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Formation of nonequilibrium steady states in interacting double quantum dots:
When coherences dominate the charge distribution
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We theoretically investigate the full time evolution of a nonequilibrium double quantum dot structure from
initial conditions corresponding to different product states (no entanglement between dot and lead) to a
nonequilibrium steady state. The structure is described by a two-level spinless Anderson model where the
levels are coupled to two leads held at different chemical potentials. The problem is solved by a numerically
exact hierarchical master equation technique and the results are compared to approximate ones obtained from
Born-Markov theory. The methods allow us to study the time evolution up to times of order 104 of the bare
hybridization time, enabling eludication of the role of the initial state on the transient dynamics, coherent charge
oscillations and an interaction-induced renormalization of energy levels. We find that when the system carries
a single electron on average the formation of the steady state is strongly influenced by the coherence between
the dots. The latter can be sizeable and, indeed, larger in the presence of a bias voltage than it is in equilibrium.
Moreover, the interdot coherence is shown to lead to a pronounced difference in the population of the dots.
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I. INTRODUCTION

Understanding the time evolution of quantum mechanical
systems is fundamentally important but in many cases also very
challenging [1–4]. We probe quantum systems by following
the time evolution induced by externally applied fields. Further,
the unique properties of driven quantum systems may be of
technological importance [5–10]. In many cases, the physics
of interest involves interparticle interactions and possibly
large departures from equilibrium. Therefore it is essential
to understand the nonlinear response of a quantum system in
nonequilibrium situations. In these situations, however, ana-
lytical methods typically become too complex and numerical
approaches are required.

Quantum dot systems provide an important class of example
systems to address nonlinear and nonequilibrium quantum
physics [4,11–15]. Quantum dots are nanoscale regions in
which electrons are spatially confined; they are often referred
to as artificial atoms. The physics is thus characterized by
a finite number of quantum mechanical degrees of freedom.
However, unlike conventional atoms, quantum dots can easily
be addressed by complex lead structures which provide both
electron exchange (leading, for example, to transport through
the dot) and the manipulation of each dot by electromagnetic
fields [16–19]. Moreover, their populations can reliably and
noninvasively be read out using single-electron transistors
or quantum point contacts [4,19,20]. As a result, strong
nonequilibrium physics is accessible in the quantum dot
context. Complex many-body phenomena such as, for exam-
ple, Coulomb blockade [11,21–23] and Kondo correlations
[24–26] are found even for the simplest quantum dot real-
ization, namely, a dot that can be characterized by a single
spin-degenerate electronic level (even without spin-mixing
effects such as, for example, in spin-valve setups [27–30]).
Quantum dots can be fabricated under well controlled condi-
tions and in technologically scalable ways. The complexity
and interest of the underlying physics increases with the
number of levels on the dot and with the spatial structure

enabled by larger dot structures. Therefore, they are suitable
to study fundamental many-body phenomena [31,32] but can
also be considered for electronic device applications such
as, for example, solar energy conversion [8,10] or quantum
information processing [5,9,33–35].

In this work, we consider double quantum dot (DQD)
structures [33] [cf. Fig. 1(a)]. Mathematically, these structures
may be thought of as two levels, coupled to each other and
in a variety of possible ways to leads. They provide a simple
model system for the examination of physics not accessible
in transport through the widely-studied single-dot systems
mentioned above, in particular, sequential current flow from
a lead into one dot, then into the other dot, and further into
the other lead, but also internally gated situations where the
occupancy of one dot affects flow through the other. In both
of these cases, the interdot coherence, which is defined as the
off-diagonal element of the DQDs density matrix in the basis
of the states localized on the quantum dots, will be seen to
play a crucial role.

In our analysis, we suppress the spin degree of freedom,
which is not essential to the physics of interest, and study the
orbitally degenerate spinless Anderson model. This scenario
can be experimentally realized by use of large magnetic fields
or spin-polarized leads. The complexity of this problem is sim-
ilar to that of a single quantum dot with a spin-degenerate level.
Despite its simple structure, the orbitally degenerate spinless
Anderson model exhibits a rich variety of complex many-
body phenomena including orbital/pseudospin-Kondo physics
[36–39], population inversion [40–43], negative differential
resistance [44–47], Fano-line shapes [18,48], interaction-
induced level repulsion [36,44], and resonances [40,49–51].
For some purposes, one may think of the orbital degree of
freedom in the spinless double-dot problem as playing a
similar role as the spin degree of freedom in a conventional
single-orbital dot [36–39]. There is, however, a fundamental
difference between the two systems: the coherence between
the dots plays a key role in the double dot system, while it is
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FIG. 1. (a) Graphical representation of a double quantum dot
system. The two quantum dots (QD) are coupled to a left (L) and
a right electrode (R). The corresponding coupling matrix elements
are denoted by νK,m with K ∈ {L,R} and m ∈ {a,b}. The interdot
coupling is denoted by α. In this work, we focus on a serial coupling
configuration where νR,a = νL,b = 0 and a branched configuration
where νR,b = νL,b = 0. (b) Level structure considered in this work
where the single-particle levels are below and the levels associated
with double occupancy are above the chemical potentials in the leads.
This situation corresponds to a double quantum dot structure that is
operated in the nonresonant transport regime.

typically zero or vanishes in the steady state of the aforemen-
tioned single-dot situations. In this paper, we focus on phenom-
ena that are associated with the dynamics of the coherence.

While substantial attention has been paid to the equilib-
rium and steady-state properties of the two-orbital Anderson
model, much less is known about the underlying dynamics.
This deficiency in the literature can be traced back to the
limitations of many time-dependent methods which involve
approximations (giving, e.g., unphysical populations [52,53]
and currents [43]), impose severe restrictions on the accessible
time scales [54–65], or enable study only of parts of the full
parameter space [43,54,55,58,63,66–68].

In this paper, we analyze the nonequilibrium dynamics of
the spinless double-dot system using the hierarchical quantum
master equation (HQME) formalism [43,66,69–71]. In a pre-
vious paper [43], we used the method to study the steady state
transport properties of the spinless Anderson model, finding
negative differential resistance due to interaction-induced
decoherence [45] and explicating the role of interaction-
induced energy-level renormalization [44] in combination with
level shifts related to the structure of the conduction bands [43].
We found that these renormalization effects strongly affect the
resonant transport properties of a quantum dot structure and
give rise to lead-induced (RKKY-like) coupling effects [43].

