = [−S ′′(| �Ki |)/2S(| �Ki |)]1/2. Using those definitions,
Eq. (18) can be rewritten in the form

μ = L

kBT 2
m

S( �Ki)ξb

N1τL( �Ki)As

, (20)

where

As = 1

N1

∑
�Ki

ξb/ξ �Ki
(21)

is a dimensionless anisotropy factor that depends on the
orientation of the crystal face through the effective widths
of density wave profiles; N1 = 12 is the number of principal
reciprocal lattice vectors for bcc lattices. Remarkably, the
expression for μ defined by Eq. (20), which has been derived
here formally from GL theory, is identical to the one of
the MC theory. A main difference, however, is that in GL
theory, the ui profiles used to compute the widths defined by
Eq. (19) and hence the anisotropy factor As defined by Eq. (21)
are nonlinear solutions of the equilibrium GL equation, e.g.,
Eq. (10) for V = α = 0 for the (110) orientation. The different
ui profiles across the solid-liquid interface are nonlinearly
coupled through cubic and quartic terms in the free-energy
density and need to be determined through a numerical solution
of the equilibrium GL equations for the different set of ui ,

TABLE II. Values of input parameters from MD simulations with interatomic EAM potential for Fe from MH(SA)2 [10,28] and resulting
coefficients used in GL theory. The value of τL is computed using the method described in Sec. IV.

n0 (Å−3) a2 b (Å2) τL (ps) us | �Ki | (Å−1) ξb (Å) L (eV/atom) Tm (K)

MD [MH(SA)2] 0.0765 3.99 20.81 0.57 ± 0.05 0.72 2.985 3.96 0.162 1772
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FIG. 3. (Color online) Equilibrium nonlinear density wave profiles across the solid-liquid interface obtained by GL theory with input
parameters from MD simulations with the MH(SA)2 potential for three crystal faces: (a) (100), (b) (110), and (c) (111).

with the set of ui depending on crystal orientation [27],
e.g., numerically solving Eq. (10) for u0, v0, and w0 for
the (110) crystal face. Numerically computed density wave
profiles for the (100), (110), and (111) crystal faces using input
parameters from MD simulations with MH(SA)2 potential [27]
are plotted in Fig. 3 (ξb ∼ 3.96 Å for this potential). In
contrast, in the calculation of kinetic anisotropy, MC estimates
effective widths of density wave profiles using a truncated
density functional theory derived in an earlier paper [43].
The truncated density functional theory is a linear theory that
predicts density wave profiles near the liquid and yields

ξ �Ki
= ξb|K̂i · n̂| (22)

for mixed transverse and longitudinal density waves with finite
K̂i · n̂, and

ξ �Ki
= (ξb/| �Ki |)1/2 ≡ ξT (23)

for transverse density waves with K̂i · n̂ = 0. Then the dimen-
sionless anisotropy factor can be approximated as

AMC
s (n̂) = 1

N1

(∑
T

ξb

ξT

+
∑
NT

1

|K̂i · n̂|

)
, (24)

where the summation is over transverse density waves and
nontransverse density waves, respectively. The dimensionless
anisotropy factor estimated by a linear theory exhibits the ξb

dependence through the transverse density waves. Thus the
anisotropy in kinetic coefficient estimated by a linear theory
is not universal but depends on the details of the interatomic
potentials. In contrast, the full nonlinear density wave profiles
are solved in GL theory; hence ξ �Ki

can be evaluated directly
using Eq. (19) without any approximations. It is convenient to
express Eq. (19) in terms of the dimensionless length z̃ ≡ z/ξb

and the rescaled amplitude ũi ≡ ui/us ,

ξ−1
�Ki

≡ u2
s

ξb

c(K̂i ; n̂), (25)

where we define the dimensionless spatial integration of the
derivative of density waves

c(K̂i ; n̂) ≡
∫

dz̃

(
dũi

dz̃

)2

. (26)

The function c(K̂i ; n̂) depends only on the RLV and the
interface normal. It can be seen from Eq. (10) for V = α = 0
that once we introduce the above dimensionless length z̃ and
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TABLE III. Values of c(K̂i ; n̂) and dimensionless anisotropy
factors calculated using the MC theory and the GL theory.

