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High harmonic generation in undoped graphene: Interplay of inter- and intraband dynamics
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We develop a density-matrix formalism in the length gauge to calculate the nonlinear response of intrinsic
monolayer graphene at terahertz frequencies. Employing a tight-binding model, we find that the interplay of the
interband and intraband dynamics leads to strong harmonic generation at moderate field amplitudes. In particular,
we find that at low temperature, the reflected field of undoped suspended graphene exhibits a third harmonic
amplitude that is 32% of the fundamental for an incident field of 100 V/cm. Moreover, we find that up to the
seventh harmonic and beyond are generated.
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I. INTRODUCTION

As the paradigmatic example of a system exhibiting zero-
gap Dirac points and linear band dispersion [1,2], graphene has
been the subject of a host of studies, many with a focus on its
fundamental physical and chemical properties, and many with
a view towards device applications [3–14]. The absorption
of electromagnetic radiation in graphene is controlled by
interband and intraband transitions [2], as schematically
shown in Fig. 1(a). In undoped graphene, applied fields lead
to interband dynamics by inducing transitions between the
bands, while the subsequent driving of the carriers within
their bands by those same fields leads to intraband dynamics.
Transitions near the Dirac point are accessed by terahertz
(THz) fields, while for the intraband dynamics to result in
significant currents the fields must have a relatively low
frequency, as do THz waves [15–17].

Thus while the recent development of sources of intense
THz pulses has led to new avenues of exploration across all of
condensed matter physics [18–21], terahertz studies should
be singularly suitable for revealing the physics of carrier
dynamics in graphene. A typical THz single cycle pulse and
its spectrum are shown in Figs. 1(b) and 1(c), respectively.
Earlier theoretical studies anticipated strong optical nonlin-
earity in graphene, leading to effects such as high harmonic
generation [22–25]. These estimates relied on the extreme
nonparabolicity of the linear dispersion relation to lead to
strong nonlinearity in the intraband response. Yet although
a recent experimental study has demonstrated generation of a
third harmonic on the order of 10−3 of the transmitted field
power for a 45-layer graphene sample [26], there has been
no experimental indication of such nonlinearities at terahertz
frequencies using monolayer graphene [27]. In this paper, we
calculate that graphene can indeed exhibit a strong nonlinear
response to THz radiation, with a strong third harmonic field
emitted at incident fields as low as 100 V/cm, along with
emission up to the seventh harmonic and beyond. However,
the strong nonlinear response is not due primarily to the
intraband motion of the carriers, but rather to an interplay
between the interband and intraband motion of the carriers.
The critical requirements for such strong nonlinear effects are
that the sample is undoped, i.e., the chemical potential is at the
Dirac point and that the experiments are performed well below
room temperature at 10 K. This low density, low temperature

condition has not been investigated experimentally to date
and represents a different regime for harmonic generation in
graphene.

II. THEORY

Our calculations are based on a theoretical approach
employing a density-matrix formalism in the length gauge.
We use a nearest-neighbor tight-binding model to treat the π

electrons in the graphene [2,28]. The tight-binding expression
for the Bloch states is given by

φnk(r) = N
∑

R

[ϕpz(δrA) + Cϕpz(δrB)]eik·R, (1)

where N is a normalization factor, n = {c,v} labels the
conduction and valence bands, and the sum is over the Bravais
lattice vectors R. The factor C = σne

−iχ(k), where σv = 1
and σc = −1 and χ (k) = arg[F (k)] is the phase between
the two sublattice states, where F (k) ≡ 1 + e−ik·a1 + e−ik·a2 ,
with a1 and a2 being the primitive Bravais lattice translation
vectors. The ϕpz(r) are the 2pz orbitals of carbon, and
δrA,B ≡ r − R − rA,B , where rA,rB are the basis vectors. In
what follows, to simplify the notation we take the origin in
k space to be at K-Dirac point [where F (k) = 0]. Near the
Dirac point, it is easy to show that χ (k) � θ + π/2 where
θ is the angle that k makes with the kx axis. In addition,
the dispersion for the two bands is given approximately by
En(k) � Epz − σnvF �k, where vF is Fermi velocity and Epz

is the energy of the 2pz states in carbon.
It has been shown that the nonlinear response of semicon-

