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The ability of the phase-field-crystal (PFC) model to quantitatively predict atomistic defect structures in
crystalline solids is addressed. First, general aspects of the PFC model are discussed within the context of
obtaining quantitative results in solid materials. Then a specific example is used to illustrate major points.
Specifically, accelerated molecular dynamics is used to compute the one-particle probability density ρ(1)(r) in
a complex atomistic defect consisting of a Lomer dislocation with an equilibrium distribution of vacancies in
the core, and the results are considered within the general framework of the PFC model. As expected, ρ(1)(r)
shows numerous spatially localized peaks with integrated densities smaller than unity, as would arise in a PFC
computation. However, the ρ(1)(r) actually corresponds to a time-averaged superposition of a few well-defined
atomic configurations each having a well-defined energy. The deconvolution of ρ(1)(r) to obtain the actual distinct
atomic configurations is not feasible. Using a potential energy functional that accurately computes the energies
of distinct configurations, the potential energy computed using ρ(1)(r) differs from the actual average atomistic
energy by ∼50 eV divided among approximately 46 atoms in the core of the defect. Attempts to rectify this
deviation by introducing correlations cannot significantly reduce this error. The simulations show energy barriers
between distinct configurations varying by up to 0.5 eV, indicating that the simple kinetic evolution law used in
PFC cannot accurately capture the true time evolution in this problem. Overall, these results demonstrate, in one
nontrivial case, that the PFC model is probably unable to predict atomistic defect structures, energies, or kinetic
barriers at the quantitative levels needed for application to problems in materials science.
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I. INTRODUCTION

There is a strong driving force in materials science to
develop methods that bridge time scales from the femto-
pico-nanosecond range of direct molecular dynamics (MD) to
the micro-milli-second-hours-days time scales associated with
material fabrication and in-service performance. Two methods,
accelerated MD [1–4] and kinetic Monte Carlo [5–7], are
based on fundamental statistical mechanics, with well-defined
approximations and sources of error, but often with high
computational cost. These methods provide results of high
accuracy and are faithful to the detailed atomistic mechanisms
within the limits of the interatomic potentials used in the
modeling. A newer approach is the phase-field-crystal (PFC)
model, which extends the continuum phase-field concept
down to the atomistic scale to obtain atomic-scale resolution
while following long-time evolution within a computationally
feasible framework [8]. Current PFC formulations are approxi-
mations to the classical density functional theory (DFT) similar
to those used for freezing [9,10], but rely on simplifications of
the theory to remain computationally efficient. While having
spatial variations at the atomic scale, issues of quantitative
accuracy remain and have not yet been fully assessed.

The need for atomic-scale resolution is associated with
the need to achieve quantitative and predictive results of
relevance for materials science. Mechanical properties of
metals, such as plastic flow, creep, fracture toughness, and
fatigue behavior, are controlled by defects in the crystal
lattice and, moreover, by the interactions among defects. The
defects of greatest importance in this domain are dislocations,
i.e., slip discontinuities in the crystal lattice, whose motion
controls plastic straining, creep, and other deformation modes
in metals. Dislocations have important properties at two scales.
First, there are the long-range elastic fields generated by the

slip discontinuity, which is characterized by the dislocation
Burgers vector. Second, there are the very local atomic-scale
deformations in the dislocation core that resolve the slip
discontinuity over several lattice spacings. The long-range
elastic interactions are accurately accounted for via elasticity
theory, with no need to resolve the core structure, and this
forms the basis of continuum discrete dislocation dynamics
(DDD) models [11]. The core structure controls important
material properties like the Peierls stress (stress needed to
initiate motion of an initial straight dislocation) [12], some
aspects of mobility as the dislocation glides [13], the strongest
interactions of the dislocation with other defects such as
solutes [14], vacancies, and grain boundaries [15], and the
strength of dislocation/dislocation junctions where individual
cores intersect to form new atomistic structures [16]. As
a result, huge efforts have been made over the past few
decades to develop accurate interatomic potentials that are
capable of properly reproducing dislocation core structures
and dislocation/defect interactions [17–22] to achieve the
quantitative accuracy need for a fundamental understanding
of the mechanical behavior of metals.

Recent work has applied the PFC method to study
dislocations and their motion in face centered cubic (fcc)
crystals [23,24]. Because the PFC models can be tuned to
achieve a desired lattice constant and elastic constants, the
long-range elastic fields of a dislocation can be captured in
PFC models because those fields only depend on the Burgers
vector (a primitive lattice vector) and the elastic constants.
However, DDD models already capture such features. Thus,
any advantage of a PFC model must lie in its ability to
predict the atomistic dislocation core structure, core energy,
core deformation under load, and/or core interactions with
other defects. The PFC model can be designed to include
individual vacancies [25], so that dislocation cores in PFC
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include the equilibrium interaction with vacancy defects at
finite temperature and long times, and this is an apparent
strength of PFC relative to atomistic methods (e.g., MD).
But the ability of a PFC model to accurately represent the
dislocation core structure remains unexamined.

More generally, the quantitative ability of the PFC model
to predict atomic-scale defects remains largely unstudied.
Analyses are mainly limited to visual comparisons and relative
energetics. Often it is stated that the PFC-computed energies
are not quantitatively comparable to molecular methods but
that they follow similar trends as a function of some structural
parameter, for instance grain boundary orientation [26,27].
However, to capture the structure, properties, and stress-driven
thermally activated phenomena that control kinetics requires
accurate absolute energies. Mechanical phenomena are driven
by applied stresses and the stored mechanical energy, which
depend on the stress and the elastic moduli. Motion, nu-
cleation, and/or interaction of defects depends on the core
energy changes in these processes relative to the available
stored mechanical energy. Absolute energy differences are
thus essential. Poorly predicted core energies will lead to
incorrect conclusions about defect properties, even if the stored
mechanical energy is predicted accurately. Therefore, PFC
must be quantitatively accurate at all levels.

