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Hot-electron noise properties of graphene-like systems
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We study the hot-electron noise properties of two-dimensional materials with a graphene-like energy
dispersion under a strong applied electric field which drives the system far from equilibrium. Calculations
are based on a Boltzmann–Green-function method within a two-relaxation-time approximation that allows
for both inelastic scattering coming from electron-phonon scattering and elastic scattering coming from
electron-impurity scattering. The steady-state distribution function is used to calculate the average current and
the low-frequency spectral density for current fluctuations (noise) in the nonequilibrium steady-state. We find
that as the electric field strength increases, the noise decreases from its equilibrium thermal noise value. This is
in contrast with semiconductors with a quadratic energy–wave-vector dispersion where the noise increases in a
constant-relaxation-time model with the square of the electric field due to the Joule heating of the electron gas
by the electric field. We have also studied these properties for an electronic dispersion with a gap introduced into
the Dirac spectrum. The inclusion of the gap in the electronic dispersion causes an initial increase in the noise
as a function of external electric field due to the heating of the electron gas for large gap values. At high electric
fields, the noise decreases with increasing electric field as in the case of gapless dispersion at higher fields.
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I. INTRODUCTION

Graphene is a promising candidate for engineering
nanoscale devices because of its novel electronic properties
[1,2]. The band structure of graphene is linear and gapless near
the Dirac K and K ′ points and this leads to unusual transport
properties when large external electric and magnetic fields are
applied [3–9]. Graphene has been used to fabricate nanoscale
devices like p-n junctions [10] and field effect transistors
[11,12]. There have also been attempts to introduce a small
gap in its otherwise gapless dispersion by using a hexagonal
boron nitride substrate [13] or by using a hydrogenated sheet of
graphene [14] for device applications. These devices operate
at high electric fields and room temperature.

Current fluctuations or noise are present in all electrical
devices with various origins. For instance, noise due to
equilibrium thermal fluctuations is called Johnson-Nyquist
noise, while noise due to the discreteness of electrical charge
is referred to as shot noise. Johnson-Nyquist noise is white
(frequency independent) for a wide range of frequencies below
the inverse carrier scattering time and can be attributed to
velocity/number fluctuations of carriers (electrons and holes).
In equilibrium, the Johnson-Nyquist noise is related to the
low-field mobility via the fluctuation-dissipation theorem (also
known as the Kubo formula or Einstein relationship between
mobility and diffusion). Because of this, equilibrium noise
measurements do not provide any additional information about
the system that is not already included in the low-field mobility
measurements. Out of equilibrium, however, the noise can
change and provide additional information about the system.
Two types of noise that are present out of equilibrium are
1/f noise [15] and hot-electron noise [16]. The ubiquitous
1/f noise has a spectral density SI (f ) ∼ Ī 2/f where Ī is
the average current flowing through the sample. [Note that
1/f noise need not be a true nonequilibrium phenomenon and
that in some systems it can be seen in equilibrium (Ī = 0)
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in higher-order, four-point correlation functions [17–19]].
Hot-electron noise, on the other hand, is truly a nonequilibrium
phenomenon. It has a white (frequency-independent) power
spectrum for frequencies below the inverse scattering time.
Since most electrical measurements are done at low frequency,
the hot-electron noise spectrum is essentially a low-frequency
measurement. In a typical hot-electron noise experiment, one
will measure the dependence of the flat, low-frequency white
part of the noise spectrum (above the 1/f noise) as a function
of applied external field and determine how it varies from its
equilibrium, Johnson-Nyquist value. Hot-electron effects and
current-induced heating of carriers and their energy relaxation
in graphene has been studied recently [20]. Calculations and
experimental measurements for the shot noise in graphene
indicate sub-Poissonian behavior with a Fano factor of ∼1/3
at the charge neutrality point and a slight reduction in doped
samples [21–23].

In this paper, we focus on the hot-electron noise in
macroscopic graphene samples. We show that graphene
and graphene-like systems not only have novel electronic
properties, but they also have unusual noise properties. The
hot-electron noise decreases strongly with increasing electric
field. This results from the unusual linear energy–wave-vector
dispersion in graphene, which means that fluctuations in the �k
states in graphene do not lead to fluctuations in the magnitude
of the velocity |∂ε/∂ �k|. Thus not only can one make unusual
nanoscale devices from graphene, but we find that these
devices should have excellent noise properties. Section II
of this paper describes our formalism for calculating the
hot-electron noise spectrum in graphene. Results are presented
in Sec. III and our conclusions are given in Sec. IV.