Here, we analyze the time-dependence of the formation
of a steady state from different (product) initial states under
the influence of a time-independent Hamiltonian. As we will
see, the transient dynamics strongly depends on the initial
charge configuration in the dots, while the resulting steady state
does not. Throughout this work, we focus on the nonresonant
transport regime. As we have noted earlier in Ref. [43], the
associated time scales can be very long, because resonant
tunneling processes are suppressed. The study is made pos-
sible by the HQME method, which facilitates a controlled
(numerically exact) study of this long-term dynamics. We
will show that when the system carries a single electron on

average, the corresponding transient dynamics exhibits a rich
and complex behavior governed by a competition between
exchange processes with the environment and coherent charge
oscillations between the quantum dots. Both phenomena are
strongly affected by an interaction-induced renormalization
of the dots energy levels [44,72,73] that originates from
exchange interactions with the electrodes. They are also known
to give rise to a spin torque [27–29] and a spin-precession
resonance [30] in spin-valve setups.

The HQME method [43,66] allows us to obtain the time
evolution of the double dot structure in a numerically exact
way, assuming that the system is initially in a product state
and that a systematic [43] expansion in the hybridization of
the system versus the temperature scale (which is set by the
environment) converges. Internal consistency checks enable
verification of the convergence. A significant advantage of the
HQME method is the linear scaling of the numerical effort
with the simulation time. This behavior is related to the time
local formulation of the HQME and makes it possible to
reach simulation times greater than, e.g., a thousand times
the inverse of the hybridization strength. This is essential in
the present context and allows us to obtain reliable results
for the effects of interest in this paper. Other numerically
exact methods such as, for example, quantum Monte Carlo
methods [55,57–59,62,63,65,74–76], time-dependent numer-
ical renormalization group [77–79], or density matrix renor-
malization group approaches [80–82] are not able to reach the
needed timescales. Only reduced dynamics simulations [83],
either based on stochastic diagrammatic methods [65] or wave-
function propagation schemes [84,85], can reach comparable
time scales, provided that the corresponding memory kernel is
decaying sufficiently fast.

In order to identify the physical mechanisms at work,
we compare the exact results of the HQME scheme with
approximate results that are obtained from Born-Markov
theory [86–91]. The standard Born-Markov approximation
is related to HQME by (a) truncating the expansion at the
lowest nontrivial order, (b) the Markov approximation, and (c)
the evaluation of the corresponding transition matrix elements
(making a constant relaxation time approximation in the steady
state). We therefore study two versions of the Born Markov
approximation: the standard one and a modified version where
we relax approximation (c). They are mainly distinguished
by principal value terms, which encode the aforementioned
renormalization effects. Thus the effect of these terms can be
visualized by comparing the two schemes. Although they enter
the equation of motion of the coherence only, we find that the
resulting coherent dynamics has also a strong influence on the
population of the dots.

The article is organized in two parts. The first part (Sec. II)
is devoted to the theoretical methodology. We briefly outline
the model (Sec. II A), the HQME approach (Sec. II B), and the
two different Born-Markov schemes (Sec. II C). Results are
presented in the second part of the article (Sec. III). Throughout
Sec. III, we focus on two complementary realizations of the
spinless Anderson model: a serial and a branched configura-
tion. A comparison of the two realizations will allow us to
elucidate different aspects of the interaction-induced renor-
malization effects. Our analysis starts in Sec. III A with the
time evolution from a nonequilibrium initial state to thermal
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equilibrium (i.e., no bias voltage is applied to the quantum
dots). In the subsequent section, Sec. III B, we compare
these results to situations where a bias voltage is applied.
We can therefore identify equilibrium and nonequilibrium
effects in the formation of the steady state. Section IV is a
conclusion and the appendix includes technical details of the
calculation.

II. THEORY

A. Model Hamiltonian

We study the charge transfer dynamics of a biased double
quantum dot [cf. Fig. 1(a)]. We assume that each dot contains
one electronic state and neglect spin degeneracy. Such a system
can be realized by an array of quantum dots arranged to form an
Aharonov-Bohm interferometer [17,18,92,93] or a nanoscale
molecular conductor with an appropriate level structure [94–
103]. The spinless situation may be realized physically if the
spin degeneracy is lifted by an external magnetic field or by
spin-polarized electrodes. The situation is modeled by a two-
state spinless Anderson model:

HDQD =
∑

m∈{a,b}
εmd†

mdm + αd†
adb + αd

†
bda + Ud†

adad
†
bdb.

(1)

The dots are labeled by a and b. The dot states are addressed
by annihilation and creation operators da/b and d

†
a/b with

corresponding energies εa/b. The interdot coupling strength is
denoted by α. A simultaneous population of the dots requires
an additional charging energy U > 0, reflecting repulsive
Coulomb interactions between the electrons in the system.
Note that this system is equivalent to a Kondo impurity if
α → 0.

The dynamics of the system is driven by charge exchange
processes with the leads. The leads provide a reservoir
of electrons, which can be described by a continuum of
noninteracting electronic states

HL/R =
∑

k∈L/R

εkc
†
kck (2)

with energies εk and corresponding annihilation and creation
operators ck and c

†
k . These continuum states are coupled to

the states of the double dot system. The respective coupling
operator can be written as

Htun =
∑

k∈L,R;m∈{a,b}
(Vmkc

†
kdm + H.c.). (3)

The tunneling efficiency between the dots and the electrodes
is given by the coupling matrix elements Vmk . It depends on
the energy of the tunneling electrons and can be characterized
by the level-width functions

�K,mn(ε) = 2π
∑
k∈K

V ∗
mkVnkδ(ε − εk) (4)

with K ∈ {L,R}.
While the HQME formalism we discuss below applies for

general dot-lead coupling, we will present results for two cases:
the SERIAL configuration in which Vbk∈L = Vak∈R = 0 so that

(for positive bias) current flows from the left lead into dot a,
then from dot a to dot b, and further from dot b into the right
lead, and the BRANCHED configuration in which Vbk = 0 so
that current flows through dot a and dot b is coupled to the
leads only via its coupling to dot a.

If both electrodes have the same temperature T and
chemical potential μ, the system will relax to a thermal
equilibrium state. Departures from equilibrium may be in-
duced by imposing a difference of temperature or chemical
potential between the leads. We will typically assume that the
lead temperatures are the same and induce nonequilibrium
physics via a nonzero bias voltage, i.e., � = μL − μR �= 0.
Throughout this work, we assume a symmetric drop of the
bias voltage at the contacts, that is, the chemical potentials of
the left and the right leads are given by μL = −μR = �/2.
Note that this assumption is not decisive for our discussion.

The Hamiltonian of the whole system is given by

H = HDQD + HL + HR + Htun. (5)

B. Hierarchical master equation approach

In order to determine the nonequilibrium dynamics of the
double dot system, we employ the hierarchical quantum master
equation method [43,66,69–71]. This is an equation of motion
technique to determine the reduced density matrix

σ (t) = TrL+R[
(t)], (6)

where the density matrix of the full system (i.e., L–DQD–R) is
denoted by 
(t). A detailed derivation is given in Refs. [43,66].
Here, for completeness and to establish notation, we review
the derivation.

