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Enhanced plasticity of silica glass at high pressure
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We have measured shear flow and residual structural anisotropy of SiO2 glass uniaxially compressed in a
diamond-anvil cell at room temperature with in situ optical-microscope and ex situ x-ray diffraction techniques,
respectively. Large shear flow began at 8−10 GPa and continued at least up to 20 GPa, where the macroscopic
differential strain reached 70%. Recovered samples after shear flow were in the fully densified state and showed
a large microscopic differential strain of 3% only in the intermediate-range network structure. These phenomena
may be attributable to the changes in the Si-O bond covalency and the Si-O-Si bond angle with pressure and
stresses.
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I. INTRODUCTION

SiO2 glass is a material of great interest in various research
fields, such as condensed-matter physics, materials science,
and earth science. It is an archetypal three-dimensional
network-forming glass [1] and is categorized as a brittle
material because it is a highly covalent solid without long-
range order (hence without slip planes seen in crystals).
Without long-range order, even metallic glasses are usually
not ductile [2]. Although SiO2 glass (and SiO2-rich glasses) is
a very brittle material, small-scale permanent deformation has
long been reported by indentation tests [3,4]. This phenomenon
has been explained by the permanent densification [5,6], which
is caused by reconstruction of the network structure consisting
of SiO4 tetrahedra (intermediate-range order) [7]. Recent
advances in experimental techniques at a very small scale,
such as those with an atomic-force microscope and a field-
emission-gun scanning electron microscope, have made it
possible to conduct detailed ex situ observations on the samples
recovered from deformation tests [8,9]. These state-of-the-art
high-resolution observation techniques have suggested that
shear flow, i.e., deformation not attributable to densification,
could occur even in SiO2 glass. However, the observed possible
shear flow has been limited to a nanometer scale, and the
deformation on a larger scale has been accompanied by
cracks [3,4,6,8,9]. Also, molecular-dynamics simulations have
predicted that structural anisotropy would remain in the glass
after deformation [10]. X-ray diffraction experiments have
confirmed the presence of anisotropy in the samples densified
by uniaxial compression [11]. However, the information has
been limited to the network structure.

In this article, we present the direct evidence of micrometer-
scale shear flow (macroscopic strain) and the full information
on the residual structural anisotropy (microscopic strain) in
SiO2 glass with in situ optical-microscope observations and
ex situ x-ray diffraction measurements for the samples uniaxi-
ally compressed in a diamond-anvil cell. In the case of covalent
crystals, samples are expected to fracture without large plastic
deformation and not to show any significant residual structural
anisotropy by uniaxial compression [11–13]. Our findings
contrast sharply with the behavior of covalent crystals and the
fact that metallic glasses are less ductile than their crystalline
counterparts.

II. EXPERIMENTS

A. Design of experiments

The present study focuses on the deformation behavior
of SiO2 glass at the pressure range below 20 GPa, where
the coordination number of silicon remains basically 4. Al-
though it is still somewhat controversial, the pressure-induced
structural transformation of SiO2 glass at room temperature
under hydrostatic compression can be summarized as follows
[14–16]. (i) SiO2 glass behaves as a single phase hav-
ing an ordinary four-coordinated structure below 9 GPa.
(ii) Densification in the network structure, i.e., change in
intermediate-range order, takes place at pressures between
9 and 13 GPa by rearranging SiO4 tetrahedra. (iii) SiO2

glass behaves as a single phase having a fully densified
four-coordinated structure at pressures between 13 and 20
GPa. (iv) Change in short-range order takes place at pressures
between 20 and 35 GPa by increasing the coordination number
of silicon from 4 to 6. (v) SiO2 glass behaves as a single
phase having a six-coordinated structure above 35 GPa. It is
known that the change in intermediate-range order remains
in a recovered sample after decompression, in contrast to
the change in short-range order, which does not remain after
decompression.