With the above remarks as background, in this paper
we report progress toward assessment of the general PFC
framework to quantitatively predict atomistic structure and
energetics of a nontrivial atomistic defect in a crystalline
material. We choose a basic problem, the structure of a
dislocation core at thermal equilibrium including vacancies in
the core, and analyze the actual time-average atomic structure,
individual configurations, potential energy, and ideal free
energy emerging from long-time MD. We then examine (i)
how this time-averaged structure could be interpreted within a
PFC framework to yield understanding of the actual underlying
defect, (ii) whether PFC free energy models can predict the
energies of the defect, and (iii) whether PFC can capture the
kinetic processes occurring within the dislocation core. We
find, in general, that a PFC framework presents difficulties
in all of the above aspects, suggesting that PFC-type formu-
lations are unable to provide the quantitative understanding
that is required for predictive, mechanistic materials science
modeling of defects in crystals.

The rest of this paper is organized as follows. Section II
contains a brief review of classical density functional theory
and the approximations leading to PFC-type theories. In
Sec. III the test system of a dislocation core in aluminum
is introduced and the detailed application of accelerated
molecular dynamics to calculate the one-particle density and
average potential energy of the system is described. In Sec. IV
the MD results and their interpretation with regard to structure,
energetics, and kinetics, within the context of a PFC analysis
is presented. Section V provides some concluding remarks.

II. THE PHASE-FIELD-CRYSTAL METHOD

A. PFC from classical density functional theory

The formal justification for the PFC framework rests on a
theorem of classical density functional theory stating that the

equilibrium Helmholtz free energy F of a system of N atoms is
a unique functional of the one-particle atomic density [28,29].
The one-particle density ρ(1)(r) is defined as the ensemble
average of the one-particle density operator [28,29]

ρ(1)(r) =
〈

N∑
i=1

δ(r − ri )

〉
, (1)

where the δ functions specify the positions ri of each of the
N atoms in the system at any instant of time, and the average
is over time or ensembles. The total Helmholtz free energy
functional of the one-particle density can be divided into ideal,
excess, and external parts as [28,29]

F [ρ(1)] = F id[ρ(1)] + F ex[ρ(1)] + F ext[ρ(1)], (2)

where

F id[ρ(1)] = β−1
∫

ρ(1)(r){ln[ρ(1)(r)�3] − 1}d r (3)

and

F ext[ρ(1)] =
∫

ρ(1)(r)V ext(r)d r, (4)

where β = 1
kBT

, kB is Boltzmann’s constant, T is the temper-
ature, � is the thermal de Broglie wavelength, and V ext(r) is
any imposed external potential. The excess free energy F ex

is unknown in general. The first step in approximating F ex

using DFT, proposed for modeling freezing transitions [9,10],
is a functional expansion about a uniform reference liquid of
density ρ0 truncated to second order [28],

F ex[ρ(1)] = F ex
L − kBT

∫
c

(1)
L �ρ(1)(r1)d r1

− kBT

2

∫
�ρ(1)(r1)�ρ(1)(r2)c(2)

L (r12)d r1d r2, (5)

where �ρ(1)(r) = ρ(1)(r) − ρ0, F ex
L is the excess Helmholtz

free energy of the reference liquid, r12 = |r1 − r2|, and c
(1)
L

and c
(2)
L are the first two liquid direct correlation functions

defined as [28,29] c
(n)
L (r1, . . . ,rn) = −β

δF exn

L [ρ(1)]
δρ(1)(r1)···δρ(1)(rn) . Since

c
(1)
L is related to the chemical potential μL and the integral

of c
(2)
L is related to the liquid compressibility, it is useful to

rewrite Eq. (5) in terms of thermodynamic variables as

F ex[ρ(1)] = F ex
L + μL(N − N0) −

(
V 2

N0

∂P

∂V

∣∣∣∣
ex

)
(N − N0/2)

− kBT

2

∫
ρ(1)(r1)ρ(1)(r2)c(2)

L (r12)d r1d r2, (6)

where N and N0 are the total number of atoms in the solid
and reference system, respectively, V is the system volume,
P is the pressure, and dP/dV |ex is the excess compressibility
above the ideal-gas value. It is now clear that only the fourth
term in Eq. (6) depends on the atomic structure ρ(1). Therefore,
minimizing the total free energy with respect to ρ(1) is reduced
to a competition between the ideal free energy, any contribution
from the external potential, and only the last term in Eq. (6).

The DFT theory introduced above strictly applies only to
the ground state. Therefore, it might seem unable to predict
the one-particle density or free energy of any metastable states.
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However, this is where the introduction of a V ext is useful. A
hypothetical V ext can be introduced to constrain the system to
lie within the basin of any metastable state. If computation of
the metastable state free energy yields a density ρ(1)(r) that
is localized near to the minimum energy of the metastable
basin, then the presence of V ext has no practical effect on
either the density or resulting free energy. Thus, DFT can be
used to obtain the Helmholtz free energy for such metastable
states. An external potential is also often used, explicitly or
implicitly, to enforce boundary conditions on a DFT model,
such as constraining the system against rigid body rotations
or translations, or imposing a density at the boundaries of a
simulation cell.

Existing PFC models use the equilibrium Helmholtz
free energy functional described above but with further
approximations to make computations less demanding. In
solid/crystalline materials, minimization of the free energy
using Eq. (6) leads to density profiles consisting of very
localized peaks, corresponding to thermal vibrations of atoms
around equilibrium sites, but the computational efficiency
of PFC decreases dramatically as sharper density peaks are
considered [23]. Therefore, most PFC formulations also (i)
expand F id in a power series; (ii) restrict ρ(1)(r) to a Fourier-
space representation limited to one or two families of Fourier
coefficients/reciprocal lattice vectors of the underlying crystal
structure, and (iii) use c

(2)
L as a fitting function to achieve

some desired material properties. These simplifications make
free energy computations much more efficient, but cause
some conceptual and quantitative problems as described later.
Additional ad hoc terms can be added to the free energy
functional to accomplish other goals, like enforcing only
positive density to allow vacancy structures to be stable [25].
It is these simplified or augmented models that have been
used to predict defect structures (dislocations [23,24,30–32],
grain boundaries [26,27,33–35], crystal-liquid interfaces
[26,36–41], etc.).