The equation of motion of the reduced density matrix
[104]

d

dt
σ (t) = −i[HDQD,σ (t)] −

∑
m,s

[
ds

m,σ̃ms(t)
]

(7)

is written in terms of a set of auxiliary operators

∑
m,s

[
ds

m,σ̃ms(t)
] = iTrL+R{[Htun(t),
(t)]} (8)

with s ∈ {+,−}, d+
n = d

†
n, and d−

n = dn and

Htun(t) = ei(HL+HR)tHtune−i(HL+HR)t . (9)

These operators encode the dynamics of the system that
is induced by the coupling to the electrodes. They can be
determined by a set of equations of motion. These equations
lead, a priori, to another set of auxiliary operators, which are
associated with the commutators [Htun(t),[Htun(t),
(t)]] and
[Ḣtun(t),
(t)]. This can be continued, leading to a hierarchy
of operators where the appearance of nested commutators
such as [Htun(t),[Htun(t), . . . ,
(t)]] suggests the existence of
a systematic expansion in terms of the hybridization operator
Htun. At this point, however, a hybridization expansion cannot
be performed because of the operators that are associated with
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the time derivatives of the dot-lead coupling operator ∂tHtun(t),
∂2
t Htun(t), . . .

A systematic approach to this problem is given in
Refs. [43,66]. It employs the correlation functions

Cs
K,mn(t − t ′) =

∑
k∈K

V s
mkV

s
nkTrK

[
σKcs

k(t)cs
k(t ′)

]
, (10)

where

σK = 1

TrK (e− ∑
k∈K

εk−μL/R
kBT

c
†
kck )

e− ∑
k∈K

εk−μL/R
kBT

c
†
kck , (11)

kB denotes the Boltzmann constant, s = −s, V +
mk = Vmk ,

V −
mk = V ∗

mk , c+
k = c

†
k and c−

k = ck . These functions character-
ize the tunneling processes between the dots and the electrodes.
They are given by the tunneling efficiencies �K,mn(ω) and the
population of the electronic states in the leads, that is the
respective Fermi distribution functions fK (ω):

Cs
K,mn(t) =

∫ ∞

−∞

dω

2π
esiωt�s

K,mn(ω)f s
K (ω), (12)

with the short-hand notations �+
K,mn(ω) = �K,mn(ω),

�−
K,mn(ω) = �K,nm(ω), f +

K (ω) = fK (ω) and f −
K (ω) =

1 − fK (ω). The auxiliary operators σ̃ms(t) can be written in
terms of these correlation functions as [66]

σ̃ms(t) =
∑
Kn

∫ t

0
dτ Cs

K,mn(t − τ )TrL+R

× [
U (t,τ )ds

nU (τ,0)
(0)U †(t,0)
]

−
∑
Kn

∫ t

0
dτ C

s,∗
K,mn(t − τ )TrL+R

× [
U (t,0)
(0)U †(τ,0)ds

nU
†(t,τ )

]
, (13)

with the time evolution operator

U (t,0) = T
[
e−i

∫ t

0 dτ (Htun(τ )+HDQD)
]
. (14)

The formalism requires the assumption that the system is
initially in a factorized state, i.e., 
(0) = σ (0)σLσR. The
problem with the time derivatives of the dot-lead coupling
operator is thus transferred to a representation of the time
derivatives of the correlation functions Cs

K,mn. The equations
can be solved if we find a set of functions, which can be used
to represent both the correlation functions Cs

K,mn and its time
derivatives.

Such a set of functions can be obtained, for example, by
the Meir-Tannor parametrization scheme [66,70,105] for the
tunneling efficiencies �K,mn(ε) and the Pade approximation
scheme for the Fermi distribution functions fK (ω) [106–108].
These sum-over-poles schemes allow us to write the correlation
functions Cs

K,mn by a set of exponential functions [109]

Cs
K,mn(t) =

∑
p

ηs
K,mn,pe−ωs

K,pt , (15)

where the scheme to obtain the frequencies ωs
K,p and the

amplitudes ηs
K,mn,p is outlined in the appendix. Corresponding

to each of the exponential functions e−ωs
K,pt , a new set of

auxiliary operators can be defined as

σK,mn,s,p(t) = ηs
K,mn,p

∫ t

0
dτ e−ωs

K,p(t−τ )TrL+R

× [
U (t,τ )ds

nU (τ,0)
(0)U †(t,0)
]

− η
s,∗
K,mn,p

∫ t

0
dτ e−ωs

K,p(t−τ )TrL+R

× [
U (t,0)
(0)U †(τ,0)ds

nU
†(t,τ )

]
. (16)

The time derivative of these operators involves only the
operator itself (times the frequency ωs

K,p) and operators that
contain an additional dot-lead coupling term Htun. This allows
us to establish a closed set of equations of motions in the sense
that time derivatives do not lead to new classes of operators
that are of the same order in Htun. The operators σK,mn,s,p(t)
and the corresponding higher-tier operators can be written as

σ
(κ)
j1...jκ

(t) = TrL+R[Bjκ
. . . Bj1
(t)], (17)

introducing superoperators Bj ,

TrL+R[Bj
(t)] ≡ σK,mn,s,p(t), (18)

and superindices j = (K,mn,s,p). By construction, the cor-
responding equations of motion

∂tσ
(κ)
j1...jκ

(t) = −i
[
HDQD,σ

(κ)
j1...jκ

(t)
] −

∑
λ∈{1...κ}

ω
sλ

Kλ,pλ
σ

(κ)
j1...jκ

(t)

+
∑

λ∈{1...κ}
(−1)κ−λη

sλ

Kλ,mλnλ,pλ
dsλ

mλ
σ

(κ−1)
j1...jκ /jλ

(t)

+
∑

λ∈{1...κ}
(−1)ληsλ,∗

Kλ,mλnλ,pλ
σ

(κ−1)
j1...jκ /jλ

(t)dsλ

mλ

−
∑

jκ+1,nκ+1

[
dsκ+1

nκ+1
σ

(κ+1)
j1...jκ jκ+1

(t)

− (−1)κσ (κ+1)
j1...jκ jκ+1

(t)dsκ+1
nκ+1

]
, (19)

involve only the auxiliary operators σ
(κ+1)
j1...jκ+1

(t). The reduced
density matrix enters this hierarchy of equations of motion at
the 0th tier as σ (0)(t) = σ (t). Truncation of the hierarchy at
the κth tier corresponds to an expansion in the hybridization
versus the temperature in the leads (cf. the discussion given in
Ref. [43], where, in addition, further details on the numerical
evaluation of the hierarchy of equations of motion (19) can
be found). Note that the latter statement is strictly speaking
only true in the strong coupling limit, U 	 �K,mn. In the
noninteracting limit (U = 0), it has been found [66,110] that
the hierarchy (19) terminates already at the second tier.