High-pressure deformation experiments were conducted
with a diamond-anvil cell at room temperature. Anvils having
a 600-μm flat culet were used with a tungsten-rhenium gasket
and an argon pressure medium in three independent runs up
to 20 GPa (run 1), 12 GPa (run 2), and 6 GPa (run 3). The
three runs were designed so as to clarify the relation between
the change in network structure and the deformation behavior
of SiO2 glass (see the preceding paragraph). SiO2 glass with
99.99% purity in the form of a wire having a diameter of
150 μm was provided by FHP Engineering Limited. Disk-
shaped samples were prepared by cutting and polishing the
wire to an appropriate thickness to be pinched directly by the
two anvils and achieve uniaxial conditions above a designed
pressure. The initial thickness was ∼50 μm in runs 1 and 2, and
it was ∼75 μm in run 3. A tungsten-rhenium gasket having an
initial thickness of 200 μm was preindented to a thickness of
∼90 μm, and then a hole of 250−260 μm in diameter was laser
drilled in it to be used as a sample chamber. The sample and
small ruby balls (pressure marker) were loaded into the sample
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chamber together with cryogenically liquefied argon (pressure
medium).

B. In situ macroscopic strain measurements

The change in size of the sample was measured by taking
optical-microscope images at each pressure through one of the
anvils from the direction of the compression axis. Pressure
was determined by the ruby-fluorescence method [17]. Strains
in the compression axis εz and in the radial direction εr are
defined as follows:

εz = z − z0

z0
, εr = l − l0

l0
. (1)

Here z and l are the lengths in the compression axis and radial
direction, respectively. The subscript 0 denotes the values at
zero pressure. Assuming uniaxial symmetry, the length change
in the compression axis z/z0 can be calculated by using the
following equation, where ρ is the density:

z

z0
= ρ0

ρ

(
l

l0

)−2

. (2)

Therefore, the macroscopic differential strain �εmacro is
defined by the following equation:

�εmacro = εr − εz = l

l0
−

(
ρ0

ρ

)(
l

l0

)−2

. (3)

The length change in the radial direction l/l0 was read from
the image at each pressure, and the density change ρ/ρ0 was
assumed to be the same as the literature data [16,18].

C. Ex situ microscopic strain measurements

Synchrotron x-ray diffraction measurements on the recov-
ered samples were conducted by using an angle-dispersive
method with 50-keV monochromatic x rays and an imaging-
plate detector at AR-NE1A of Photon Factory (Tsukuba,
Japan). The x-ray diffraction geometry is illustrated in Fig. 1.
The largest piece of each recovered sample was glued to
the point of a needle and irradiated by x rays from a radial
direction (perpendicular to the former compression axis). To
calibrate the system, a standard sample (starting material) and
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FIG. 1. X-ray diffraction geometry for ex situ microscopic strain
measurements. There is a relation of cos ψ = cos χ cos θ .

a background (without sample) were measured in the same
geometry. The exposure time was typically ∼10 h for each
sample and background.

Assuming uniaxial symmetry, the structure factor S(Q,ψ)
can be expanded with spherical harmonics Ym

l (ψ) (terminated
at the second-order term), where ψ is the azimuth angle from
the compression axis (Fig. 1), and can be related to the pair
distribution function g(r,ψ) as follows [19]:

S(Q,ψ) − 1 = S0
0 (Q) + S0

2 (Q)Y 0
2 (ψ), (4)

g(r,ψ) − 1 = g0
0(r) + g0

2(r)Y 0
2 (ψ), (5)

gm
l (r) = (i)l

2n0π2

∫
Sm

l (Q)jl(Qr)Q2 dQ. (6)

Here n0 and jl are the number density and spherical Bessel
function.

The intensity data recorded by a two-dimensional imaging-
plate detector were transformed to a two-dimensional structure
factor S(Q,χ ) by integrating diffraction intensities within the
azimuth angle on the detector χ of ±2.5° (Fig. 1) and correct-
ing (or subtracting) background and incoherent scattering in-
tensities. Assuming that the structure factor can be expanded as
Eq. (4), S0

0 (Q) and S0
2 (Q) are obtained from S(Q,χ ). S0

0 (Q)
and S0

2 (Q) correspond to the average structure (isotropic
component) and the uniaxially deviated structure (anisotropic
component), respectively. By using Eq. (6), S0

0 (Q) and S0
2 (Q)

can be transformed to g0
0 (r) and g0

2 (r), respectively. The
analytical procedure to refine the structure factor and pair
distribution function was basically the same as described
elsewhere [20]; in addition, S0

2 (Q) was assumed to be 0, and
g0

2 (r) was assumed to be 0 inside the first peak of g0
0 (r).