n̂ (100) (110) (111)
(K̂i · n̂)2 0 1/2 0 1/4 1 0 2/3
c(K̂i ; n̂) 0.37 0.28 0.45 0.33 0.23 0.52 0.27
AMC

s (�n) 2.09 2.07 2.33
AGL

s (�n) 0.161 0.173 0.205

rescaled amplitude ũ, these coupled Euler-Lagrange equations
become independent of the liquid structure factor and give
rise to universal nonlinear density wave profiles. Thus the
function c(K̂i ; n̂) has a universal value regardless of the details
of interatomic potentials. The universal values of c(K̂i ; n̂)
are listed in Table III. The dimensionless anisotropy factor
computed by the GL theory is related to these universal values
by

AGL
s (n̂) = u2

s

N1

∑
i

c(K̂i ; n̂). (27)

The GL theory predicts that the magnitude of As depends on
the solid amplitude square while the ratio of As for different
orientations remains the same.

We compare in the first and the third column of Table IV
the ratios of μ values for different crystal faces predicted
by GL and MC theories. The μ values for GL theory are
computed using Eq. (20) with the widths ξ �Ki

of density
profiles (to evaluate As) computed using Eq. (19) and nonlinear
equilibrium profiles shown in Fig. 3 obtained from GL theory.
The μ values for the MC theory are computed using the same
Eq. (20) but with the widths ξ �Ki

predicted by Eqs. (22) and (23).
In addition, we list in the second column the ratios of μ

calculated with GL theory using a different ansatz for the
weight of polygons that corresponds to the PFC free-energy
functional (cijk = 1/48 and cijkl = 1/540). To compare the
predictions of the two theories with results of MD simulations
for the MH(SA)2 EAM potential, we list in the fourth column
of Table IV ratios of μ values computed using Eq. (20)
of the MC theory with widths ξ �Ki

extracted from fits of
MD-computed equilibrium density wave profiles to hyperbolic
tangent functions of the normal coordinate z [10]. Finally,
in the fifth column, we list the most accurate predictions to
date of ratios of μ values extracted from nonequilibrium MD
simulations for the same MH(SA)2 EAM potential [12] (which
improve the values previously reported in Ref. [10]).

TABLE V. The magnitude of the kinetic coefficient for bcc
lattices predicted by the present GL theory that assumes equal
weights of geometrically distinct polygons (cijk = 1/8 and cijkl =
1/27 [26,27]), the Mikheev-Chernov (MC) theory [15] with profile
widths obtained from a linearized theory near the liquid [given by
Eqs. (22) and (23)], and by nonequilibrium MD simulations [12].
The unit of the kinetic coefficient is cm/(s K).

GL theory MC theory
(Coef. from Refs. [26,27]) (Linear theory) MD

μ100 64.68 ± 5.67 4.98 ± 0.44 78.23 ± 4.47
μ110 60.19 ± 5.28 5.03 ± 0.44 61.67 ± 4.11
μ111 50.80 ± 4.46 4.47 ± 0.39 62.08 ± 2.26

The comparison of the first three columns and the fifth
column in Table IV shows that the GL theory yields overall an
improved prediction of the anisotropy of μ. It better predicts
the ratio μ100/μ111 and yields at least the correct ordering
μ100 > μ110 even if the ratio μ100/μ110 departs from the MD
value (the ratio μ100/μ110 = 1.06 falls just at the lower end
of the 95% confidence interval of the estimated MD value
1.27 ± 0.11 and has thus a relatively high probability of being
lower than the true MD value). The comparison of the first and
fourth columns indicates that a main contributing factor to this
improvement is the fact that GL theory uses nonlinear density
wave profiles with widths that better match the MD-calculated
equilibrium profiles than the width predicted by Eqs. (22)
and (23) used in the linear MC theory.