C. Born-Markov master equation approach

The hierarchical equation of motion technique (cf. Sec. II B)
allows us to obtain the dynamics of the system in a numerically
exact and systematic way. In addition, we employ the Born-
Markov master equation method. The comparison to the
HQME results will facilitate a better understanding of the
underlying physics.

Born-Markov master equations are well established [86–
91,111,112]. Here the reduced density matrix σ is determined
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by the equation of motion

∂σ (t)

∂t
= −i[HDQD,σ (t)] −

∫ t

0
dτ TrL+R

×{[Htun,[H̃tun(τ ),σ (t)σLσR]]}, (20)

where

H̃tun(τ ) = e−i(HDQD+HL+HR)τHtunei(HDQD+HL+HR)τ . (21)

It can be derived from the Nakajima-Zwanzig equa-
tion [113,114], employing a second-order expansion in the
coupling Htun and the so-called Markov approximation.
Solving Eq. (20) constitutes a time-dependent Born-Markov
scheme (t-BM).

Due to the approximations involved, the master equa-
tion (20) describes a nonunitary time evolution of the reduced
density matrix, which can result in unphysical negative
populations [52,53]. This problem can be avoided by shifting
the integration limit t to ∞ and, at the same time, neglecting
principal value terms that arise in the evaluation of the resulting
integrals. This is a standard procedure and we refer to it as
the standard Born-Markov scheme (s-BM). A comparison
of the s-BM and t-BM schemes helps to elucidate the role
of the principal value terms. These give rise to both an
interaction-induced renormalization [44] and renormalization
effects due to the structure of the conduction band [43]. As we
will see, these renormalization effects, which are not captured
in the s-BM approximation, have a direct influence on the
coherence, which, in turn, also affects the population of the
dots.

Finally, we remark that we evaluate the HQMEs and the
BM master equations in the basis of the states that are
localized on dots a and b. This includes {|00〉,|a〉,|b〉,|11〉},
which stands for an empty system, one/no electron in dot a/b,
one/no electron in dot b/a, and a doubly occupied DQD. If
the Born-Markov equation (20) is evaluated in the eigenbasis
of the system Hamiltonian HDQD, it is equivalent to the
Redfield (or Bloch-Wangsness-Redfield) equations [3,52,115–
117]. Note that neither the HQME (in particular, our truncation
scheme [43]) nor the BM formalism depends on the choice of
the basis.

D. Observables of interest

We characterize the dynamics of the double dot system by
following the time evolution of the interdot coherence σa,b

and the dot populations. The latter includes the population
of the doubly occupied state σ11,11 and the populations of
dot a/b, σa/b,a/b. Since TrDQD [σ ] = 1, the population of
the empty state is given by σ00,00 = 1 − σ11,11 − σa,a − σb,b.
While the populations represent the probability to find the
system in the corresponding state, the coherence σa,b describes
the entanglement of the dots generated in coherent tunneling
processes between the dots themselves and the leads. If the
interdot coupling is strong, the eigenstates of the double dot
system are well separated in energy. The populations and the
interdot coherence are, therefore, very similar. Their dynamics
becomes less trivial if the coupling between the dots is small
compared to the coupling to the electrodes. However, in the

limit where the dots are not coupled, α → 0, the coherence
σa,b vanishes (as for a Kondo impurity).

In experiment, the current that is flowing through the
system (if a bias voltage is applied) is less directly affected
by the dynamics of the system, because its detection requires
millions of tunneling electrons. In contrast, the populations
can be read out more efficiently and for each quantum dot
independently using single-electron transistors or quantum
point contacts [4,19,20]. Thus we restrict our discussion in
the following to the density matrix of the double dot structure.

III. RESULTS

We investigate the dynamics of the quantum dot array that is
depicted in Fig. 1. To this end, we focus on two complementary
realizations: a serial coupling configuration, where the two
dots are connected in series, and a branched configuration,
where only one of the dots is connected to the electrodes.
These realizations are referred to as models SERIAL and
BRANCHED in the following. The respective parameters can
be found in Table I.

We focus on coherent dynamics between the quantum dots
and, therefore, on the parameter regime where the interdot
coupling α is much weaker than the dot-lead coupling ν.
Note that for α = 0 the interdot coherence vanishes and that
for a strong interdot coupling, the dynamics is governed by
the eigenstates of the DQD. Only recently, we have given a
detailed study of the steady-state properties of the systems
SERIAL and BRANCHED (cf. Ref. [43]). We focused on
decoherence phenomena and a lead-induced (RKKY-like)
interstate/dot coupling. Note that similar realizations of the
spinless Anderson model have been considered both in a
number of theoretical [68,103,118–120] and experimental
studies [17,18,51,92,93,121]. These models have also been
used to describe (linear or branched) nanoscale/molecular
conductors [96,103,122].

We start to follow the dynamics of the system from two
different initial states. The first describes a situation where both
dots are unpopulated and uncorrelated [i.e., σ00,00(t = 0) = 1
while all other elements of the reduced density matrix are
zero]. The second differs from the first one by an electron
in dot a, that is we set σa,a(t = 0) = 1 (and again all other
elements to zero). These initial states are complementary in
the sense that they describe a symmetric and an asymmetric

TABLE I. Parameters of models SERIAL and BRANCHED,
which represent a serial and a branched configuration of the double
quantum dot system that is shown in Fig. 1, respectively. Energy
values are given in eV. The dot-lead coupling parameter ν is set
to 60 meV, corresponding to � = 2πν2/γ ≈ 11 meV, and the level
energy ε0 to −150 meV. The temperature of the electrodes T is 300 K.
The width of the respective conduction bands γ is set to 2 eV. Note that
these parameters reflect typical experimental values [18,51,92,121]
with respect to the temperature scale kBT ≈ 25 meV used in our
numerical calculations.

Model εa εb α U νL,a νL,b νR,a νR,b γ

SERIAL ε0 ε0 0.0005 0.5 ν 0 0 ν 2
BRANCHED ε0 ε0 0.0005 0.5 ν 0 ν 0 2
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distribution of charge in the DQD system and allow us to
represent the full complexity of the underlying physics. They
can be experimentally realized, for example, by a gate-voltage
and/or a dot-lead coupling quench. In addition, we focus on
systems that carry a single electron on average, i.e., εa/b <

μL/R < εa/b + U [see Fig. 1(b)]. Systems with a different level
structure (μL/R < εa/b,εa/b + U or μL/R > εa/b,εa/b + U ) do
not exhibit the slow relaxation dynamics we are interested
in (data not shown). It was also not observed at higher bias
voltages � > 2min(|εa/b|,|εa/b + U |). Throughout this work,
we assume a Lorentzian form of the tunneling efficiencies
[which are defined by Eq. (4)]

�K,mn(ε) = 2π
∑
k∈K

V ∗
mkVnkδ(ε − εk)

= 2πνK,mνK,n

γ

(ε − μK )2 + γ 2
. (22)

This is not a crucial assumption for the following but beneficial
for the numerical evaluation of the HQME [43,66].