B. An alternative functional

There exists another class of free energy functionals that
take a different approach. Instead of expanding about a liquid
(high-temperature) reference, one can expand around the
zero-temperature solid. That is, the Helmholtz free energy
functional is developed within the harmonic theory of small
amplitude vibrations around the equilibrium atomic positions
(phonon theory in perfect crystals), which is highly accu-
rate even close to the melting point [42]. The equilibrium
Helmholtz free energy can be written in terms of the internal
energy E and entropy S as

F [ρ(1)] = E[ρ(1)] − T S[ρ(1)] + F ext. (7)

The entropy and internal energy can be divided into ideal and
excess parts where Eid is the kinetic energy, Eex = U is the
potential energy, S id is the ideal gas entropy, and Sex is the
excess entropy arising from interparticle interactions. The free
energy is then

F [ρ(1)] = F id[ρ(1)] + U [ρ(1)] − T Sex[ρ(1)] + F ext, (8)

where F id = Eid − T S id was defined previously. The potential
energy functional U can be written as [28]

U [ρ(1)] =
∫ (

N∏
i=1

ρ(1)(ri )

)
g(N)(r1, . . . ,rN )

×φ(N)(r1, . . . ,rN )d r1 · · · d rN , (9)

where g(n)(r1, . . . ,rn) is the n-particle correlation function of
the solid, and φ(n)(r1, . . . ,rn) is the n-body potential energy
function. In the case of a pair potential φ(2)(r12), Eq. (9) reduces
to [28]

U [ρ(1)] = 1

2

∫
ρ(1)(r1)ρ(1)(r2) g(2)(r1,r2)φ(2)(r12)d r1d r2,

(10)
where r12 = |r1 − r2|. From this exact result, the excess
entropy in Eq. (8) is then neglected as small (it is zero at
T = 0) or is included via a self-consistent harmonic theory.
The free energy is thus approximated as F = Fid + U + F ext.
The pair correlation of the solid remains, and must be
approximated. However, the pair correlation function g(2) is
relatively featureless. The pair distribution function for the
solid ρ(2) = ρ(1)(r1)ρ(1)(r2)g(2)(r1,r2) is dominated by the
spatial variations in ρ(1), and the main feature of g(2) is a
core exclusion to avoid double counting so that the sum rule∫

ρ(1)(r ′)g(2)(r,r ′)d r ′ = N − 1 is satisfied.
We now compare the DFT form for F using Eq. (6) to the

harmonic-solid form using Eqs. (8) and (10) for a pair-potential
system. Aside from a constant term, the functional forms
are identical, differing only in the function multiplying the
one-particle densities within the double integral, with kBT c

(2)
L

appearing in the PFC functional and φ(2)g(2) appearing in the
harmonic theory. Since c

(2)
L ∼ φ(2)/kBT and g(2) ∼ 1.0 for

large pair separations r12, these two terms are equivalent at
large r12. However, at short distances, there are significant
differences and the PFC model only contains an additional
set of constant terms to attempt to correct for any differences
between Eq. (6), which is based on an expansion, and Eq. (10),
which is based on the assumption of small vibrations. In addi-
tion, as will be shown later, the potential energy functional for
U can be easily extended to multibody potential interactions,
while Eq. (6) remains a pair-interaction model, hence limiting
the quantitative description of many materials, such as metals,
where such multibody interactions are essential.

C. General comments on the PFC model

With the above formal background, we now discuss some
general aspects of the PFC method. The PFC method is
often considered as an extension of the mesoscale phase-field
method. In the standard mesoscale phase-field models, the
interface width representing the interface between phases is
negligible compared to other important physical dimensions
and the theory can be shown to asymptotically approach a sharp
interface model [43]; the width of the interface then becomes
relatively unimportant and can be chosen for computational
efficiency. In PFC, the phase field varies at the atomic
scale; the “width” of the phase-field interface is intrinsic
to the problem—it reflects the vibrational amplitude of the
atoms—and it intrinsically influences the predicted structure
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and free energy. Therefore, when the “interface” is smeared
by not fully resolving the sharp density field ρ(1), there is no
separation of spatial scales. This leads to an intimate mixing
of physical contributions to the free energy and computational
approximations made for numerical efficiency.

A common outcome of PFC computations is the existence
of defect structures wherein the integrated number of atoms
within one density peak is smaller than unity, i.e., less than one
atom (e.g., [8,26,27,34,36,44–46]). Such structures are to be
expected in solids where diffusion is present, and simply mean
that, on average, an atom is around that location for only some
fraction of the time. The interpretation of the defect structure is,
however, complicated. Using a liquid like c

(2)
L , and thus liquid

like g
(2)
L , violations of the sum rule

∫
ρ(1)(r ′)g(2)(r,r ′)d r ′ =

N − 1 are inevitable, and hence the computed free energy
using Eq. (6) is unlikely to be accurate.

As stated in the PFC literature, there is a poor correspon-
dence between PFC and DFT even when the PFC parameters
for the functional expansions are fit to the DFT energy
functional [26,47]. Improved results can be achieved when a
more accurate fit of the first peak of the c

(2)
L function is used [26]

and polynomial functions can be used to fit several peaks of
c

(2)
L and bring results very close to the original DFT [41]. Still,

the power series expansion of F id is valid only for a slowly
varying ρ(1), yet is always used for numerical efficiency and
can lead to discontinuous density fields if c

(2)
L (r12) goes to zero

at large r12 [41].
Beyond any approximation that PFC makes, the accuracy

of the DFT functional expansion of the free energy about the
liquid state limits the accuracy of the PFC method. While
formally exact, this expansion of the free energy about a
liquid state cannot be shown to converge to the exact excess
free energy as more terms of the expansion are used [48]. In
fact, it was shown that using a truncated expansion to second
order is only fortuitously accurate for predicting freezing
transitions, and adding third order terms caused dramatic
deviations from the expected results [49]. In contrast, the
alternative DFT functional based on Eq. (8) can accurately
predict thermodynamic properties of crystals and defects in
the absence of atomic diffusion [50].