In all three runs, the refinements were made with the data
at Q < 15 Å

−1
and a Fermi-distribution-type termination

function.
The first sharp diffraction peak (FSDP) of the structure

factor has been considered to be mainly related to the network
structure [21,22]. The microscopic differential strain in the
network structure (represented by the FSDP) �εFSDP is defined
by the following equation [11]:

�εFSDP = QFSDP(0◦) − QFSDP(90◦)

QFSDP(54.7◦)
. (7)

Here QFSDP(ψ) is the peak position of the FSDP.

III. RESULTS AND DISCUSSION

A. Deformation of SiO2 glass under uniaxial compression

The change in size of the sample compressed to 20 GPa in a
diamond-anvil cell (run 1) is shown in Fig. 2. The sample was
compressed isotropically at low pressures and then compressed
uniaxially at high pressures. This figure shows that, after being
pinched by the two anvils, the sample deformed largely at a
micrometer scale without fracturing at least up to 20 GPa.
The pressure dependence of �εmacro is shown in Fig. 3. In
runs 1 and 2, the samples showed extremely large plastic
deformation above 8–10 GPa after the uniaxial condition
was achieved at around 6–8 GPa. �εmacro reached 70% at
20 GPa. In contrast, in run 3, the sample showed only elastic
deformation even after the uniaxial condition was achieved at
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(a) Compression

(b) Decompression
0 GPa 4 GPa 8 GPa 12 GPa 16 GPa 20 GPa

20 GPa 16 GPa 12 GPa 8 GPa 4 GPa 0 GPa

FIG. 2. (Color online) Pressure dependence of the sample size of SiO2 glass. The optical-microscope images of the disk-shaped sample
having an initial diameter of ∼150 μm are shown in a sequence of (a) compression and (b) decompression. Ruby balls (three small spheres)
and a fraction of gasket (black area) are seen together with the sample. The sample was in air at zero pressure and in an argon pressure medium
at the other pressures. The sample size (in the radial direction) first decreased with increasing pressure under isotropic compression and then
increased under uniaxial compression. The sample deformed largely without fracturing under uniaxial compression to 20 GPa. Finally, the
sample was fractured after the further increase in size on decompression.

around 2–3 GPa. This difference seems to be closely related
to the structural transformation of SiO2 glass, i.e., permanent
densification (see Sec. II A). In runs 1 and 2, �εmacro is about
an order of magnitude larger than the microscopic differential
strain, e.g., �εFSDP = 0.028 (as will be shown in Sec. III B),

[ ]

FIG. 3. (Color online) Pressure dependence of the macroscopic
differential strain of SiO2 glass. The solid and open symbols
represent the data on compression and decompression, respectively.
On compression, the differential strain deviated from zero at around
6–8 GPa in runs 1 and 2 and at around 2–3 GPa in run 3, suggesting
that uniaxial conditions were achieved at these pressures. Large
plastic deformation was observed in runs 1 and 2 above 8–10
GPa up to 20 GPa, whereas only elastic deformation was observed
in run 3 up to 6 GPa. Errors in this plot are very small under
hydrostatic conditions. Although errors become somewhat large
under nonhydrostatic conditions, they are still small enough to derive
the conclusions of the present study (see the text).

providing the conclusive evidence of micrometer-scale shear
flow.

To obtain �εmacro, l/l0 was read from the images. Even
if it was read by any means (e.g., measuring a diameter or
the distance between scratches on the surface of the sample),
the error was negligible within the pressure range of isotropic
compression. The deviation from uniaxial symmetry became
larger with the progression of shear flow under uniaxial
compression (Fig. 2), and the error of �εmacro due to the
reading became as large as ±0.025 at 20 GPa. The error got
even larger after the fracture of the sample on decompression.
ρ/ρ0 was assumed to be the same as the literature data [16,18].
However, the occurrence of shear flow may have affected the
structural transformation and thus the density as a function
of pressure (see Sec. III C). This could be an additional error
source. Moreover, under uniaxial compression, the pressure
measured with ruby balls corresponds to confining pressure,
and the difference between the hydrostatic component of
stress tensor and the confining pressure could be as large as
2 GPa at 20 GPa, estimated from the literature data [11,23].
Nevertheless, because �εmacro is quite large (on compression
above 8–10 GPa and subsequent decompression), these errors
do not affect the conclusion of the preceding paragraph.