A. Coherent charge oscillations and interaction-induced
renormalization at zero bias

We begin our discussion with the dynamics of the unbiased
systems. The effect of a nonzero bias voltage will be considered
in Sec. III B. This procedure allows us to distinguish equilib-
rium and nonequilibrium effects. It also elucidates qualitative
differences between the Born-Markov schemes, the HQME
approach and a truncation of the HQME at the first tier. Such
differences are interesting not only from a methodological
point of view but enable us to elucidate the underlying physical
mechanisms that are at work in these systems.

It turns out that the dynamics of systems SERIAL and
BRANCHED can be fully characterized by four elements
of the reduced density matrix: the population of the doubly
occupied state, the population of the single-particle levels in
dots a and b and the real part of the coherence σa,b. These
quantities are depicted in Figs. 2 and 3, where the top rows
show the population of the doubly occupied state, the second
and third rows the single-particle population of dots a and b

and the bottom rows the real part of the coherence σa,b. Figure 2
depicts the dynamics of systems SERIAL and BRANCHED
starting from the symmetric [σ00,00(0) = 1] and Fig. 3 from the
asymmetric initial state [σa,a(0) = 1], where the left columns
refer to system SERIAL, while the right ones depict the
behavior of system BRANCHED. The exact result, which
has been obtained by solving the full HQMEs, is depicted by
solid black lines. It is compared to three approximate results,
where the HQMEs are truncated at the first tier (solid red
lines) and where the standard (s-BM) and the time-dependent
Born-Markov scheme (t-BM) have been used (solid blue and
dashed turquoise lines, respectively).

We consider first the exact dynamics of model SERIAL,
starting from the unpopulated system (black lines on the left
of Fig. 2). The corresponding populations show a decay of
the initial state to a state, where the two dots are equally
occupied and host, on average, a single electron. This behavior
is typical for a double dot structure where the single-particle
levels εa/b are located below and the states associated with
double occupation (at energies εa/b + U ) above the chemical

potentials in the leads. It is dominated by resonant tunneling
processes from the electrodes onto the dots and, therefore,
occurs on time scales ∼1/� = 1/�K,mm(μK ). A very similar
behavior can be observed in the dynamics of a Kondo
impurity [65].

For junction BRANCHED (black lines on the right of
Fig. 2), the situation is more complex. Initially, (i.e., on time
scales 1/�), the population of dot a increases to values that
are close to one, while dot b remains almost unpopulated. This
is related to both the position of the energy levels (ε0  μL/R)
and the geometry of the device, where tunneling onto dot b is
only possible via dot a. These tunneling processes involve a
coherent charge transfer from dot a to dot b, which is facilitated
by the weak interdot coupling α. Therefore dot b is populated
on much longer time scales, i.e., about π�/α ≈ 100 longer
than the time scale to populate dot a. As the system approaches
the steady-state regime, the populations of the two dots evolve
to 1/2, reflecting the fact that tunneling on and off the dots
occurs with the same probability.

In addition, junction BRANCHED exhibits oscillations in
the population of the two dots on intermediate time scales,
∼1/� to ∼103/�. These oscillations reflect coherent charge
transfer processes between the two dots. [123] The period of
these oscillations is determined by the energy difference of
the eigenstates and will be discussed in more detail below [see
Eq. (25)]. Their coherent nature is underlined by a pronounced
real part of the interdot coherence σa,b (cf. the lower right plot
of Fig. 2). The origin of these oscillations is an asymmetry in
the dot population. Naturally, they become suppressed in the
steady-state regime because the populations of the two dots
become very similar. In the steady-state regime, the presence of
dot b thus reduces to an electrostatic effect (cf. our findings in
Ref. [43]). The suppression of the coherent charge oscillations
can be fitted to an exponential decay. The corresponding decay
time is given in Fig. 4 (see the zero bias value of the right plot)
and is of the order of ∼10/�.

Coherent charge oscillations are also observed in the
dynamics of junction SERIAL if the initial charge distribution
is asymmetric. This can be seen by the black lines on the
left of Fig. 3, where we depict the dynamics starting from an
initially asymmetric population of the dots [σa,a(t = 0) = 1].
The corresponding decay time is similar to the one in junction
BRANCHED, i.e., ∼10/� (see the value at zero bias in the
left plot of Fig. 4). For junction BRANCHED, the influence of
such an asymmetry is less pronounced (compare the black lines
on the right of Figs. 2 and 3), as it develops naturally from the
geometry of the device. Similar effects are observed if the two
quantum dots are coupled asymmetrically to the electrodes
(data not shown). Overall, however, we do not observe any
dependence of the steady state on the initial state, even in the
biased scenarios discussed in Sec. III B.

Further insights can be gained by comparing the exact result
with the approximate ones. For example, a comparison of the
black and the red lines elucidates the role of higher order
processes. They increase the probability for electron exchange
processes with the leads and, therefore, result in a quenching
of coherent charge oscillations and a faster build-up of the
steady state (see, for example, the dot populations shown in
the two middle panels of Fig. 3). The time scale where the
systems reach the steady state are quantified in Fig. 5. There, it
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FIG. 2. (Color online) Population of the doubly occupied state, the single-particle levels in dots a and b and the real part of the coherence
σa,b as functions of time, starting with the unpopulated system [σ00,00(t) = 1]. The left and the right columns show these functions for the
unbiased systems SERIAL and BRANCHED, respectively.

can be seen that higher-order processes reduce the time scale
to reach the steady state by almost an order of magnitude.
This may not be surprising for systems that are operated in
the nonresonant regime, that is for εa/b < μL/R < εa/b + U

where resonant processes are suppressed such that nonresonant
processes become important.

Differences between the red and the turquoise lines can also
be understood in terms of higher-order processes, considering
that the Markov approximation (without the shift of the
integration limit) represents a more restrictive expansion to
O(�). Thus a pronounced intermediate population of the
doubly occupied state appears in the red but not in the blue line
(see top left plot of Fig. 2). Thereby, the HQME result appears
to be more consistent, as t-BM gives unphysical negative
populations (e.g., of the doubly occupied state).