There is the hope that by fitting aspects of the PFC
free energy functional, PFC could be become quantitatively
accurate for predicting specific properties. This procedure
is akin to fitting empirical interatomic potentials to specific
properties, but the trade-offs in accuracy between different
properties seems more severe. For example, stacking faults
can be stabilized in an fcc crystal by using a simplified c

(2)
L

that artificially lowers the stacking fault energy, but this ap-
proximation limits the stability of the fcc phase itself [23]. By
artificially biasing the free energy, stacking faults become more
stable, but the range of possible fcc crystal elastic constants
becomes limited [23]. In contrast, interatomic potentials are
developed to simultaneously capture many properties, both
bulk and defect, of the material with high accuracy, and the
potentials have significant flexibility to minimize trade-offs.
Furthermore, such potentials are extremely material specific,
and can then be used as input to a more general functional [e.g.,
Eq. (10)] rather than having the functional and the material
properties closely linked as in PFC.

Another important aspect of the PFC method is that the
PFC functional is supplemented by an evolution law to
capture kinetic processes at time scales much longer than are
accessible by MD. Specifically, PFC methods evolve a dimen-
sionless density ψ = ρ(1)/ρ0 − 1 using a kinetic law of the
form

δψ

δt
= A2∇2 δF [ψ]

δψ
, (11)

where the constant A controls the diffusive mobility [8]. Newer
PFC formulations often use a modified version of Eq. (11):

δ2ψ

δt2
+ B

δψ

δt
= A2∇2 δF [ψ]

δψ
, (12)

where the constant B controls the elastic relaxation rate [30].
These dynamical equations originate from the macroscopic
phase field method, and drive the system to lower free energy
by moving downhill via gradients of the free energy functional.
However, there is no corresponding time-dependent DFT
theory that underpins this kinetic assumption. Time-dependent
DFT theories refer to problems in which the external potential
V ext is an explicit function of time [51]. Furthermore, the PFC
dynamics with a constant diffusive mobility does not take into
consideration the specific state-to-state rare-event transitions
via thermal fluctuations over energy barriers that are known to
control the kinetic evolution of solids.

In addition, since DFT methods only apply to equilibrium,
the introduction of dynamics inappropriately mixes time
scales. At any instant of time, the DFT functional is used to
compute a free energy that corresponds to a long-time average
of the system in its current state, even though the system is
not in equilibrium and is changing with time. Implicit also is
the assumption that the interatomic correlations in equilibrium
also apply in nonequilibrium, and that the diffusive mobility is
a constant everywhere (see Emmerich et al. [52] and references
therein).

In the following sections we use long-time, accelerated MD
simulations of a nontrivial atomistic defect to compute ρ(1)(r),
and compute the energy from this density, to highlight some
of the issues noted above in a specific and quantitative case of
interest in materials science.

III. HYPERDYNAMICS SIMULATION OF A LOMER
DISLOCATION IN EQUILIBRIUM WITH VACANCIES

We study a Lomer dislocation in aluminum with a near-
equilibrium vacancy concentration in the core. The Lomer
dislocation is created within an atomistic simulation cell by
applying the elastic solution for the dislocation displacement
field to a perfect crystal aligned such that x = [1̄10], y =
[001], z = [110] with periodicity along the dislocation line (the
z direction), a Burgers vector b = a

2 [1̄10], and lattice constant
a at T = 300 K. All atoms within a cylinder of radius 10 Å and
length 28.6 Å around and along the dislocation line (612 atoms
in total) are allowed to relax with all outer atoms held fixed.
We use the Ercolessi-Adams embedded-atom potential for
Al [19] and the LAMMPS [53] MD simulation package with
a Langevin thermostat. Using the T = 0 K structure, we first
measure the vacancy formation energy in sites around the core.
There are only two sets of equivalent sites where the vacancy

014103-4



ASSESSMENT OF PHASE-FIELD-CRYSTAL CONCEPTS . . . PHYSICAL REVIEW B 91, 014103 (2015)

(a) (b)

(c) (d)

U = −23981.60 eV U = −23981.56 eV

U = −23980.01eV U = −23928.00 eV

0.53

0.29

0.76

0.05

1.00

FIG. 1. (Color online) (a)–(c) Actual atomistic configurations
of a Lomer dislocation with two vacancies that are frequently
observed during accelerated MD simulations, and their associated
total potential energies at 300 K: (a) A low energy structure where
vacancies have merged in the dislocation core; (b) a structure where
two vacancies are separated along the core; and (c) a structure where
a third lattice vacancy is created next to the initial two vacancies
with a corresponding interstitial atom generated in the center of the
core. (d) The quenched one-particle density (see text) corresponding
to the time-averaged one-particle density from the accelerated MD
simulation, with the integrated density of each peak indicated by the
color. This quenched density is used to compute the “PFC” potential
energy quoted, which differs significantly from the potential energies
of any individual configuration such as those shown in (a)–(c).

formation energy (0.044 eV) is reduced significantly relative to
the bulk value (0.69 eV [54]). In thermodynamic equilibrium at
T = 300 K, these two types of atomic sites have an equilibrium
vacancy concentration of ∼9% [54]. Therefore, two vacancies
are added (i.e., two atoms are deleted) in our simulation cell
in two of these sites to create a vacancy concentration of
1/12 ≈ 8.3% in those sites. This configuration thus already
accounts for the long-range vacancy diffusion needed to reach
this near-equilibrium state (which would have occurred by
vacancy diffusion with a migration enthalpy in bulk Al of
0.61 eV [54]). Starting from one initial configuration of the
vacancies [Fig. 1(a)], we run hyperdynamics [1,2] simulations
using the simplified bond-boost method [55] to evolve the
system through the accessible phase space at T = 300 K
over times sufficient to reach a near-equilibrium statistical
sampling. We use a conservative value of 0.2 for the maximum
bond strain (εα from [55]), and a maximum boost energy of
0.2 eV (Sα from [55]) to maintain efficient sampling of
the boosted potential yet provide reduced transition times to
configurations inaccessible using standard MD.