ductors can only be reliably treated in a two band model if one
employs the length gauge [29,30]. In particular, if the more
common velocity gauge is used, unphysical divergences arise
in the nonlinear response at low frequencies, such as in the THz
range, that can only be removed by developing sum rules;
these become extremely complicated if one works to high
order in the field [30]. Thus, in contrast to previous theoretical
work on the nonlinear THz response of graphene [22–25],
we employ here the length-gauge Hamiltonian, given by
H = H0 − er · E(t), where H0 is the full Hamiltonian of
unperturbed graphene, e = −|e| is the charge of an electron, r
is the electron position vector, and E(t) is the THz electric field
at the graphene. The carrier dynamics are calculated by solving
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FIG. 1. (Color online) (a) Schematic band structure of undoped
(μF = 0) graphene near the Dirac point demonstrating interband
and the intraband dynamics, (b) temporal plot of the incident pulse
employed in the simulations, and (c) the corresponding amplitude
spectrum of the pulse.

the equations of motion for the reduced density matrix in the
basis of conduction band and valence band Bloch states. These
equations require the matrix elements of the Hamiltonian,
which are given by

〈nk|H |mk′〉 = En(k)δnmδ(k − k′) − e〈nk|r|mk′〉 · E(t).

(2)

The matrix elements of r between Bloch states can be shown
to be given by [29,31]

〈nk|r|mk′〉 = δ(k − k′)ξnm(k) + iδnm∇kδ(k − k′), (3)

where the connection elements, ξnm(k), are given by

ξnm(k) = i
1


c

∫
d3r u∗

n,k(r)∇kum,k(r), (4)

where 
c is the area of a unit cell and unk(r) is the periodic
part of the Bloch function. We have evaluated these connection
elements using our tight-binding wave function. Ignoring the
overlap of atomic wave functions on different atoms, near the
Dirac point the connection elements are given approximately
by

ξnm(k) = [2δnm − 1]
θ̂

2k
. (5)

To deal with the derivative appearing in Eq. (3), as it
enters our equations below, we discretize in k space; that
discretization should be understood for the other derivatives
of quantities in k space that appear below. Due to the large
energy barriers between the K and K′ Dirac cones and the
small energies of the THz photons, we can treat the dynamics
of the electrons near the two Dirac points as being disconnected
and simply sum their (identical) contributions to the current
density. We define the reduced density-matrix elements to
be ρnm(k) ≡ 〈a†

m,kan,k〉, where a
†
n,k (an,k) is the creation

(annihilation) operator for an electron in the Bloch state |nk〉.
Using Eq. (2) for the matrix elements of the Hamiltonian, the
dynamic equations for the reduced density-matrix elements

become

dρcv(k)

dt
= ieE(t) · ξcv(k)

�
[ρvv(k) − ρcc(k)]

− iωcv(k)ρcv(k) − eE(t) · ∇kρcv(k)

�
− ρcv(k)

τ
,

(6)

dρnn(k)

dt
= − iσne · E(t)

�
[ξcv(k)ρvc(k) − ξvc(k)ρcv(k)]

− eE(t) · ∇kρnn(k)

�
− [ρnn(k) − fn(k,t)]

τn

, (7)

where ωcv(k) � 2vF k and fn(k,t) is a Fermi-Dirac distribution
with a time-dependent temperature. Note that the electric field
in both equations is the field at the graphene, which is equal
to the amplitude of the transmitted field. In our numerical
implementation, we model the vacancy populations rather than
the valence band electrons to allow us to only include states
near the Dirac point. Because the scattering times in graphene
are only on the order of tens of femtoseconds [26,27,32–36],
the inclusion of scattering processes is an essential element
in any model of the THz response of graphene. For the
low carrier densities considered in this work, carrier-carrier
scattering is expected to be relatively unimportant, and the
dominant scattering processes will be defect scattering and
electron-phonon scattering. In the above equations, we treat the
scattering phenomenologically. For the interband coherences,
ρcv(k), we introduce an interband decoherence time, τ , which
we assume is independent of k. The populations relax back
to Fermi-Dirac thermal distributions, fn(k,t), with relaxation
times, τn, and a temperature that is chosen to obtain the carrier
populations, which are time dependent due to the THz-induced
interband transitions. As it has been found both experimentally
and theoretically [37] that the time taken for conduction band
electrons to relax to the valence band is much longer than
intraband scattering times, we neglect interband relaxation.