The real part of the coherence (see bottom panels of Figs. 2
and 3) develops on rather long time scales. This behavior
is seen in both the HQME and the BM results, where the
latter facilitate a direct access to the underlying physics. Using
BM theory, the equation of motion of the coherence involves
terms that involve the decay rates �f (ε + U ) and �(1 − f (ε)).
For the parameters considered, these rates are much smaller
than the bare hybridization �, resulting in resonant dynamics
on time scales [1 − fL/R(ε0)]−1 ≈ 300 times the inverse of the
hybridization strength 1/�. Note that a nonzero value of the
real part of the coherence signals a different population of
the eigenstates of the DQD system. Considering the tempera-
ture in the leads and the energy difference of the eigenstates,
which can be estimated by 2α [124], such a population
difference is to be expected in the steady state at zero bias.
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FIG. 3. (Color online) Population of the doubly occupied state, the single-particle levels in dots a and b and the real part of the coherence
σa,b as functions of time, starting with an electron in dot a (σa,a(t) = 1). The left and the right columns show these functions for the unbiased
systems SERIAL and BRANCHED, respectively.

Another intriguing effect emerges from the comparison of
the blue and the red/turquoise lines. This includes, for example,
a reduction of the oscillation period by a factor of ≈1/3 in
junction BRANCHED, which is visible, for example, in the
two middle plots on the right hand side of Figs. 2 and 3. These
results can be qualitatively and quantitatively explained by the
interaction-induced renormalization of energy levels, which
has been outlined first by Wunsch et al. [44] in the context
of double quantum dots and by Braun et al. for spin-valve
setups [28]. This renormalization is a combined effect of the
local electron-electron interactions U and the coupling of the
dots to the electrodes and occurs not only for structured but
also for flat conduction bands. For the systems of interest here,
these renormalizations are given by

�εa/b,L/R = φ(εa/b,μL/R) − φ(εa/b + U,μL/R), (23)

with

φ(x,μ) = �

2π
Re

[
�

(
1

2
+ i(x − μ)

2πkBT

)]
, (24)

and �(x) denotes the digamma function [125]. From the above
formula, we can directly infer the aforementioned reduction
of the oscillation period, which is given by

2π/

⎡
⎢⎣

√√√√4α2 +
(∑

K

�εa,K −
∑
K

�εb,K

)2
⎤
⎥⎦ . (25)

We find (data not shown) that this renormalization is not
present at the charge-symmetric point since φ(ε0 + U,0) =
φ(−ε0,0) = φ(ε0,0) [126]. Moreover, it does not appear in
junction SERIAL, since both levels are shifted in the same
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FIG. 4. (Color online) Decay times of the coherent charge oscillations in junction SERIAL (left plot) and junction BRANCHED (right
plot) as a function of the applied bias voltage, starting from the asymmetric initial state σa,a(t = 0) = 1 (which we used, because coherent
charge oscillations are quenched in the SERIAL configuration if the symmetric initial state is used, cf. the discussion of Figs. 2 and 3). To this
end, we fitted the oscillation amplitude in σb,b(t) to an exponential decay.

way at zero bias, i.e., �εa,L = �εb,R. At this point, it should be
noted that the interaction-induced renormalization is already
active at times ∼1/�. For later reference, we also remark that
the bias dependence of �εa/b,L/R leads to additional shifts of
the oscillation period, which are of the order of 10% for the
parameters considered in this work.

We conclude this section pointing out the different behavior
of the s-BM scheme in more detail. For the branched system,
for example, the s-BM approach gives very different results
for the time scale to reach the steady state and the decay time
of the coherent charge oscillations (cf. the right plots of Figs. 4
and 5). This is related to the fact that the s-BM scheme misses
the interaction-induced renormalizations (23). For the same
reason, the real part of the coherence that is obtained by the
s-BM scheme does not develop the pronounced values that are
obtained by the t-BM and the HQME methods (cf. the lower
right plots of Figs. 2 and 3). Moreover, at short times t  1/�,
the s-BM scheme exhibits an exponential scaling with time,
while the HQME and t-BM give a power-law scaling, ∼t2 (see,
for example, the middle panels of Fig. 2). This behavior is due
to the shift of the integration limit in Eq. (20) and has been
outlined before by Thoss et al. [52,127].

B. Interplay of interdot coherence and dot populations
due to coherent nonequilibrium dynamics

In this section, we study the dynamics of systems SERIAL
and BRANCHED in the presence of a bias voltage. We restrict
the discussion to the nonresonant transport regime and choose,
accordingly, a low value for the bias voltage (� = 0.1 V) such
that the filled and empty states remain far from the chemical
potential of either lead. At higher bias voltages, we do not
observe the complex long-time behavior we are interested in.
We characterize the nonequilibrium dynamics of the biased
systems by the same quantities as the equilibrium dynamics
of the unbiased ones. They are depicted in Figs. 6 and 7,
corresponding to an initially symmetric and asymmetric charge
configurations, respectively.

At first sight, most of the dynamics is very similar to the
one of the equilibrium case. The steady state is reached slightly
faster in the presence of a bias voltage (cf. Fig. 5). Also, the
coherent charge oscillations decay slightly faster (cf. Fig. 4).
The main reason for this behavior is that the energy levels of
the dots are closer to the chemical potential in the leads. The
respective exponential scaling, which is observed once the bias
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FIG. 5. (Color online) Time scale to reach the steady state in junction SERIAL (left plot) and junction BRANCHED (right plot) as a
function of the applied bias voltage, starting from the symmetric initial state σ00,00(t = 0) = 1 (which we used to avoid ambiguities due to
the presence of coherent charge oscillations in the SERIAL configuration). To determine this scale, we use the time where the real part of the
coherence deviates 0.5% from the steady-state value. Note that the oscillatory behavior originates from dynamical phases and is, therefore,
most pronounced when the steady state is reached on short time scales.
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FIG. 6. (Color online) Population of the doubly occupied state, the single-particle levels in dots a and b and the real part of the coherence
σa,b as functions of time, starting with the unpopulated system [σ00,00(t) = 1]. The left and the right columns show these functions for the
systems SERIAL and BRANCHED, respectively, where a bias voltage of � = 0.1 V is applied.

voltage exceeds the thermal broadening in the two electrodes,
i.e., for � > 0.05 V, is inherited from the bias dependence of
the rates �f (ε + U ) and �(1 − f (ε)) for resonant tunneling
processes. There are, however, also a number of qualitative
differences if a bias voltage is applied to systems SERIAL and
BRANCHED.