In addition to the comparison of the anisotropy of kinetic
coefficients, we compare the magnitude of kinetic coefficients
predicted by the MC theory, the GL theory, and MD simula-
tions. The kinetic coefficients are computed using Eq. (20), and
the relaxation time of liquids measured from MD simulation
is 0.57 ± 0.05 ps. The magnitude of μ predicted by the MC
theory is an order of magnitude smaller than that measured
from MD simulations; see Table V. Underestimation for the
magnitude of μ by the MC theory is shown in previous studies
for Fe, Pb, Ni, and Lennard-Jones systems [10,13,15,44,45].
In contrast, the magnitude of μ computed by GL theory is
comparable with those found in MD simulations, since the
dimensionless anisotropy factor As computed by GL theory
is obtained through the integration of spatial derivative of full
nonlinear density wave profiles; see Table III.

Furthermore, the GL theory yields an analytical relation
between two important interfacial quantities, namely the inter-
facial energy and the kinetic coefficients, as discussed below.

TABLE IV. The anisotropy of the kinetic coefficient for bcc lattices predicted by the present GL theory that assumes equal weights of
geometrically distinct polygons (cijk = 1/8 and cijkl = 1/27 [26,27]) and the GL theory with normalization coefficients derived from the
PFC model [32] that is equivalent to counting all repeats of those polygons (cijk = 1/48 and cijkl = 1/540), where both calculations use the
full nonlinear equilibrium density wave profiles shown in Fig. 3, the Mikheev-Chernov (MC) theory [15] with profile widths obtained from
a linearized theory near the liquid [given by Eqs. (22) and (23)], the MC theory with widths of density wave profiles extracted from MD
simulations [10], and by nonequilibrium MD simulations [12].

GL theory GL theory MC theory MC theory
(Coef. from Refs. [26,27]) (Coef. from Ref. [32]) (Linear theory) (MD Profiles) MD

μ100/μ110 1.06 1.07 0.99 1.14 1.27 ±0.16
μ100/μ111 1.27 1.39 1.12 1.23 1.26 ±0.12
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Under the isotropic approximation, the interfacial energy
derived from GL theory for bcc-liquid interfaces at equilibrium
is proportional to the solid amplitude square [26,27],

γiso = n0kBTmu2
s

6

√
a2b. (28)

The corresponding isotropic density wave profile is

u = us

2

[
1 + tanh

(√
3z

2ξb

)]
, (29)

which gives rise to ξ−1
�Ki

= (
√

3/6)u2
s ξ

−1
b and the dimensionless

anisotropy factor

As = ξb

ξ �Ki

=
√

3

6
u2

s . (30)

Thus the magnitude of μ is proportional to the inverse of u2
s .

Since both interfacial energy and kinetic coefficient are related
to the solid amplitude square, we can relate these two quantities
using Eq. (20), (28), and (30),

μiso = n0 ξ 2
b L

3τL( �Ki)Tm

1

γiso
. (31)

The interfacial energy is inversely proportional to the kinetic
coefficient, and these two interfacial quantities are related
through bulk liquid properties and latent heat in the GL theory.

VI. CONCLUDING REMARKS AND OUTLOOK

The remaining discrepancy between MD simulations and
GL theory is likely due to the oversimplified representation
of the crystal density field in terms of the minimal set of
principal RLVs, which ignores contributions of higher order
reciprocal lattice vectors. Interestingly, this representation
yields a prediction of the anisotropy of μ in the GL theory
that is independent of details of the interatomic potentials,
which only enter in the theory through the amplitude of density
waves in the solid us and liquid structure factor properties.
While those properties influence the magnitude of μ, they
do not influence its anisotropy because the shape of the
density wave profiles are independent of us and liquid structure
factor properties up to a common multiplicative factor of the
amplitude for all profiles and up to a common scaling factor
of length for all widths, respectively. For the same reason, the
anisotropy of the solid-liquid interfacial free energy predicted
by GL theory was found previously to be independent of
details of interatomic potentials [27]. For a realistic crystal
density field represented by a large set of RLVs, the anisotropy
of μ is expected to generally depend on the interatomic
potential as found in several MD studies for different crystal
structures [3,8–12,46]. Thus extending GL theory to include
more reciprocal lattice vectors could potentially give rise to a
better prediction of kinetic anisotropy.