II. CALCULATION OF NOISE SPECTRAL DENSITY
USING THE BOLTZMANN-GREEN-FUNCTION METHOD

The Wiener-Khintchine theorem relates the noise spectral
density to the Fourier transform of the current-current corre-
lation function. The current-current correlation function for
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stationary processes is given by

�I
ij (t) = 〈δIi(t)δIj (0)〉, (1)

where i,j correspond to the spatial coordinates: i,j = (x,y).
For uncorrelated carriers (i.e., neglecting carrier-carrier

interactions), the current-fluctuation correlation function is
proportional to the velocity-velocity correlation function for a
single particle, which is given by

�v
ij (t) = 〈δvi(t)δvj (0)〉. (2)

Even in a single-particle picture, fluctuations in the carrier
velocity can occur due to scattering with impurities and
phonons. Since transport at high temperatures is usually
calculated based on the Boltzmann transport equation, we will
use a method to calculate the velocity fluctuations based on
finding the Green function for the time-dependent Boltzmann
equation [24].

Van Vliet et al. have shown that for the diffusion equation,
this type of Green function approach is equivalent to adding
Langevin noise terms to the diffusion equation [25]. In an
analogous manner, the Boltzmann–Green-function approach
to calculating the velocity fluctuations is equivalent to the
Boltzmann-Langevin approach to calculating the fluctuations
[26,27].

This Boltzmann–Green-function approach to the calcula-
tion of hot-electron noise has been applied to a variety of
systems. These include crossover from thermal-like noise
to shot noise in small-length wires [28]; hot-electron inter-
valley noise in multivalley semiconductors such as GaAs
[29]; quantum-confined field effect transistors [30]; metallic
systems [31,32]; and one-dimensional ballistic wires [33].

To get a feeling of how the noise varies with electric field in
a system with a standard parabolic ε vs k energy dispersion, we
make a simple approximation. The low-frequency ω ≈ 0 noise
can be thought of as the area under the autocorrelation function.
In the simplest picture, the height of the autocorrelation
function is proportional to 〈(v − v̄)2〉 while the width is
proportional to τ , the momentum relaxation time. Hence
the noise should scale with external field as 〈v2τ 〉, i.e., the
nonequilibrium diffusion effects. Heating of the electron gas
in a parabolic system leads to 〈v2〉 varying as E2. Scattering
times, however, can decrease with increasing electric field.
The interplay between these effects can cause the noise to
increase or decrease with electric field. If the scattering time is
approximately constant, then the dominant effect is the heating
of the electron gas by the external electric field, which causes
an increase in the low-frequency hot-electron noise with E2.
This is in fact observed in GaAs (for small enough electric
fields so that intervalley transfer into the satellite L valley does
not occur). Experimental measurements observed an initial
quadratic electric field dependence [34,35].

The average in the autocorrelation function in Eq. (2) is
taken with respect to a joint probability distribution that the
charge carrier has momentum �k at time t and momentum �k0

at time t = 0 and is denoted by P (�k,t ∩ �k0,t = 0). This joint
probability distribution can be rewritten as the product of the
conditional probability distribution R(�k,t | �k0) and the steady-
state distribution function f ( �k0). The velocity autocorrelation

function can be simplified further [36,37]:

�v
ij (t) =

∫∫∫∫
[δvi(�k)][δvj ( �k0)]R(�k,t | �k0)f ( �k0) d �k0d�k

=
∫∫∫∫

vi(�k)[vj ( �k0) − 〈vj 〉]R(�k,t | �k0)f ( �k0) d �k0d�k

=
∫∫∫∫

vi(�k)vj ( �k0)R(�k,t | �k0)f ( �k0) d �k0d�k − 〈v〉2

=
∫∫

vi(�k)gj (�k,t) d�k, (3)

where

gj (�k,t) =
∫∫

vj ( �k0)[R(�k,t | �k0) − f (�k)]f ( �k0) d �k0

〈vj 〉 =
∫∫

vj (�k)f (�k) d�k

and the velocity, as a function of wave-vector �k can be

determined from the electronic band structure vi(�k) = 1
�

∂ε(�k)
∂ki

.
Therefore to calculate the velocity autocorrelation function,
we need to evaluate gj (�k,t).

The noise spectral density can be evaluated by taking the
time Fourier transform of the autocorrelation function. The
noise spectral density is given by

Sij (ω) = 4Ne2

L2
Re

[∫ ∞

0
e−iωt�v

ij (t)dt

]

= 4Ne2

L2
Re

[∫∫
vi(�k)gj (�k,ω) d�k

]
, (4)

where

gj (�k,ω) =
∫ ∞

0
e−iωtgj (�k,t) dt,

N is the total number of charge carriers, e is the charge of the
carrier, and L is the length of the sample.