The most pronounced response to an external bias voltage
is observed in the SERIAL device. The real part of the interdot
coherence σa,b, for example, acquires a different sign and its
absolute value increases by more than order of magnitude to
≈0.2 (compare, for example, the bottom left plot of Figs. 2
and 6). Moreover, the populations of the two quantum dots
no longer evolve to the same value. The double dot structure
still carries a single electron on average, but this electron is
now more likely to be found in dot a with a difference in the

dot population that amounts to ≈75% (cf. the dot populations
shown on the left of Fig. 6). The corresponding time evolution
develops on rather long time scales, that is ∼10/�–∼100/�.
This behavior is captured by the HQME and t-BM scheme but
is missed by the s-BM approach. We can therefore relate it
to the principal value terms that are included in the HQME
and t-BM scheme but discarded in the s-BM approach. These
terms include the interaction-induced renormalization, which
we already pointed out in Sec. III A, and a renormalization
due to the band width γ [43]. Since we observe qualitatively
and quantitatively the same effects for different bandwidths γ

[where the coupling strength ν needs to be adjusted to give
the same values for �(ε0)], we attribute these effects to the
interaction-induced renormalizations �εa/b,L/R. We continue
to analyze this behavior in more detail.
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FIG. 7. (Color online) Population of the doubly occupied state, the single-particle levels in dots a and b and the real part of the coherence
σa,b as functions of time, starting with an electron in dot a (σa,a(t) = 1). The left and the right columns show these functions for the systems
SERIAL and BRANCHED, respectively, where a bias voltage of � = 0.1 V is applied.

At first glance, it may not be surprising that, for positive
bias voltages, the population of dot a is higher than the one of
dot b (and vice versa for negative bias voltages). Since the
interdot coupling α is much weaker than the coupling of the
dots to the electrodes, the tunneling electrons are expected
to get stuck at the interdot tunneling barrier. This can be
seen in Figs. 8(a) and 9(a), where the steady-state population
difference in system SERIAL is depicted as a function of the
applied bias voltage and the level energy ε0, respectively. At
the onset of the resonant transport regime, which corresponds
to � � 2(ε0 − kBT ) in Fig. 8(a) or to ε0 � −kBT in Fig. 9(a),
the population difference is �0.8. Here, the HQME and BM
schemes yield very similar results.

The situation is different at lower bias voltages and/or closer
to the charge-symmetric point. Due to the Pauli principle, the

tunneling of an electron from one of the dots into the electrodes
is suppressed by Fermi factors (1 − fL/R(ε0)) = 3 × 10−3,
while the coherent transfer of electrons between the dots takes
place on much shorter time scales 1/α  [�(1 − fL/R(ε0))]−1.
Thus an electron can be expected to tunnel many times between
dots a and b before it enters one of the electrodes. While this
suggests a population of the dots that is very similar, the HQME
and t-BM data exhibit a pronounced bias-induced population
difference, which can be orders of magnitude larger than the
one obtained from the s-BM scheme [cf. Figs. 8(a) and 9(a)].

As we already pointed out, the origin of this behavior
is the interaction-induced renormalizations �εa/b,L/R. To
demonstrate this proposition, we vary the dot levels such
that the effect of the �εa/b,L/R is eventually canceled. This is
shown in Fig. 10, where the steady-state population difference
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FIG. 8. (Color online) Difference in the population of the dots a

and b and the real part of the coherence σa,b as a function of the bias
voltage � applied to junction SERIAL. Note that the bias voltage is
to be compared with the width of the transport resonances, which, in
the present context, is given predominantly by the temperature scale,
kBT ≈ 25 meV.

is depicted as a function of the energy level difference δε

(which is subtracted from εa and added to εb). We see that the
population difference becomes indeed minimal at values of
δε that correspond to a cancellation of the interaction-induced
renormalizations �εa/b,L/R.

At this point, we like to highlight the nontrivial dynamics
of this renormalization effect. To this end, we recall that the
s-BM and t-BM scheme differ by principal value terms. For
our systems of interest, these terms enter only the equation of
motion of the coherence σa,b. The population difference does
not occur, if the coherence, in particular the real part of the
coherence, is neglected. This shows that the principal value
terms encode not only static effects like a renormalization of
energy levels but also relaxation mechanisms that are mediated
by the coherence. In addition, we conclude that the effect is
stable with respect to temperature as long as its contribution
to the real part of the coherence σa,b (cf. Sec. III A) is smaller
than the one due to the interaction-induced renormalizations
�εa/b,L/R. This is certainly the case if the energy separation of
the eigenstates is much smaller than the thermal broadening.

These findings may also be interesting for quantum infor-
mation processing [5,9,33–35], as the coherence σa,b between
the dots can become sizeable (≈0.2). Moreover, its value and
sign can be controlled. This is elucidated in more detail by
Figs. 8(b), 9(b), and 10(b), where the real part of the coherence
is shown as a function of the applied voltage, energy level
position ε0 and energy level difference δε, respectively. Once
the bias voltage exceeds the thermal broadening, the real part
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FIG. 9. (Color online) Difference in the population of the dots
a and b and the corresponding real part of the coherence σa,b as a
function of the energy level position ε0 in junction SERIAL at bias
voltage � = 0.1 V. The scale of the level position ε0 is, similar to the
bias voltage, determined by the temperature kBT ≈ 25 meV.

of the coherence acquires its maximal value before it decreases
again when the system approaches the resonant transport
regime. Its sign may be flipped by tuning the energy levels
across the point where the population difference becomes
minimal (and, finally, reaching the same population difference
again). It is interesting to note at this point that the imaginary
part of the coherence is given by the current, Im[σa,b] ∼ I

(which we analyzed in detail in Ref. [43]). Thus, in junction
SERIAL, the real and the imaginary part of the coherence may
be disentangled.

In contrast to junction SERIAL, system BRANCHED is
much less affected by an external bias voltage. As can be
seen in the right columns of Figs. 6 and 7, the charge transfer
oscillations between dots a and b decay on slightly shorter
time scales and the corresponding amplitude becomes smaller.
These findings can be understood as an increase of the effec-
tive temperature of the device. This picture is corroborated
by the data shown in Fig. 4, which shows the decay times
of the coherent charge oscillations in junction SERIAL and
BRANCHED as a function of the applied bias voltage,
and Fig. 11, where the corresponding amplitudes are shown
(starting from an initially asymmetric charge distribution).
The data show a clear exponential decrease of the decay
times and the oscillation amplitude with an increasing bias
voltage. Thereby, higher-order processes seem to stabilize the
coherent charge oscillations but, in fact, only increase the
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FIG. 10. (Color online) Difference in the population of the dots
a and b and the corresponding real part of the coherence σa,b as a
function of the energy level difference δε in junction SERIAL at bias
voltage � = 0.1 V. The width of the dip structure is determined by
the interdot coupling strength α = 0.5 meV.

level broadening, that is the baseline of the dots effective
temperature.