We compute the one-particle density ρ(1)(r) by performing
a time average during the accelerated MD simulation accord-
ing to Eq. (1) as follows. In any given low energy configuration
(i.e., a local energy minimum with thermal vibrations), the
positions of the atoms are recorded for 10 ps on a grid of
0.06 × 0.06 × 0.07 Å in the x, y, and z directions to obtain

the one-particle density for that configuration. The bond-boost
potential is then applied to accelerate a transition into a new
configuration. The real time spent in the previous configuration
is computed using the standard hyperdynamics procedure. The
one-particle density is then calculated by averaging over all of
the one-particle densities in each configuration weighted by
the real time spent in each configuration,

ρ(1)(r) =
∑Nstates

i=1 tiρ
(1)
i (r)∑Nstates

i=1 ti
, (13)

where Nstates is the total number of configurations observed,
ρ

(1)
i (r) is the one-particle density from configuration i, and ti

is the time spent in configuration i. 1448 low energy configu-
rations (many being similar aside from periodic translations)
are observed during the simulation so that the one-particle
density calculated here is close to the final equilibrium density.
We note that configurations in which the vacancies move out
of the immediate core region are at least 0.447 eV higher in
energy than the vacancies in their lowest energy configurations,
and thus are approximately 3.1 × 10−8 times less likely to
occur; inadequate sampling of those configurations thus has a
negligible effect on the one-particle density.

Similarly, we compute the potential energy of the MD
system as the time-weighted average of the potential energies
of the low energy configurations in the same manner as the
time-weighted one-particle density,

U =
∑Nstates

i=1 tiUi∑Nstates
i=1 ti

, (14)

where Ui is the total potential energy of each minimum.

IV. RESULTS AND DISCUSSION

We frame our discussion around three aspects of the PFC
method: predicted structure and its interpretation, energies of
the structure, and kinetics.

A. Defect structure

During the simulation, core atoms near the vacancies diffuse
within the core region and do not remain on the original
lattice sites. Instead, an atom will occupy an off-lattice site
between two rows of atoms that make up the dislocation
core. The two vacancies start the simulation next to each
other, but can separate because the double-vacancy complex
is only slightly more energetically favorable (0.04 eV at
T = 0 K) than two isolated single-vacancy complexes. Since
the energy difference is small, the vacancies separate and rejoin
several times during the simulation. The system configuration
primarily divides its time among a distinct set of specific
configurations, each of which corresponds to a local free
energy minimum separated from the other local configurations
by some free energy barrier. Three frequently occurring
configurations (each configuration has many equivalent con-
figurations corresponding to translations by a multiple of the
lattice constant) are shown in Figs. 1(a)–1(c), along with the
average total potential energy of the system at T = 300 K in
each configuration.
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FIG. 2. One-particle density (a) integrated along the z = [110]
dislocation line direction from z = 2.4 to 5 Å; this integrated
projection corresponds to a slice perpendicular to the dislocation
line containing two planes of atoms. Some density peaks in the core
and their distances are labeled. (b) The density integrated along the
y = [001] direction from y = −1 to 1 Å; this integrated projection
corresponds to a one-atom-wide slice along a plane intersecting the
dislocation core.

Figures 2(a) and 2(b) show the one-particle density around
the dislocation core. Being a time-weighted average of a set of
distinct atomic configurations, the one-particle density shows
a set of sharp peaks at distinct positions, corresponding to
atoms that are vibrating around those positions for some time
period. The one-particle density shows all possible positions of
individual atoms simultaneously without regard to spatial and
temporal time correlations. The integrated density under any
one sharp peak represents the fraction of time, or probability,
that the region is actually occupied by an atom during the
course of the simulation. Figures 2(a) and 2(b) are essentially
the outcome of a perfect PFC calculation, i.e., they correspond
to the actual ρ(1)(r) of a physical problem obtained by
full molecular simulation with essentially no approximation.
Below we analyze this result within the context of a generic
PFC model.

To reduce the amount of information, we compress all of the
sharp peaks in Fig. 2 into a collection of Np “quenched peaks”
by integrating the mass density around each peak. This yields
a “quenched” density ρ(1)

q (r) = ∑Np

i=1 ρiδ(r − ri ), where ρi is
the integrated weight of the peak at position ri located at the
centroid of the integrated density of each quenched peak. In
this work the integrated density includes all bins with nonzero
density that are connected to a nearby peak, including some
connected double peaks visible in Fig. 2. Figure 1(d) shows the
“PFC” configuration of these peaks colored by their integrated
mass ρi , which is equal to the probability of occupation of
that (quenched) position. Figure 1(d) is essentially the time
average over all of the individual configurations similar to
those shown in Figs. 1(a)–1(c). Of relevance to many questions
about material behavior are the individual configurations. The
reconstruction of the distinct set of actual atomistic configu-
rations [e.g., Figs. 1(a)–1(c)] using only ρ(1)

q (r) in Fig. 1(d)
seems highly nonunique and underdetermined. Any such
reconstruction would certainly require the use of postulated
solid-structure multiparticle correlation functions that are not
present within the PFC method itself. That is, if one knew
the multiparticle correlation functions, one could construct
possible configurations and then attempt to determine which
configurations actually occurred and the time-averaged weight
for each configuration. However, this is highly speculative
and no tools currently exist to execute such a strategy. Thus,
the PFC calculation itself does not provide direct information
about the actual obtainable defect structures, i.e., the structures
that control the behavior of this defect.

B. Defect energies

We now use our “exact” PFC result for the one-particle
density to attempt to answer questions of interest in materials
science related to defect energies. To do this, we compute
the energy of the PFC structure from the measured quenched
density ρ(1)

q (r) and compare it to the actual energies measured
in the MD simulation. Since the peaks are sharp, the quenched
density is a good approximation to the true one-particle density
(as demonstrated below). Furthermore, to reduce variations in
the true one-particle density along the periodic z direction,
we average the one-particle density over the periodic spacing.
This averaging removes small variations from undersampling
the rarest states, and produces a density field as close to the
true equilibrium density field as possible.