The Boltzmann–Green-function method is a three-step
process to determine the velocity autocorrelation function. For
a uniform system (no spatial dependence) these steps are as
follows:

(1) Determine the steady-state solution to the Boltzmann
equation f (�k).

(2) Determine the response function R(�k,t | �k0,t0) [or the
effective distribution g(�k,t) with the initial condition g(�k,t =
0) = [v(�k) − 〈v〉]f (�k)] which is the solution to the full time-
dependent Boltzmann equation with the initial condition
R(�k,t = t0| �k0,t0) = δ(�k − �k0). In the single-particle picture,
this is the conditional probability for finding a particle at time
t with momentum �k given that it started out with momentum
�k0 at time t0.

(3) Calculate the velocity autocorrelation function �v(t)
from the effective distribution function g(�k,t). Taking the
Fourier cosine transform with respect to time yields the
power spectrum. Since most electrical noise measurements
are made at frequencies much lower than the inverse carrier
scattering times, we effectively measure the ω → 0 limit of
the power spectrum as a function of the applied external field
SI (ω = 0,E). Again, it is understood that this corresponds to
the flat, white-noise portion of the power spectrum above any
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FIG. 1. (Color online) The diagram shows the effect of the two
distinct scattering mechanisms. Inelastic scattering allows for change
in energy by scattering between states of different energy while elastic
scattering corresponds to scattering between different momentum
states with the same energy.

1/f noise contribution. 1/f noise is a different type of noise
and is not the focus of this paper.

The calculation of the spectral density requires the steady-
state distribution function f ( �k0). For our model, the steady-
state distribution function is evaluated by solving the Boltz-
mann equation within the relaxation-time approximation. We
include two different relaxation times in our model. The
collision integral has two terms that include the effects of
two distinct types of scattering mechanisms [38]. The first
term corresponds to inelastic scattering where the collisions
try to drive the steady-state distribution function back to
the equilibrium distribution function feq(�k). This type of
scattering represents electron-phonon scattering since phonons
take energy (and also momentum) out of the electron system.
We note that the equilibrium distribution is a Fermi-Dirac
distribution

feq(�k) = [1 + eβ(ε(�k)−μ)]−1 where β = 1

kBT
. (5)

The second term corresponds to elastic scattering where the
collisions try to drive the steady-state distribution to its angular
average by changing the momentum on scattering but not the
energy (see Fig. 1). Elastic scattering is typically electron-
impurity scattering. Elastic scattering cannot take energy out
of the electron system, but can take momentum out of the
system.

The collision integral is given by [39]

Icollision = −f (�k) − feq(�k)

τin
− f (�k) − 〈f (�k)〉θ

τel
, (6)

where f (�k) is the steady-state distribution function, feq(�k) is
the equilibrium distribution function, 〈f (�k)〉θ is the angular
average of the steady-state distribution function, τin is the
inelastic scattering time, and τel is the elastic scattering time.
We note that we have omitted electron-electron scattering from
our model. Electron-electron scattering typically thermalizes
the distribution to one with an effective electron temperature

(i.e., the hot-electron temperature) which is greater than that of
the lattice. In electron-electron scattering, the total energy of
both electrons is conserved in the scattering process as well as
the sum of the wave vectors (neglecting umklapp processes).
Thus, in a system with a parabolic energy–wave-vector
dispersion, electron-electron scattering cannot degrade the
total current (momentum) and does not contribute substantially
to the noise. However, in systems like graphene where the
energy–wave-vector dispersion is linear, momentum and wave
vector are different and as a result, electron-electron scattering
can take momentum out of the system. We note that a recent
Monte Carlo study indicates that in monolayer graphene there
is very little effect due to electron-electron scattering on
transport propeties at high carrier densities, but that there can
be an effect for small carrier densities [40]. They find that the
inclusion of electron-electron collisions leads to a reduction
of the total overall current at low densities (but not at high
densities). In our model, we consider the generic effects of any
scattering mechanism that can lead to energy change (inelastic
scattering) as well as those mechanisms which conserve energy
but change the momentum (direction) of the carriers.