To solve the above equations, we employ a direct approach,
where we put k on a grid and step through time using a
Runge-Kutta algorithm. In order to facilitate this, we employ
balanced difference approximations to the gradients. Given
the geometry of the lattice and Brillouin zone, we employ
a hexagonal grid with a uniform point density in k space.
Following the formalism of Aversa and Sipe [29], the current
density is given by

J(t) = e

mA
Tr{pρ̂(t)} = e

i�A
Tr{[r,H ]ρ̂(t)}, (8)

where the trace is over single-electron states, A is the normal-
ization area of the graphene sheet, p is the electron momentum
operator, and ρ̂(t) is the reduced density matrix with matrix
elements ρnm(k). Using our expression for the Hamiltonian
and the matrix elements of the position operator, it is possible
to write the current density as the sum of an interband term,
Je, and an intraband term, Ji . After considerable work, one
can show that the interband current density is given by

Je(t) = 8|e|
A

Re

{∑
k

θ̂

2k

dρcv(k,t)

dt

}
, (9)
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while the intraband current density is given by

Ji(t) = −4|e|vF

A

∑
k

{ρcc(k,t) − ρvv(k,t)}̂k

+ 8|e|2
A�

∑
k

Re{ρcv(k,t)∇k[E(t) · ξvc(k)]}. (10)

The sums over k in the current density expressions are
restricted to a region near the K-Dirac point and we include
a factor of 4 to account both for spin degeneracy and the
contributions from carriers from the K′-Dirac point. Note that
because to first order ρcv(k) is symmetric under inversion, the
terms on Ji(t) given on the second line of Eq. (10) are to third
order and higher in the electric field and are very small for
the conditions considered. We consider a suspended graphene
sample such as employed experimentally by Paul et al. [27] and
use the time-dependent current sheet densities to calculate the
transmitted and the reflected THz fields. Although we are inter-
ested in the nonlinear response, we have verified that we obtain
the expected linear conductivities numerically as a check.
Furthermore, we have verified convergence in the nonlinear
regime by changing the grid density, the extent of the grid, the
time-step tolerance, and the polarization of the incident field.

III. RESULTS

We now present the results of our simulations of the
nonlinear THz response for undoped (μF = 0) monolayer
graphene. We run the simulation for a temperature of 10 K
(corresponding to intrinsic density of 9.32 × 107 cm−2) so
as to minimize initial Pauli blocking and thus maximize the
interband transitions. The input THz pulse is a sinusoidal
Gaussian pulse with central frequency ν of 1 THz and duration
(FWHM) of 1 ps as shown in Fig. 1(b). The relaxation
times τ and τn have been chosen to be 50 fs, which is an
average of various theoretical and measured values for such
(sample-dependent) constants [26,27,32–36]. This system has
a thermal distribution of carriers with an average electron
energy of 0.86 meV, which is much less than the average
photon energy of 4.14 meV of the 1 THz pulse. In the
simulation, we keep the chemical potential at the Dirac point
but as carriers are injected we calculate the new effective
temperature in the distributions, fn(k,t), to which the carriers
relax to account for the increase in the carrier density. All of the
carriers (injected as well as thermal) are driven by the applied
electric field (intraband dynamics). This results in the opening
and closing of different states for extra injection of carriers.
This interplay between intraband and interband dynamics is at
the heart of the highly nonlinear response that we now examine.

In Fig. 2 we plot the intraband and interband current
densities for four different incident field peak amplitudes
(1, 50, 100, and 200 V/cm). In order to facilitate the
comparison, all current densities are normalized to the peak,
Ei , of the incident field, such that, if the response were
linear, these relative currents would be unchanged by an
increase in incident field. To demonstrate the importance of
the interplay of interband and intraband dynamics, we first
present the results of the calculation when the interplay is
missing. In the first case [Fig. 2(a)], we have set the connection
elements (ξ ’s) to zero in Eqs. (6) and (7) such that there is
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FIG. 2. (Color online) (a) Intraband current in the first case when
the ξ ’s are set to zero, (b) interband current in the second case when all
the gradients in Eqs. (6) and (7) are eliminated, and (c) intraband and
(d) interband current for the full calculation. In all plots the current is
calculated for the four different incident electric fields with peak Ei

of 1, 50, 100, and 200 V/cm. All currents have been normalized to
the corresponding Ei .

no electron motion between the bands. In this case, only the
intraband current contributes. The relative current is decreased
near the peaks (clipping) when the electric field is increased.
This clipping results in a 23% reduction in the peak relative
current when the field is 200 V/cm compared to the linear
response; the reduction is expected due to the linear dispersion
of graphene [1,2], but the nonlinearity is quite modest. In
the second case [Fig. 2(b)], all of the gradients in Eqs. (6)
and (7) have been excluded. Interband transitions occur but
the transfer of electrons between bands is not accompanied by
the subsequent motion of electrons within individual bands.
Here the relative interband current is seen to decrease as
the THz electric field increases. This is due to interband
absorption saturation that arises due to Pauli blocking. Again,
the nonlinearity is modest.