In runs 1 and 2, the samples were fractured when de-
compressed down to around 4–6 GPa. On decompression,
shear flow becomes less likely to occur (see Sec. III C), and
the confining pressure in the radial direction becomes small.
Therefore, the fracture of the sample may be due to the increase
in differential stress and the decrease in fracture strength.

B. Residual structural anisotropy in deformed SiO2 glass

The structure factor S(Q,ψ) and pair distribution function
g(r,ψ) of the sample recovered from 20 GPa (run 1) are shown
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FIG. 4. (Color online) Structure factor S(Q,ψ) and pair distribution function g(r,ψ) of plastically deformed SiO2 glass. The upper column
shows the azimuthal dependence of the structure factor and pair distribution function. The black solid and dotted lines in the lower column
represent the structure factor and pair distribution function in the former compression axis and radial direction, respectively. The position of
the first sharp diffraction peak of the structure factor shows significant anisotropy. This peak is considered to be associated with the network
structure consisting of SiO4 tetrahedra, and therefore the anisotropy indicates that a large differential strain, as much as ∼3%, remained in the
network structure of the recovered sample. On the other hand, the structure factor at a higher-Q range does not show any significant anisotropy
as seen in the first peak, indicating that a differential strain did not remain in the basic structural unit of the SiO4 tetrahedron.

in Fig. 4. A significant azimuthal dependence of the position
of the FSDP suggests that a large differential strain �εFSDP

as much as 0.028 remained in the network structure. On the
other hand, the structure factor does not show any significant
azimuthal dependence at a higher-Q range. In the pair
distribution function, a relatively large anisotropy is seen only
above ∼3 Å, corresponding to the Si-Si distance in the network
structure, whereas no obvious anisotropy is seen in the first
peak, corresponding to the Si-O bond of the SiO4 tetrahedron.
The mean peak position of the FSDP [strictly, QFSDP(54.7◦)
or the peak position in 1 + S0

0 (Q)], 1.845 Å
−1

, suggests that
the recovered sample was in the fully densified state (∼20%
increase in density); the position of the FSDP is a good measure
of density [16]. The intensity of the FSDP shows a slight
azimuthal dependence, suggesting that the network structure
might be less ordered along the compression axis. The result
of the recovered sample in run 2 was identical to that in run 1,
whereas that in run 3 was identical to the result of the starting
material. These results reveal that a very large differential
strain can remain only in the network structure of the plastically
deformed sample. Therefore, the occurrence of shear flow
seems to be strongly related to reconstruction of the network
structure.

C. Mechanism of deformation and densification

The onset-pressure condition of plastic deformation is close
to that of permanent densification as discussed in Sec. III A.
Moreover, a large differential strain can remain only in
the network structure of the plastically deformed sample as
discussed in Sec. III B. These observations strongly suggest
that plastic deformation and permanent densification may
originate from the same mechanism, i.e., reconstruction of
the network structure. Upon decompression, ∼20% permanent
densification and ∼3% residual differential strain in the
network structure were quenched in both the samples from
12 and 20 GPa; QFSDP(54.7◦) = 1.845 Å

−1
, �εFSDP = 0.028

in run 1 and QFSDP(54.7◦) = 1.841 Å
−1

, �εFSDP = 0.027 in
run 2. The sample from 60 GPa in our preliminary work [11]
showed similar values to those in runs 1 and 2, although it
could be in a different state because it had once transformed
to a six-coordinated state and then recovered as a densified
glass (see Sec. II A) and its structural information could
not be fully measured [11]. In any case, it seems that the
pressure and stresses applied on SiO2 glass are relaxed (to
be in more stable states) by phase transformation and shear
flow through reconstruction of the network structure and
that they cause the permanent densification up to 20% and
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FIG. 5. (Color online) Pair distribution function of densified and
normal SiO2 glasses. The term 1 + g0