Assuming spatial homogeneity and under the application
of an external electric field �E = −Ex̂ in the x direction, the
Boltzmann equation for the steady-state distribution function
is given by

eE

�

∂f (�k)

∂kx

= −f (�k) − feq(�k)

τin
− f (�k) − 〈f (�k)〉θ

τel
, (7)

where the electron charge is −e (the force �F = −e �E = eEx̂).
To solve the above equation, we use the two-dimensional (2D)
Fourier transform defined by

F (�r) = 1

2π

∫∫
e−i�k·�rf (�k) d�k,

(8)
f (�k) = 1

2π

∫∫
ei�k·�rF (�r) d�r.

Here �r = (x,y) is the Fourier-space conjugate to the momen-
tum. In Fourier space the Eq. (7) can be rewritten as

ieEx

�
F (�r) = −F (�r) − Feq(�r)

τin
− F (�r) − 〈F (�r)〉θ

τel
. (9)

Defining τ−1 = τ−1
in + τ−1

el and pD = eEτ/�, the equation
becomes

F (�r) = 1

(1 + ipDx)

[
τ

τin
Feq(�r) + τ

τel
〈F (�r)〉θ

]
. (10)

Taking the angular average of both sides and solving for
〈F (�r)〉θ , we get

〈F (�r)〉θ = τ

τin

Feq(�r)√
1 + p2

Dr2 − τ
τel

. (11)

Substituting the angular average back in Eq. (10), we get

F (�r) =
τFeq(�r)

√
1 + p2

Dr2

τin(1 + ipDx)
[√

1 + p2
Dr2 − τ

τel

] . (12)
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FIG. 2. (Color online) Comparison between contour plots for the
steady-state distribution function f (�k) on varying the scattering-rate
ratio R and field E for a fixed electron density n = 1011 cm−2 at
T = 300 K. (a) E = 0 kV/cm, R = 0, (b) E = 1 kV/cm, R = 0,
(c) E = 10 kV/cm, R = 0, (d) E = 0 kV/cm, R = 5, (e) E =
1 kV/cm, R = 5, and (f) E = 10 kV/cm, R = 5, for Dirac-like
dispersion. The plots indicate that the presence of a strong elastic
scattering mechanism takes momentum from the field direction and
transfers it over the constant-energy surface. Note: The color-bar
scales are different for different fields.

Thus given any equilibrium distribution, we can determine
the steady-state distribution in the presence of an electric field,

f (�k) = 1

(2π )τin

∫∫
d�r ei�k·�r τFeq(�r)

(1 + ipDx)

⎡
⎣

√
1 + p2

Dr2

√
1 + p2

Dr2 − τ
τel

⎤
⎦ .

We define the variable R = τin/τel as the ratio of the elastic to
the inelastic scattering rate. Using the equilibrium distribution
function of the form in Eq. (5) for Dirac-like dispersion, the
steady-state distribution is evaluated for various combinations
of the ratio of the elastic scattering rate to the inelastic
scattering rate R and electric field E (see Fig. 2). The effect
of the electric field is to force the carriers to drift strongly
along the field direction as seen in Figs. 2(a)–2(c). However,
upon the introduction of the elastic scattering mechanism, the
elastic scattering tries to make the distribution symmetric in
the kx-ky plane and hence the spread of the distribution in
the field direction is reduced [see Figs. 2(d)–2(f)]. To get a
better understanding of these features, one can look at the
steady-state distribution function plotted as a function of kx

for a fixed ky = 0 for different field strengths and scattering
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FIG. 3. (Color online) Steady-state distribution vs kx at fixed
ky = 0 for different electric field strengths at T = 300 K. For number
density n = 1011 cm−2. (a) Scattering ratio R = 0, meaning the pres-
ence of only inelastic scattering; (b) scattering ratio R = 5, meaning
the presence of strong elastic scattering. For comparison purposes the
case of a higher carrier density n = 1012 cm−2 is considered. (c) and
(d) show the equilibrium Fermi-Dirac distribution and the effects of
scattering-rate ratio R on the steady-state distribution.

ratios (see Fig. 3). In Fig. 3(a), with no elastic scattering, it is
clearly seen that the normalized distribution function drifts in
the direction of the electric field with increasing field strength.
However, on inclusion of the elastic scattering term, the elastic
scattering reduces the effect of the field as seen in Fig. 3(b).
Note that Fig. 3 clearly shows that the equilibrium distribution
is not Gaussian.

Similarly, the calculation for the steady-state distribu-
tion can be made for a gapped Dirac spectrum ε(�k) =√

�2/4 + (�vf k)2 [see Figs. 4(a)–4(f)] and similar effects of
the field and scattering ratio are seen. We note that the typical
energies where deviations from linear Dirac dispersion come
about is ∼2 eV, which corresponds to a wave-vector magnitude
of about 30 × 108 m−1. As seen from Fig. 3, even for high
field strengths of ∼10 kV/cm the distribution is still mainly
restricted to lower energies and thus we do not consider the
full dispersion for our calculations.