Finally, we present the results of the full calculation that
includes the full interband and intraband carrier dynamics.
The relative intraband and interband current densities for this
full calculation are shown in Figs. 2(c) and 2(d), respectively.
The intraband current undergoes a large increase as the field
is increased and is almost tripled when we go from a field
of 1 V/cm to the highest field of 200 V/cm. This increase is
expected, as it arises from the increase in the carrier densities
due to the interband injection of carriers. In addition, there
is a relatively small distortion in the intraband current as the
field is increased. Finally, in Fig. 2(d), we plot the relative
interband current density. We see first that as the incident field
increases, there is a decrease in the relative interband current.
Most importantly, the temporal form of the interband current is
greatly modified, especially at fields at and above 100 V/cm.
It is evident by comparison to Fig. 2(b) that this strong
nonlinearity only arises when both interband and intraband
processes are included in the calculation, and is thus due to the
interplay between the interband and intraband dynamics.
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FIG. 3. (Color online) Electron density distribution in k space at
(a) the initial conditions and (b) at a time t = 2.75 ps for a 100 V/cm
incident field. The white lines identify the position of the Dirac point.

To illustrate the combined effects of the interband and
intraband transitions on the carrier distributions, we plot the
electron density in k space in Fig. 3 before the pulse arrives
[Fig. 3(a)] and at t = 2.75 ps, after almost half of the incident
pulse has passed [Fig. 3(b)]. At t = 2.75 ps, the distribution has
changed in two key respects: (i) the carriers have been driven
by the field so far to the right in k space that most of them
now have a velocity component in the positive-x direction and
(ii) the carrier density is considerably increased just above and
below the ky = 0 line just to the right of the Dirac point as
expected from Eq. (5). The first effect is the source of clipping
in the intraband current density. The second effect results in
the increase in carrier density, which resulted in the increased
intraband current in Fig. 2(c). However, the most important
effect of the strong redistribution of carriers in k space is
that it results in strong interplay between the interband and
intraband dynamics. Although it is tempting to interpret this
interplay as simply arising from the time dependence of the
Pauli blocking of the states near the Dirac point, as a physical
picture based on a rate equation model might suggest, such
a picture does not lead to an accurate understanding of the
detailed current dynamics because all of the dynamics are
occurring on a subcycle time scale. Thus the full simulation is
required.

We now consider the transmitted and reflected THz fields.
The transmitted field is given by Et (t) = Ei(t) − ZoJ(t)/2,
where Zo is the free space impedance. Because the current
density is relatively small for the field amplitudes considered,
the transmitted field is dominated by the incident field. For
this reason, we present the results for the reflected field, which
is given by Er (t) = −ZoJ(t)/2. Alternately, a differential
transmission technique [38] could be employed instead of
the reflection configuration in order to measure the same
response. The normalized time-dependent reflected fields for
different field amplitudes are shown for the full calculation
in Fig. 4(a). The absolute peak of the un-normalized reflected
field is 0.27 V/cm for the incident field of 100 V/cm. As
can be seen, the strong distortion of the interband current is
clearly exhibited in the reflected field. This distortion is an
indication of harmonics; the spectral responses normalized to
the peak amplitude at the fundamental frequency are presented
in Fig. 4(b). While there is no harmonic signal for the low field
of 1 V/cm, the odd harmonics of the reflected field emerge as
the field amplitude increases. The third harmonic peaks at 32%
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FIG. 4. (Color online) (a) Reflected electric field normalized to
the corresponding amplitude of the incident electric field for four
different incident fields Ei ; (b) amplitude spectra of the reflected
signal normalized to the peak at the fundamental frequency of 1 THz.
The inset shows the dependence of the third harmonic amplitude as
a function of the Fermi level for Ei = 200 V/cm.

and 0.061% of the reflected and transmitted spectral peak at
the fundamental, respectively, for a 100 V/cm incident field,
and then decreases as the field is raised beyond that.