0 (r), which is independent of the
azimuth angle, of the sample in the fully densified state after plastic
deformation (the same as shown in Fig. 4) is compared with that of
the starting material. The Si-O bond length, corresponding to the first
peak, is longer in densified glass than in normal glass, suggesting the
weakening of the bond in densified glass. Also, the Si-Si distance,
corresponding to the peak at ∼3 Å, is shorter in densified glass,
suggesting the decrease in the Si-O-Si bond angle. The difference in
height of the first peak is due to the difference not in coordination
number but in number density [Eq. (6)]. The total correlation function
T (r), defined as 4πn0rg(r), is shown in the inset to demonstrate that
the coordination numbers of the two glasses are almost the same.

permanent differential strain in the network structure up to
3%. The permanent densification has been considered to take
place at a narrow pressure interval between 9 and 13 GPa
under hydrostatic conditions and begin at lower pressures and
end at higher pressures with nonhydrostatic stresses [16]. In
our experiments, however, the permanent densification was
already completed in the recovered sample from 12 GPa
despite the uniaxial compression. The unique feature of our
experiments is the occurrence of large shear flow. Large-scale
shear flow is accompanied by considerable reconstruction of
the network structure and therefore supposed to facilitate the
permanent densification. This picture is consistent with the
model in which the yield criterion of SiO2 glass is expressed
as a function of two variables, pressure and von Mises
stress [9,24].

The comparison of structures between densified and nor-
mal glasses is shown in Fig. 5. The Si-O bond length of
densified glass, 1.634 Å, is longer than that of normal glass,
1.621 Å, suggesting that this bond becomes less covalent. The
weakening of the bond is supposed to make large-scale shear
flow possible (Fig. 2). In fact, nanometer-scale indentation
tests have suggested that shear flow occurs relatively easily
in glasses with weaker bonds; shear flow would occur less
difficultly in densified glass than in normal glass [8]. Also, the
strength of densified glass at 10–20 GPa has been reported to be
about half that of normal glass at zero pressure [11,23]. This
seems consistent with the fact that shear flow occurs more
easily in densified glass. The oxygen K-edge x-ray Raman

spectroscopy has suggested that the change in electronic
states may occur at the similar pressure range [25]. This
could also be related to the change in deformation behavior,
although the argument of the change in electronic states is still
controversial [25–27].

The Si-Si distance of densified glass is shorter than that of
normal glass (see the peak at ∼3 Å in Fig. 5), suggesting the
decrease in the Si-O-Si bond angle. In the pressure range of
our experiments, it is expected that the basic structural unit
(short-range order) does not change from the SiO4 tetrahedron
to the SiO6 octahedron and therefore the coordination number
does not increase significantly (see Sec. II A). Indeed, the
coordination number calculated from g(r) shown in Fig. 5 is
3.8 for densified glass (cf. 3.9 for normal glass). The 29Si NMR
spectroscopy has also suggested that the amount of five- and
six-coordinated states in densified glass is below the detection
limit (< 0.3%) [28]. On the other hand, molecular-dynamics
simulations have suggested the presence of a significant
amount of five- and six-coordinated states in densified glass
(up to 20%) [29]. In any case, the decrease in the Si-O-Si
bond angle is supposed to facilitate the rearrangement of
the network through five- and/or six-coordinated transient
states [29–31]. The decrease in the Si-O-Si bond angle is
closely related to the weakening of the Si-O bond discussed in
the preceding paragraph. On decompression, the Si-O-Si bond
angle increases, and the rearrangement becomes less likely to
occur with decreasing pressure. This may cause the fracture
of the sample (Fig. 2) and may also leave the permanent
densification and permanent differential strain. This picture
is consistent with the model in which a modified network
structure is quenched to zero pressure due to the kinetic
barrier [32].

IV. SUMMARY

It has been clarified that applying high pressure and high
stresses on SiO2 glass facilitates the weakening of the Si-O
bond and resultant reconstruction of the network structure
and then causes the phase transformation accompanied by
the permanent densification up to 20% and the shear flow
accompanied by the permanent differential strain in the
network structure up to 3%. The decrease in the Si-O-Si
bond angle is a key to facilitate the rearrangement of the net-
work probably through five- and/or six-coordinated transient
states.
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