The next step in determining the noise spectrum is
to solve for the conditional probability R(�k,t | �k0) defined
as the probability to find a carrier with momentum �k at
time t given that it had momentum �k0 at time t = 0.
Thus the initial condition for the conditional probability is
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FIG. 4. (Color online) Comparison between contour plots for the
steady-state distribution function f (�k) on varying the scattering-rate
ratio R and field E for a fixed electron density n = 1011 cm−2 at
T = 300 K. (a) E = 0 kV/cm, R = 0, (b) E = 1 kV/cm, R = 0,
(c) E = 10 kV/cm, R = 0, (d) E = 0 kV/cm, R = 5, (e) E =
1 kV/cm, R = 5, and (f) E = 10 kV/cm, R = 5, for gapped Dirac-
like dispersion (� = 60 meV). The plots indicate that the presence
of a strong elastic scattering mechanism takes momentum from the
field direction and transfers it over the constant-energy sufrace. Note:
The color-bar scales are different for different fields.

R(�k,t = 0| �k0) = δ(�k − �k0). The motion of the carrier within
the semiclassical framework is still governed by the Boltzmann
equation. Thus one can write an equation obeyed by the
conditional probability in the presence of an electric field and
the two scattering mechanisms.

dR

dt
= ∂R

∂t
+ eE

�

∂R

∂kx

= −R − feq

τin
− R − 〈R〉θ

τel
. (13)

Defining

ξ (�k,t ; �k0) = R(�k,t | �k0) − f (�k),

and subtracting Eq. (7) from Eq. (13), we get

∂ξ

∂t
+ eE

�

∂ξ

∂kx

= − ξ

τin
− ξ − 〈ξ 〉θ

τel
. (14)

Multiplying the above equation by vj ( �k0)f ( �k0) and integrating
over �k0:

∂gj (�k,t)

∂t
+ eE

�

∂gj (�k,t)

∂kx

= −gj (�k,t)

τin
− gj (�k,t) − 〈g(�k,t)〉θ

τel
,

(15)

where g is defined in Eq. (3) and satisfies the initial condition

gj (�k,t = 0) = [vj (�k) − 〈vj 〉]f (�k). (16)

Taking the Fourier transform in time of Eq. (15),

iωgj (�k,ω) + eE

�

∂gj (�k,ω)

∂kx

= [vj (�k) − 〈vj 〉]f (�k) − gj (�k,ω)

τin
− gj (�k,ω) − 〈gj (�k,ω)〉θ

τel
.

(17)

To solve the above equation, we again use the 2D Fourier
transforms,

Gj (�r,ω) = 1

2π

∫∫
e−i�k·�rgj (�k,ω)d�k,

(18)
gj (�k,ω) = 1

2π

∫∫
ei�k·�rGj (�r,ω) d�r.

Equation (17) in Fourier space becomes

iωGj (�r,ω) + ieEx

�
Gj (�r,ω)

= hj (�r) − Gj (�r,ω)

τin
− Gj (�r,ω) − 〈Gj (�r,ω)〉θ

τel
, (19)

where hj (�r) = 1
2π

∫∫
e−i�k·�r [vj (�k) − 〈vj 〉]f (�k) d�k.

To study the low-frequency noise, we set ω = 0, and then
Eq. (19) is solved for Gj (�r,ω = 0):

Gj (�r,ω = 0) = 1

(1 + ipDx)

[
τhj (�r) + τ

τel
〈Gj (�r,ω = 0)〉θ

]
.

(20)

Taking the angular average on both sides, we get

〈Gj (�r,ω = 0)〉θ =
τ

√
1 + p2

Dr2

√
1 + p2

Dr2 − τ
τel

〈
hj (�r)

1 + ipDx

〉
θ

. (21)

Thus the final expression for Gj (�r,ω = 0) is

Gj (�r,ω = 0)

= τhj (�r)

1 + ipDx
+

(τ 2/τel)
√

1 + p2
Dr2

√
1 + p2

Dr2 − τ
τel

〈
hj (�r)

1 + ipDx

〉
θ

.