In addition to the anisotropy, another interesting and
unexplained aspect of MC theory is the magnitude of μ.
In a previous MD study, Monk et al. [11] proposed several
techniques to correctly account for the temperature rise
associated with latent release during free solidification MD
simulations. The techniques were applied to an EAM model
of fcc Ni and the authors found that the value of μ was
approximately a factor of two larger than the μ computed
without the temperature spike correction. If we make the
crude assumption that a similar factor of two can be applied
to all previous MD studies (see the summary provided in Hoyt
et al. [3]), then it appears the MC model underestimates the
kinetic coefficient in fcc crystals by a factor of roughly 3–4.
In this comparison various properties of the liquid, such as
the structure function and the relaxation time, were estimated
from the hard-sphere system. In the case of MD simulations of
bcc Fe, Gao et al. [12] have accounted for the effect of latent
heat release and, as summarized in Table V, the value of μ is an
order of magnitude higher than the MC prediction. Here again
the kinetic coefficient is found to be about a factor of two higher
than previous MD estimates for Fe [10]. Therefore it is safe to
conclude that the MC model consistently underestimates the
magnitude of the kinetic coefficient; the deviation is a factor of
∼3–4 for fcc and ∼10 for bcc. It should be noted, however, that
a preliminary MD study of the bcc elements [46], i.e., without
an interface temperature correction, concluded that there is
closer agreement with MC theory for the case of Mo and V
than had been observed for Fe, which suggests that details
of the interatomic potential not included in the MC treatment
may be playing a role in bcc systems.

To further elucidate the trend of kinetic coefficient with
crystal structure and interatomic potential, a comparison of
the GL model developed here to detailed MD simulations
of other bcc, as well as fcc, systems is warranted. This
comparison will require extending the present calculation to
other crystal structures. This should be possible by building
on recent progress to reproduce quantitatively the anisotropy
of the fcc-liquid interface with two different sets of density
waves [47]. Such a comparison will also make it possible to
explore more systematically the inverse relationship between
the kinetic coefficient and the interfacial free-energy predicted
by GL theory in this study.

ACKNOWLEDGMENTS

During the initial stage of this work, the work of K.-A.W.
and A.K. was supported by US DOE Award No. DE-FG02-
92ER45471. During the completion of this work, the work
of C.-H.W. and K.-A.W. was supported by the National
Science Council of Taiwan (NSC102-2112-M-007-007-MY3)
and the National Center for Theoretical Sciences, Taiwan,
and the work of A.K. was supported by US DOE Award No.
DEFG02-07ER46400. We also wish to thank Mark Asta for
valuable discussions.

[1] J. A. Dantzig and M. Rappaz, Solidification (EPFL Press,
Switzerland, 2009).

[2] W. J. Boettinger, S. R. Coriell, A. L. Greer, A. Karma, W. Kurz,
M. Rappaz, and R. Trivedi, Acta Mater. 48, 43 (2000).

014107-9

http://dx.doi.org/10.1016/S1359-6454(99)00287-6
http://dx.doi.org/10.1016/S1359-6454(99)00287-6
http://dx.doi.org/10.1016/S1359-6454(99)00287-6
http://dx.doi.org/10.1016/S1359-6454(99)00287-6


WU, WANG, HOYT, AND KARMA PHYSICAL REVIEW B 91, 014107 (2015)

[3] J. J. Hoyt, M. Asta, and A. Karma, Mater. Sci. Eng., R 41, 121
(2003).

[4] M. Asta, C. Beckermann, A. Karma, W. Kurz, R. Napolitano,
M. Plapp, G. Purdy, M. Rappaz, and R. Trivedi, Acta Mater. 57,
941 (2009).

[5] E. A. Brener and V. I. Mel’nikov, Adv. Phys. 40, 53 (1991).
[6] T. Ihle, Eur. Phys. J. B 16, 337 (2000).
[7] J. Bragard, A. Karma, Y. H. Lee, and M. Plapp, Interface Sci.

10, 121 (2002).
[8] J. J. Hoyt, B. Sadigh, M. Asta, and S. M. Foiles, Acta Mater. 47,

3181 (1999).
[9] J. J. Hoyt, M. Asta, and A. Karma, Interface Sci. 10, 181 (2002).