The exponential scaling of the amplitudes can be un-
derstood in more detail. To this end, we recall that the
coherent charge oscillations require a different population
of the two quantum dots. Such a population difference can
emerge due to an initial asymmetry in the dots population
or due to the geometry of the device (as, e.g., in junction
BRANCHED). Thus, the difference in the dots population has
to be present on time scales comparable to the period of the
coherent charge oscillations. Initially, however, the population

of the dots is governed by fast resonant tunneling processes
between the electrodes and the dots. For junction SERIAL
and the asymmetric initial condition σa,a(0) = 1, the dominant
decay channel is via hopping processes from the right lead
onto dot b. The corresponding rate involves the Fermi fun-
tion fR(ε0 + U ) ≈ exp[−(ε0 + U )/(kBT )]exp[−�/(2kBT )].
For junction BRANCHED [and the asymmetric initial condi-
tion σa,a(0) = 1], the dominant decay channel is via hopping
processes from dot a to the right lead, which occurs with
a probability ∼exp[−ε0/(kBT )]exp[−�/(2kBT )]. The decay
of the (normalized) amplitude can thus be estimated by
exp[−�/(2kBT )], if only thermal broadening is taken into
account (cf. the red, blue, and turquoise lines in Fig. 11), or by
exp(−�/(2kBT + �L + �R)), if higher-order processes are ac-
counted for. This reasoning captures the scaling behavior that
we observe in junction BRANCHED almost quantitatively. In
junction SERIAL, interaction-induced renormalization effects
lead to a slightly more complex behavior. This is evident from
the different scaling behavior that is obtained from the s-BM
scheme (see the left plot of Fig. 11). Qualitatively, however, the
behavior is very similar to the one of junction BRANCHED.

IV. CONCLUSION

Our results demonstrate the influence of an interaction-
induced renormalization of energy levels on the coherent
dynamics of a double quantum dot structure. This includes
the formation of the steady-state coherence and populations
and, on intermediate time scales, the period of coherent charge
oscillations between the dots. In particular, the two quantum
dots exhibit a pronounced population difference, which may be
accessed in experiment noninvasively (e.g., via point contacts),
and a sizeable coherence, which is maximal in the nonresonant
transport regime [cf. Fig. 8(b)].

To demonstrate these effects, we have focused on the regime
where the structure holds a single electron on average. As a
result, the build-up of the steady state is rather slow, allowing
for long-lived intermediate dynamics which is governed
by coherent processes. In this regime, transport processes
strongly influence the charge distribution but coherent charge
oscillations try to level off any asymmetry in the charge
distribution. Due to this competition between transport and
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(right plot) as a function of the applied bias voltage, starting from the asymmetric initial state σa,a(t = 0) = 1. To this end, a Fourier analysis
of σa,a(t) has been employed.
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coherent dynamics, the population of the dots is very sus-
ceptible to small changes of the energy levels, in particular,
to interaction-induced renormalization effects. Thus a way
to detect interaction-induced renormalization and the corre-
sponding coherent dynamics is to exploit its bias dependence.
If, for example, the energy levels of a serial quantum dot system
are aligned at zero bias, a pronounced population difference
emerges at nonzero bias voltages, even though resonant
transport is still suppressed (i.e., � < 2Min[εa/b,εa/b + U ],
cf. Fig. 8(a)). In the same range of bias voltages, the coherence
between the quantum dots is most pronounced and stabilized
by the current that is flowing through the quantum dots. Its
sign may be flipped by tuning the energy levels over a minimal
population difference between the dots [cf. Fig. 10(b)].

Our analysis is based on numerically exact results,
which are obtained by the hierarchical master equation
technique [43,66,69–71]. We also employ low-order approx-
imations to the HQME scheme and Born-Markov methods
[86–91]. The comparison of these results allowed us to reveal
the physical mechanisms at work. They also demonstrate the
need for numerically exact results, because the approximate
results are spoiled by small (nevertheless unphysical) negative
populations (cf., for example, the top left panel of Figs. 2
and 6) and rather large errors in predicting the relevant time
scales (see Figs. 4 and 5). Moreover, we demonstrated that the
hierarchical master equation technique is capable of describing
the time evolution of an interacting quantum system on very
long time scales. This includes both the times to reach the
steady state (∼10/�–103/�, cf. Fig. 5) or the decay times
of the coherent charge oscillations (∼10/�, cf. Fig. 4). This
characteristics of the method is closely related to its time-local
formulation [cf. Eq. (19)].
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APPENDIX: PARAMETRIZATION OF THE
CORRELATION FUNCTIONS Cs

K,mn

To represent the correlation functions

Cs
K,mn(t) =

∫ ∞

−∞

dω

2π
esiωt�s

K,mn(ω)f s
K (ω), (A1)

TABLE II. Number of auxiliary operators for an increasing
number of Pade poles that are included in our calculations. Due
to our specific truncation scheme (see Appendix of Ref. [43]), which
allows a systematic reduction of the number of auxiliary operators
σ

(κ)
j1 ...jκ

(t), the numerical effort levels off with an increasing number
of Pade poles.

Number of Pade poles: 40 60 100 200 400 800

Number of ADOs: 7653 11019 12863 14551 15711 15822
max. tier level: 4 4 4 4 4 4

by a set of exponentials, we first express the distribution
functions f s

K (ω) by a sum over poles:

f s
K (ω) = 1

2
− s

1

4

∑
p

Rp

x + iEp

. (A2)

To this end, we employ the Pade approximation [107,108].
Thus, according to Ref. [106], the pole positions Ep are
identical with the eigenvalues of a tridiagonal matrix with
the coefficients

Aij = δi,j+1
1

2
√

(2i + 1)(2i − 1)

+ δi,j−1
1

2
√

(2j + 1)(2j − 1)
. (A3)

The weights Rp are given by

Rp = E2
p|〈p|1〉|2, (A4)

where 〈p|1〉 denotes the overlap of the pth eigenvector |p〉
with the vector |1〉 = (1,0,0,0, . . . )T. The next step is to
represent the level-width functions �s

K,mn(ω) by a similar
expression. This can be done, for example, using a Meir-
Tannor parametrization scheme [66,70,105], but is obsolete for
the Lorentzian conduction bands that we employ in this work
[see Eq. (22)]. Finally, the amplitudes ηs

K,mn,p and frequencies
ωs

K,p are obtained straightforwardly via contour integration.
Throughout this work, we have used 100 Pade poles in

order to get converged results. Thereby, we reduce the number
of auxiliary operators σ

(κ)
j1...jκ

(t) to a practical level using the
systematic truncation scheme that we developed in Ref. [43].
Thus the actual number of Pade poles is less decisive for the
numerical effort, as we briefly exemplify in Table II. Note
that it is beneficial to use a low number of poles, because the
frequencies ωs

K,p increase with the pole index p requiring a
higher resolution of the time axis.
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Rev. B 78, 235110 (2008).

[77] F. B. Anders and A. Schiller, Phys. Rev. Lett. 95, 196801
(2005).

[78] F. B. Anders, Phys. Rev. Lett. 101, 066804 (2008).
[79] T. Korb, F. Reininghaus, H. Schoeller, and J. König, Phys. Rev.

B 76, 165316 (2007).
[80] P. Schmitteckert, Phys. Rev. B 70, 121302 (2004).
[81] J. N. Pedersen, D. Bohr, A. Wacker, T. Novotný, P.
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