The function gj (�k,ω = 0) can be obtained by taking the inverse
Fourier transform of the above function Gj (�r,ω = 0):

gj (�k,ω = 0) = gI
j + gII

j ,

gI
j = 1

2π

∫∫
ei�k·�r τhj (�r)

1 + ipDx
d�r,

gII
j =

∫
r

(τ 2/τel)Jo(kr)

1 − (τ/τel)√
1+p2

Dr2

〈
hj (�r)

1 + ipDx

〉
θ

dr,

where the integrand in gII
j has the zeroth-order Bessel function

Jo which is a function of the magnitude of the wave-vector k
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FIG. 5. (Color online) (a) Average x component of velocity,
and (b) zero-frequency noise versus electric field for a Dirac-like
dispersion ε(�k) = �vf k on varying the value of R (the ratio of elastic
scattering rate to inelastic scattering rate) where n = 1011 cm−2

and T = 300 K. The plots for the case of a higher carrier density
n = 1012 cm−2 look extremely similar. Note: So = 4Ne2v2

f τin/L
2.

and the magnitude of the Fourier-space coordinate r . Thus the
low-frequency noise is

Sij (ω = 0) = 4Ne2

L2
Re

[ ∫∫
vi(�k)

[
gI

j + gII
j

]
d�k

]
. (22)

Now since vi(�k) is odd in the variable ki (if E is applied in the
ith direction) and gII

j is even in ki , the integral of vi(�k)gII
j (�k)

over all �k is zero. Thus for evaluating the low-frequency noise,
we simply need to evaluate the first term, which is given by

Sij (ω = 0) = 4Ne2

L2
Re

[ ∫∫
vi(�k)gI

j (�k,ω = 0) d�k
]
, (23)

where

gI
j (�k,ω = 0) = 1

2π

∫∫
ei�k·�r τhj (�r)

1 + ipDx
d�r.

We note that because we have used a relaxation-time approxi-
mation, we have an analytical solution to the problem (in terms
of integrals which are evaluated numerically).

III. RESULTS AND DISCUSSION

The results of the noise calculation for a Dirac-like dis-
persion ε(�k) = �vf k (vf is the Fermi velocity) are calculated
and shown in Fig. 5 for n = 1011 cm−2 at room temperature.

FIG. 6. (Color online) Toy diagram to show the occupancy of
states in the Dirac cone under the effect of electric field and
scattering-rate ratio. (a) E = 0 kV/cm where the distribution is the
equilibrium distribution function. (b) E = 10 kV/cm and R = 0,
meaning a moderate field and just inelastic scattering, and the
distribution drifts in the direction of the field, occupying large-kx

states. (c) E = 10 kV/cm and R = 5, meaning a moderate field and
the presence of large elastic scattering along with inelastic scattering,
such that the distribution drifts in the direction of the field; however,
the elastic scattering reduces the spread in the field direction.

The average of the x component of velocity is evaluated as
a function of electric field for various ratios of the elastic to
inelastic scattering rates [see Fig. 5(a)]. As the field increases,
the distribution drifts in the direction of the field (see Fig. 6)
occupying states with large vx and thus the average velocity
increases, reaching the saturation value vf for high field
strengths.

However, the increase of the ratio of scattering rates reduces
the spread of the steady-state distribution function in the field
direction by scattering on to the constant-energy states (see
Fig. 6); thus it takes even higher fields to reach the saturation
value. The low-frequency spectral density is also plotted as a
function of field strength for varying scattering-rate ratio R

[see Fig. 5(b)]. At low field strengths, the noise is constant
as a function of E in agreement with the Johnson-Nyquist
noise value. Increase in R reduces the low-field noise. Low
field values correspond to the linear response regime where
the noise spectrum is proportional to the conductivity σ (or
inversely proportional to the resistance R) given by the current-
current correlation

SI = 4kBT

R
∼ 4kBT σ. (24)

The conductivity is proportional to the mobility, which is
proportional to the inverse scattering rate τ = τin/(1 + R).
Thus the increase in R implies the presence of elastic scattering
reduces the low-field mobility as obtained by the Monte
Carlo simulation results [4]. However, at high field strengths,
the noise for R = 0, i.e., with only inelastic scattering,
decreases, but for finite R, i.e., the presence of both scattering
mechanisms, the noise decreases at a slower rate. At large fields
the distribution function drifts considerably in the direction
of the field, and inelastic scattering of carriers brings about
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FIG. 7. (Color online) (a) Average x component of velocity, and
(b) zero-frequency noise versus electric field for a gapped Dirac-like
dispersion ε(�k) = √

�2/4 + (�vf k)2 on varying the value of R (the
ratio of the elastic scattering rate to the inelastic scattering rate) where
n = 1011 cm−2 and T = 300 K. The value of the gap is � = 60 meV.
Note: So = 4Ne2v2

f τin/L
2.