Computation of the potential energy requires a potential
energy functional. We will use the alternative function of
Eq. (9), adapted for the many-body embedded atom potential
used here along the lines demonstrated by LeSar et al. [56].
The EAM potential energy includes a contribution from a
pair potential and from a per-atom embedding energy Fi that
is a function of the electron density at the position of atom
ri due to surrounding atoms at positions r j . The pair term
directly fits the form of Eq. (10). LeSar et al. derived an
accurate approximation to the embedding term [56], which has
also recently been used in the PFC-like “diffusive molecular
dynamics” model of Li et al. [57,58]. We use the formulation
of LeSar et al. applied to our quenched density but extend it
to include pair correlations in the calculation of the electron
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TABLE I. The total average potential energy UMD computed in MD and using UDFT of Eq. (15) (with harmonic vibrations added), for
different distinct atomic configurations including some of the metastable states and for the PFC density corresponding to a time average of
all the metastable states. All values are in unites of eV. �U = UDFT − UMD is the absolute difference between the two calculations, and the
difference per atom is shown in parentheses.

MD Eq. (15) + 3/2NkBT �U total (per atom)

Perfect crystal −23 442.75 −23 441.95 0.80 (0.0012)
Lomer dislocation without vacancies −23 988.21 −23 987.05 1.15 (0.0019)
Two vacancies separated −23 981.56 −23 980.67 0.89 (0.0015)
Two vacancies together −23 981.60 −23 980.68 0.92 (0.0015)
Vacancy- interstitial pair −23 980.01 −23 980.41 0.40 (0.0007)
PFC (Time average of metastable states) −23 981.33 −23 928.00 53.33 (0.0874)
PFC (Time average of metastable states with hard sphere exclusion) −23 981.33 −23 947.33 34.01 (0.0558)

density of atom i, yielding the potential energy function

UDFT = 1

2

Np∑
i=1

Np∑
j �=i

ρiρjg
(2)(ri ,r j )φ

(2)(rij )

+
Np∑
i=1

ρiFi

⎡
⎣ Np∑

j �=i

ρjg
(2)(ri ,r j )ψ

(2)(rij )

⎤
⎦ , (15)

where rij = |ri − r j | and ψ (2) is the two-body electron density
function [59]. Since all thermal vibrations have been removed
from the quenched density, to compare potential energy values
computed with this functional to MD, we add the equipartition
thermal potential energy of 1.5NkBT = 23.65 eV to the values
computed with Eq. (15) to obtain the T = 300 K potential
energy.

To test the validity of our functional, we first apply it to some
reference geometries and compare the predictions to the results
of MD. Specifically, we compute via MD the one-particle
density and average potential energy for (i) a perfect crystal
and (ii) a Lomer dislocation core without vacancies. The
perfect crystal is created with the same crystal orientation,
fixed atom boundary beyond a circle of radius of 10 Å in the
x-y plane, and periodic boundary conditions and thickness
along the z direction. The Lomer dislocation core without
vacancies is created in an identical way to the dislocation core
with vacancies, described earlier, but without removing any
atoms. The time-averaged potential energy during a normal
MD simulation is computed; accelerated MD is not needed
because there is no diffusion. The simulated density ρ(1)(r)
is measured using bins and condensed into a set of Np

quenched peaks as described above. The quenched density
is used to compute the potential energy using Eq. (15). The
correlation function is approximated as g(2)(ri ,r j ) = 1 − δij ,
which eliminates the self-interaction and eliminates the need
for the restriction j �= i.

For the perfect crystal, the absolute difference between the
potential energy computed with the functional of Eq. (15) and
with MD is only 0.80 eV, or 0.0012 eV per atom on average
across the 660 atoms in the MD simulation. Atoms away from
the outer boundary have an error around 0.002 eV per atom. For
the Lomer core without vacancies, the total difference between
the DFT functional and MD is only 1.15 eV, or 0.0019 eV per
atom on average across 612 MD atoms. Examining specific
atoms in the core, two rows of atoms along the core have

an error of 0.03 eV per atom, while near the core the error
ranges from −0.011 to 0.019 eV per atom; thus there are some
canceling errors when considering the total potential energy.
Overall, however, the proposed UDFT agrees fairly well with
the full MD simulations.

We now calculate UDFT for the various metastable con-
figurations found in the simulation of the Lomer dislocation
containing the vacancies. For configurations of Figs. 1(a)
and 1(b), having vacancies in adjacent sites and separated by
six lattice spacings along the core, respectively, the absolute
total potential energy difference from MD is approximately
UDFT − UMD = 0.9 eV, or 0.0015 eV per atom. The error
UDFT − UMD for core sites that had the largest error (0.03 eV)
in the Lomer core with no vacancies present were reduced to
0.01 to 0.015 eV in these configurations, while the surrounding
atoms had errors similar to the no vacancy case (−0.01
to 0.019 eV per atom). For the configuration of Fig. 1(c),
with a vacancy-interstitial pair, UDFT − UMD is approximately
0.40 eV, or 0.0007 eV per atom. Again, the atoms which
had the highest error in the Lomer core without vacancies
were reduced to errors between −0.003 and 0.015, while
atoms in the center of the core have an error ranging from
0.016 to 0.03 eV per atom. Table I summarizes the errors
for each atomic configuration or density discussed above. The
small range of errors obtained using the UDFT functional and
the quenched peak assumption demonstrates that the neglect
of multibody correlations and vibrational anharmonicity at
T = 300 K are quite small, even though aharmonicity is
greater in the dislocation core than in the bulk crystal.