[10] D. Y. Sun, M. Asta, and J. J. Hoyt, Phys. Rev. B 69, 174103
(2004).

[11] J. Monk, Y. Yang, M. I. Mendelev, M. Asta, J. J. Hoyt, and
D. Y. Sun, Modell. Simul. Mater. Sci. Eng. 18, 015004 (2010).

[12] Y. F. Gao, Y. Yang, D. Y. Sun, M. Asta, and J. J. Hoyt, J Cryst.
Growth 312, 3238 (2010).

[13] J. Q. Broughton, G. H. Gilmer, and K. A. Jackson, Phys. Rev.
Lett. 49, 1496 (1982).

[14] S. R. Coriell and D. H. Turnbull, Acta Metall. 30, 2135 (1982).
[15] L. V. Mikheev and A. A. Chernov, J. Cryst. Growth 112, 591

(1991).
[16] A. A. Chernov, J. Cryst. Growth 264, 499 (2004).
[17] T. V. Ramakrishnan and M. Yussouff, Phys. Rev. B 19, 2775

(1979).
[18] A. D. J. Haymet and D. Oxtoby, J. Chem. Phys. 74, 2559 (1981).
[19] D. W. Oxtoby and A. D. J. Haymet, J. Chem. Phys. 76, 6262

(1982).
[20] P. M. Chaikin and T. C. Lubensky, Principles of Condensed

Matter Physics (Cambridge University Press, Cambridge, UK
2000).

[21] M. I. Mendelev, M. J. Rahman, J. J. Hoyt, and M. Asta, Modell.
Simul. Mater. Sci. Eng. 18, 074002 (2010).

[22] T. Munakata, J. Phys. Soc. Jpn. 43, 1723 (1977).
[23] B. Bagchi, Phys. Lett. A 121, 29 (1987).
[24] P. R. Harrowell and D. W. Oxtoby, J. Chem. Phys. 86, 2932

(1987).
[25] Y. C. Shen and D. W. Oxtoby, J. Chem. Phys. 104, 4233 (1996).

[26] W. H. Shih, Z. Q. Wang, X. C. Zeng, and D. Stroud, Phys. Rev.
A 35, 2611 (1987).

[27] K.-A. Wu, A. Karma, J. J. Hoyt, and M. Asta, Phys. Rev. B 73,
094101 (2006).

[28] M. I. Mendelev, S. Han, D. J. Srolovitz, G. J. Ackland, D. Y.
Sun, and M. Asta, Philos. Mag. 83, 3977 (2003).

[29] N. Goldenfeld, B. P. Athreya, and J. A. Dantzig, Phys. Rev. E
72, 020601(R) (2005).

[30] B. P. Athreya, N. Goldenfeld, and J. A. Dantzig, Phys. Rev. E
74, 011601 (2006).

[31] B. P. Athreya, N. Goldenfeld, J. A. Dantzig, M. Greenwood, and
N. Provatas, Phys. Rev. E 76, 056706 (2007).

[32] K.-A. Wu and A. Karma, Phys. Rev. B 76, 184107 (2007).
[33] N. Goldenfeld, B. P. Athreya, and J. A. Dantzig, Phys. Rev. E

79, 013602 (2009).
[34] K. R. Elder, Z.-F. Huang, and N. Provatas, Phys. Rev. E 81,

011602 (2010).
[35] R. Spatschek and A. Karma, Phys. Rev. B 81, 214201 (2010).
[36] K. R. Elder, M. Katakowski, M. Haataja, and M. Grant, Phys.

Rev. Lett 88, 245701 (2002).
[37] K. R. Elder and M. Grant, Phys. Rev. E 70, 051605 (2004).
[38] K. R. Elder, N. Provatas, J. Berry, P. Stefanovic, and M. Grant,

Phys. Rev. B 75, 064107 (2007).
[39] N. Provatas, J. Dantzig, B. Athreya, P. Chan, P. Stefanovic,

N. Goldenfeld, and K. Elder, JOM 59, 83 (2007).
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