change in the �k states, but the velocity which is given by
the gradient of the energy dispersion does not change in
magnitude; it only slightly changes in direction since scattering
is predominantly in the field direction. Thus we see that for
only inelastic scattering, the noise decreases and continues to
decrease with increasing electric field. When we include an
elastic scattering mechanism (such as impurity scattering), we
see that the noise also decreases but not as much or as rapidly
as a function of electric field. This is in contrast to regular
semiconductors with a parabolic energy dispersion (ε ∝ k2),
where in a constant-relaxation-time model with elastic and
inelastic scattering the noise increases with electric field as E2

due to Joule heating of the electron gas. Thus, under high-field
conditions, devices based on graphene will have better noise
properties than conventional semiconductors with quadratic
energy–wave-vector dispersions.

It is also possible to introduce a gap parameter in the energy
dispersion to study the noise properties of “graphene-like”
systems. This is equivalent to the dispersion for narrow-
gap semiconductors ε(�k)(1 + αε(�k)) = �

2k2/2m∗. The mod-
ified energy dispersion for graphene with gap � is ε(�k) =√

�2/4 + �
2v2

f k2. The results for the current and noise for
� = 60 meV (see Fig. 7) and for the results for � = 1000 meV
(see Fig. 8) are shown. The average of the x component of
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FIG. 8. (Color online) (a) Average x component of velocity, and
(b) zero-frequency noise versus electric field for a gapped Dirac-like
dispersion ε(�k) = √

�2/4 + (�vf k)2 on varying the value of R (the
ratio of the elastic scattering rate to the inelastic scattering rate) where
n = 1011 cm−2 and T = 300 K. The value of gap is � = 1000 meV.
Note: So = 4Ne2v2

f τin/L
2.

velocity is evaluated as a function of electric field for various
values of the scattering-rate ratio [see Figs. 7(a) and 8(a)].
As the field increases, the average velocity increases, reaching
the saturation value vf for large values of the field. However,
the increase of the scattering-rate ratio reduces the increase
in the average velocity and the saturation value is reached
at even higher values of field. The noise spectral density is
evaluated for gapped graphene-like dispersion [see Figs. 7(b)
and 8(b)]. The figures show that the noise is the thermal
Johnson-Nyquist noise at low fields. The plots for the noise
spectral density do not show a significant difference from that
for a gapless dispersion case for � = 60 meV. The carrier
density n = 1011 cm−2 (chosen to avoid thermally exciting
carriers from the valence to the conduction band) used for
the calculations ensures that the unoccupied �k states are in
the linear part of the dispersion and thus have a constant
velocity magnitude such that the phase space for scattering
does not bring about velocity fluctuations. The noise in the
case of � = 1000 meV shows heating effects coming into
effect for the cases of substantial elastic scattering. At � =
1000 meV (=1 eV) the gap is similar to that in conventional
semiconductors and one once again gets the increase in the
noise with electric field. This can be understood by the fact
that at intermediate fields the carriers occupy small-�k states
for which the leading-order Taylor series expansion of the
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energy dispersion is quadratic in k. In an earlier study done
for a parabolic energy dispersion with a constant relaxation
time, it was seen that noise increases with field strength due
to heating of the electron gas by the electric field [24]. Thus
there are heating effects for intermediate fields; however, at
high field strengths the carriers drift to the large-�k states and
the noise follows the graphene dispersion trend. The effect
of the elastic scattering term is that higher field strength is
required to cause heating. It is further noted that an increase
in the gap causes an increase in the heating. The heating
effect is much more prominent in dispersions with large
gap parameter. We note that such high values of the gap
parameter are not realized in graphene but this result shows
the consistency of this method. This behavior of noise can
be seen in systems with small gaps at lower temperatures,
where the Fermi distribution does not have a long thermal
tail.

The decrease in the noise as a function of electric field is
fairly easy to understand. The power spectrum at ω = 0 as a
function of electric field is proportional to the area under the
velocity autocorrelationfunction,

SI
ij (ω = 0,E) ∝

∫ ∞

0
dt〈vi(t)vj (0)〉. (25)

In a normal system with a parabolic energy dispersion, two
effects can contribute to the noise. (1) Heating of the electron
gas by the applied external electric field increases the values
of the t = 0 velocity autocorrelation function 〈v2〉. This is
essentially the increase of the effective temperature of the
electron distribution and causes the noise to go up with
increasing electric field. (2) If the scattering rates increase
as a function of carrier energy, then fluctuations can damp
out more quickly. This leads to a decrease in the noise. The
actual behavior of the hot-electron noise with applied external
electric field is a competition between these two effects.