We now investigate the potential energy of the time-
averaged “PFC” configuration of ρ(1). The average total
potential energy including all sampled metastable states as
calculated from the accelerated MD is −23 981.33 eV. The
potential energy computed using Eq. (15) for the quenched
PFC density, with only self-exclusion and no further correla-
tions [g(2)(ri ,r j ) = 1 − δij ], and adding the thermal harmonic
contribution is −23 928.00 eV, which is 53.33 eV greater
than the true value. This energy difference is concentrated in
the 46 atom sites along the dislocation core with vacancies,
so the typical error is ∼1.1 eV per core atom. This is
approximately 100× larger than the typical errors associated
with the functional when applied to the distinct individual
configurations. Figure 3(a) shows the potential energy of an
atom at each density peak using Eq. (15) and normalized by
ρ

q

i to obtain a per-atom value, and this energy ranges from

014103-7



K. L. BAKER AND W. A. CURTIN PHYSICAL REVIEW B 91, 014103 (2015)

(a)

-1.51

-2.44

-0.57

-3.37

0.36

(b)

Potential Energy (eV)

Ideal Free Energy (eV)

-0.06

-0.08

-0.03

-0.11

0.00

FIG. 3. (Color online) Cross section of the quenched one-particle
density showing the dislocation core, with the dislocation line
perpendicular to the page. Each quenched peak is colored by the
(a) potential energy of an atom located at each peak site computed
with UDFT [Eq. (15) and g(2)(ri ,r j ) = 1 − δij ]; and (b) the ideal free
energy per atom computed using Eq. (3) with the full ρ(1).

−3.37 to 0.36 eV. In contrast, the potential energy of each
atom in the actual metastable configuration shown in Fig. 1(a)
ranges only from −3.2 to −3.4 eV per atom, with the bulk
crystal value of −3.36 eV per atom [19]. These energies are
computed using UDFT, but since the form of UDFT is identical to
that of the standard PFC functional of Eq. (6), similar energies
would be computed using the PFC functional, aside from an
overall constant shift. Since the extreme local variations are
independent of any constant shift, we conclude that use of the
PFC functional could not yield a correct core structure. In other
words, ρ(1) must be, according to DFT theory, the outcome of
a true DFT functional but the PFC functionals of the form of
Eq. (6) could not be accurate since they predict huge errors in
energies for the true structure. Any PFC functional will give
some defect structure and defect energy, as a consequence
of the minimization of the total free energy functional with
respect to ρ(1) for the specified functional, but one can have
little confidence that the predicted structure and energy would
bear resemblance to the true values.

The extreme difference in both total and local potential
energies for the PFC configuration is a direct consequence of
calculating the interaction energies between quenched peaks
that are much closer than physically possible and that do not
arise simultaneously in any one actual atomistic configuration.
In particular, as indicated in Fig. 2(a), the partially occupied
sites (ρq

i < 1.0) in the dislocation core are separated by
distances ranging from 0.72 to 1.99 Å, far below the atomic
spacing in the crystalline lattice (2.85 Å). One egregious error
lies in the existence of the two very closely spaced density
peaks labeled d and e in Fig. 2(a), with ρi = 0.92 and 0.08
and separated by rde = 0.72 Å, that together represent the same
underlying atom but at two slightly different positions at differ-

ent times. Thus, calculation of the energy contributions from
these peaks without any correlations induces self-interactions,
i.e., the same atom contributing to both peaks interacts with
itself leading to large errors in the energy. We can eliminate
the obvious self-interactions by including a hard-sphere pair
correlation function, which sets the interaction between two
peaks within the specified hard-sphere diameter dmin to zero.
This type of correlation function only accounts for some of
the spatial correlations and no temporal correlations. We use
a Heaviside step function g(2)(ri ,r j ) = H (|ri − r j | − dmin) to
create a hard-core exclusion for density peaks separated by less
than dmin. For 0.73 � dmin � 1.40, the spurious interactions
between peaks d and e are eliminated but the average potential
energy is only reduced to −23 947.33 eV which remains
34 eV larger than the true MD energies. Increasing dmin beyond
1.41 Å excludes some further unphysical interactions between
densities at sites a and b at distance rab = 1.41 Å, but causes
other problems. Specifically, when the energy contribution
of the density at site a is calculated, a density greater than
unity is excluded corresponding to the two symmetric b

sites each with densities of ρb = 0.78. This violates the
sum rule

∑Np

j �=i ρjg
(2)(ri ,r j ) = N − 1 that applies to real

atomistic systems. Thus, the hard sphere exclusion removes
some atomic density that should be included, leading again
to unphysical results. The removal of unphysical density is
compounded further when dmin is increased beyond the peak
separations rcd and rac, both of which are still well below
the bulk atomic spacing of 2.85 Å. Therefore, implementing
the same hard-sphere exclusion for all atomic sites cannot
rectify the large errors in potential energy computed using the
one-particle density.

As remarked earlier, the true two-body correlation function
is inherently a function of space near the defect so there will
always be some error when using a single correlation function
c

(2)
L everywhere in the sample. In particular, the sum rule will

always be violated when using a single two-particle correlation
function to calculate the energy of a defect from the true one-
particle density. To help demonstrate this, Fig. 4(a) compares
the radial distribution functions measured from atoms located
in different atomic sites in a perfect Lomer dislocation core
(without vacancies) at 300 K. At atomic site c, just outside of
the dislocation core, the radial distribution function is quite
similar to the bulk crystal but shifted slightly by the strain
field of the dislocation around site c. At sites a and b within
the core, however, the probability of finding an atom becomes
more diffuse and there is significant shifting from the bulk
lattice spacing. We can also compute the coordination number
as a function of distance by integrating the radial distribution
function. Figure 4(b) shows the coordination number versus
distance for atoms a, b, and c and for bulk atoms in Fig. 4(a).
For site b, the number of nearest neighbors (distances less than
3.5 Å) is 11 while the value is 12 for the other atomic sites.
Therefore, using Eq. (15) with a correlation function based on
the bulk material will lead to an energy for site b assuming
12 neighbor atoms instead of 11. Therefore, the mismatch
in the correlation function between the defect and the bulk
crystal inevitably leads to an incorrect energy for atoms in the
defect.