In a system with a nonparabolic or Dirac-like energy
dispersion, an additional effect plays a role. When the electrons
are heated up by the external field, they go to higher energy. The
heating of the electron gas leads to an increase in temperature
and more fluctuations in the k states. These fluctuations in
k states, however, do not necessarily lead to fluctuations in
the velocity. This is because the magnitude of the velocity
v(k) = ∂ε/∂k is a constant. Hence, fluctuations in k states
do not lead to fluctuations in the magnitude of the velocity.
Only the direction of the velocity can change. At zero electric
field, the carrier distribution function is centered around
k = 0. k-state fluctuations can have a substantial effect on
the direction of the velocity. At high electric fields, the carrier
distribution function is pushed up to higher k states in the
direction of the electric field. Fluctuations in k states now
no longer lead to such strong fluctuations in the direction of
the velocity. The decrease in the low-frequency noise spectral
density has also been calculated using the ensemble Monte
Carlo method [41]. Decrease in noise has been predicted
theoretically [24] for nonparabolic dispersions and has been
measured experimentally in a GaAs/GaAlAs superlattice [42].
While the models used here, such as constant relaxation times,
etc., are somewhat simplified, the results should be robust and
apply to more realistic systems.

Some of the improvements that could be made in the future
to the model include the following:

(1) Wave-vector-dependent relaxation times. Usually, scat-
tering rates increase with energy. As a result, as discussed
above, the fluctuations will die out faster as the carriers are
accelerated to higher energy where the scattering increases.
This leads to an additional decrease in the hot-electron noise
and should not change our conclusions that the nonparabolic
energy dispersion relation in graphene-like systems leads to
a decrease in the hot-electron noise with increasing electric
field.

(2) Generation-recombination noise. We have not con-
sidered scattering between the K and K ′ points of the
Brillouin zone which involves a zone-edge (K-point) phonon
and usually requires very energetic electrons. In GaAs, this
type of intervalley scattering between the � and L valleys
decreases the mobility and causes the noise to decrease. But
in graphene, since the valleys are identical, there should be
minimal effect. The calculations we have presented assumed
only a single Dirac cone (i.e., electrons only and no holes).
This approximation is valid provided the Fermi energy is
large compared to the temperature. At room temperature,
this criterion leads to a carrier density estimate of n =
gs × gv × 2.46 × 1010 cm−2 (where gs/v refers to spin/valley
degeneracy). For low-carrier-density systems, one would have
to take into account scattering that could generate electron-hole
pairs as well as their recombination.

One other point that we note is that graphene systems are
known to have low 1/f noise [11,12]. As mentioned earlier,
the Voss-Clarke experiment [17] showed that 1/f noise can be
thought of as “time-dependent” resistance fluctuations which
needs a net current flowing through the sample to be observed
in the two-point current-current correlation function, but can be
seen with no net current in the four-point correlation function.
As we have shown, the unique dispersion relation of graphene
means that fluctuations in �k states do not necessarily give rise
to current fluctuations. As a result, we would not only expect
the hot-electron noise to be low in graphene, but we would
also expect 1/f noise to be low.

IV. CONCLUSION

We have shown that in addition to all of its remarkable
transport and optical properties, graphene should have very
good noise properties. In the presence of an external electric
field, the hot-electron noise should drop from the equilibrium
Johnson-Nyquist value. This decrease in noise is easy to
understand. Due to graphene’s band structure, fluctuations
in �k states do not lead to changes in the magnitude of the
velocity, only its direction. At equilibrium or low electric field,
scattering can lead to substantial changes in direction. In strong
electric fields, the carrier distribution function can be moved
far up the Dirac cone in the direction of the electric field.
Changes in the direction of the velocity are not as large.

The inclusion of elastic scattering mechanisms such as
carrier-impurity scattering can affect the noise in two ways:

(1) Increased impurity scattering lowers the mobility and
makes it harder to push the carriers up the Dirac cone.
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(2) Impurity scattering drives the distribution function not
towards the equilibrium distribution, but towards its angular
average. As a result, impurity scattering can lead to larger
changes in the direction of velocity than inelastic scattering.

For a Dirac-dispersion with a small gap, the hot-electron
noise can initially increase with electric field at intermediate
field values before ultimately decreasing. This occurs in the
quadratic part of the energy band where heating effects can
lead to an increase in noise.

Finally, while parasitics such as contact noise might be the
ultimate source of noise in graphene devices, our calculations
show that graphene devices should have excellent noise
properties.
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