A PFC structure is obtained by minimizing the competing
ideal and excess free energies. We have earlier shown that
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FIG. 4. (Color online) (a) The radial distribution function mea-
sured using MD at 300 K of the bulk crystal and several atoms located
in or near a Lomer dislocation core (with no vacancies present in the
core). The inset indicates the location of the reference atoms in or
near the dislocation core. For easy identification, the core atoms are
connected by a solid black lines. (b) The coordination number of the
same set of atoms. The 0 K coordination number is included as a
reference.

the excess free energy scales similarly to the potential energy,
with an additional constant term, and just above have shown
that the potential energy from the PFC structure is grossly
in error. It might be argued that the overall PFC model is
corrected by a compensation in the ideal free energy. Thus,
we now examine the ideal free energy contributions in the
true PFC density. The total and per-peak ideal Helmholtz
free energy are calculated using Eq. (3) on the unquenched
ρ(1) density generated from accelerated MD [Fig. 3(b)].
The total ideal free energy is −53.40 eV, with an average
value of −0.09 eV per atom (∼ −3.5kBT ). The individual
per-peak values of the potential energy [used in Eq. (15)]
and F id are plotted in Figs. 3(a) and 3(b), respectively. The
variations in the ideal free energy contribution from each
PFC density peak are generally very low, ranging from 0 to
−0.11 eV, as compared to the magnitude and variations in
the potential energy contributions. These values are similar to
those obtained for individual configurations; for the metastable
configuration in Fig. 1(a) has F id = −47.88 eV, or roughly
−0.08 eV per atom (∼ −3.1kBT ) and ranging from −0.06y

to −0.11 eV per atom. Since the ideal entropy in the liquid is
1.5kBT , it is not possible to compensate for the large errors
in potential energy (∼1 eV/atom) through differences in the
ideal entropy. As noted above, while the overall constant in
Eq. (6) could correct on average for the large discrepancy in
potential energy, such a constant shift is unable to account for
the large energy differences among different atomic sites in
the core of the defect.

C. Kinetics of transitions between configurations

A key aspect of PFC models is the dynamic evolution in
time over “diffusive” time scales. The question is whether such
a time evolution is realistic or accurate. PFC only operates on
the evolution of ρ(1) and only uses one (simplified) correlation
function. This means, as noted above for metastable states,
that it is not possible to identify any particular atomic tran-
sition state configuration. Therefore, reaction rates between
metastable states cannot be calculated with high accuracy,
and any state-to-state dynamics cannot be captured. Thus,
using Eq. (11) or (12) is numerically efficient but lacks a
connection to the controlling features of atomistic dynamics in
solid systems. In addition, the dynamic equations used by PFC
are deterministic and only move downhill in the free energy;
it is thus possible to reach and become stuck in a metastable
energy minimum. Only by adding an artificial random noise
term can the system move between metastable states.

While one could envision tuning the PFC evolution to a
match a particular transition rate, the PFC model uses just
one constant mobility factor in Eqs. (11) and (12). Using
the nudged elastic band method [60], we have computed
the saddle states of the potential energy surface between the
various metastable energy minima associated with the various
configurations visited during the MD simulation. The energy
barriers for the observed transitions for vacancy motions span
a wide range from 0.29 to 0.74 eV, while the bulk vacancy
migration energy is 0.61 eV. Therefore, using a single mobility
coefficient cannot distinguish between the hugely different
actual transition rates that occur naturally in the system. In
our specific example, we can imagine starting the system in
one configuration and asking for the time-averaged evolution
of ρ(1) as the system evolves toward the final time-averaged
configuration. The PFC model could not capture the dynamics
associated with transitions ranging over almost 0.5 eV in
barrier height. This further implies that the computed ρ(1) at
any instant in time cannot be considered as any true realization
of the evolving one-particle density.

V. CONCLUSIONS

In summary, we have generated an essentially exact equi-
librium one-particle density function ρ(1) using accelerated
MD for a nontrivial defect structure in a crystalline material.
From this result we argue that any type of PFC model that
relies on the one-particle density and standard free energy
functionals that do not include accurate multiparticle correla-
tions cannot quantitatively predict atomic structures, energies,
or kinetics. This conclusion goes beyond the actual operational
limitations of most current PFC implementations, which use
low-resolution density profiles that do not correspond to the
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sharp peaks associated with thermal vibrations in crystalline
systems. Without knowledge of the many-body correlation
function, it is impossible to distinguish the individual atomic
configurations that contribute to the one-particle density, or to
compute the energy of the system or the kinetic events occur-
ring as the system samples the available phase space. We have
investigated the reliability of an alternative functional based
on the potential energy, and we have demonstrated that this
functional can accurately describe the energetics of any one
distinct configuration found in the MD. Thus, for equilibrium
properties in solids at low and moderate temperatures, this
functional is strongly preferable to current PFC functionals.
There is no solution to overcome the limitation of the PFC
time evolution, which has no formal basis nor any connection
to accepted transition state theory. Instead, using a combination
of calculating the free energy of metastable states with PFC,
along with a standard transition-state-based description of
evolution using a master equation and/or kinetic Monte Carlo
type approach is one possible avenue for pursuing time
evolution, but such methods do not have the computational
efficiency of a standard PFC model.

In general, the PFC model is an interesting and convenient
framework for studying the evolution of simple systems
where discrete atomic-scale phenomena play a key role in the
system evolution. PFC has been used to model complex defect
structures and kinetics, like dislocation dynamics [23,24,30–
32], structural phase changes [44], grain boundary energies

and evolution [8,26,27,33–35], and vacancy diffusion [61].
In some cases, the results for some complex problems show
qualitative trends consistent with basic models and direct
molecular simulations [26,27,62]. In addition, classical DFT
methods using advanced functionals and highly spatially
resolved density profiles can provide accurate thermodynamics
in some problems, such as the solid-liquid interface and
its fluctuations [63–65] where atomic fluctuations occur on
fast time scales. However, based on our results for a typical
problem arising in materials science, the PFC model does
not appear to be suitable for quantitative computation of
equilibrium defect structures in crystalline systems, such as
dislocation cores, grain boundaries, or crack tips, or their
microscopic evolution. For these classes of problems, the
more computationally intensive methods such as accelerated
MD appear to remain necessary to capture details at the level
required for quantitative prediction in materials science.
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[52] H. Emmerich, H. Löwen, R. Wittkowski, T. Gruhn, G. I. Tóth,
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