We have also calculated the spectral response when there
is no interplay between the interband and intraband dynamics
and find (not shown) that the third harmonic amplitude is
only 1.6% and 0.6%, respectively, when the interband and
intraband dynamics are shut off. Therefore, it is the interplay
between the interband and intraband dynamics that is crucial to
the appearance of the strong harmonic generation in undoped
graphene. It is particularly noteworthy that we are obtaining
a very strong nonlinearity even though the carrier densities
are not very high at all; e.g., n = 2.24 × 108 cm−2 for the
100 V/cm incident field. We note that in order to observe
the strong nonlinearity, it is critical that the initial carrier
density is low; otherwise, Pauli blocking effectively shuts off
the interband transitions. This is demonstrated in the inset of
Fig. 4(b), where we plot the third harmonic amplitude as a
function of the Fermi energy. It is clearly evident that when
the Fermi energy changes from 0 to 15 meV, the third harmonic
amplitude is reduced from 32% to 1%. We have also performed
simulations with zero Fermi energy but at room temperature
and find that, again due to Pauli blocking, the amplitude of
the third harmonic generation is reduced by more than one
order of magnitude. It is because all previous experiments
on the nonlinear THz response of monolayer graphene have
been performed on doped graphene (|μF | > 15 meV) or at
temperatures well above 10 K that the strong nonlinear effect
that we predict has not been observed to date.

In order to investigate the origin of the decrease in the
third harmonic amplitude beyond a certain field strength, we
present in Fig. 5 the third, the fifth, and the seventh harmonic
amplitude versus the incident electric field for the results
presented in Fig. 4(b). While the fifth and the seventh harmonic
levels are negligible for fields up to 20 V/cm (as indicated
by the arrow in Fig. 5), they start to increase gradually after
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FIG. 5. (Color online) Amplitude of the third, fifth, and seventh
harmonic normalized to the peak in the reflected field spectrum at the
fundamental frequency at scattering time of 50 fs as a function of the
incident field strength with the black curve shows a cubic fit.

that. At the same time a cubic fit (black curve) to the third
harmonic departs from calculated third harmonic amplitude.
This indicates that the final third harmonic is not simply a third
order process. For example, at moderate fields it is due to the
combination of a χ3 process and a χ5 process that contributes
to the third harmonic, as shown diagrammatically in Figs. 6(a)
and 6(b). This contribution of the fifth-order process to the
third harmonic is analogous to the Kerr effect for the linear
response but at a higher order. That the reduction in the third
harmonic is initially due to a fifth order process is evident in
the fact that the fifth harmonic starts to appear at essentially
the same field as the third harmonic starts to deviate from the
cubic fit. We have further confirmed the origin of the decrease
in the third harmonic by examining the response when any
self-fields are omitted and find essentially the same trends in
the response. As can also be seen from Fig. 5, higher-order
odd harmonics such as the fifth and the seventh also appear as
the field increases and reach levels that are 15.3% and 7.7% of
the reflected fundamental, respectively.

(a) (b)

FIG. 6. (Color online) Two possible mixing processes for χ 3

susceptibility: (a) direct χ 3 process and (b) indirect χ 3 process as
a result of χ 5 process.

We now discuss how one could best experimentally observe
the harmonic signals that we predict and what the noise
requirements of the experimental setup are. First of all, in order
to suppress any spectral components of the incident field that
lie near the third harmonic, one should use a low-pass filter
before the field reaches the graphene [27]. After the signal
has passed the sample, a high-pass filter at the detection side
should ideally be used in order to remove the fundamental,
so as to allow the measurement of the high harmonics
only. Terahertz time-domain spectrometers (THz-TDS) have
become an established method for sensitive measurements,
and conventionally they are operated in a transmission-
mode configuration. If the noise in the incident pulses in a
transmission-mode experimental setup is found to be a limiting
factor, a measurement technique called differential time-
domain spectroscopy (DTDS) can be employed instead [38–
41]. The reference signal will be transmission through air, and
hence the final differential transmission measurements will be
essentially identical to the reflection waveforms presented in
Fig. 4(a). Using this technique, up to two orders of magnitude
improvement in noise performance can be achieved [41]. The
dynamic range of THz spectrometers is a very important factor
to consider [42]. It is defined as the ratio of the frequency
dependent signal strength to the detected noise floor [43,44].
One example of a low noise system has been achieved by Zhao
et al. using a laser oscillator with 15 fs pulses and a 72 MHz
repetition rate [45] and a semilarge photoconductive antenna
at the emitter side. This setup achieved a dynamic range of
118 dB using a standard electro-optic detection scheme with a
1 mm thick (110) oriented ZnTe crystal [45]. Moreover, in this
system, a field strength on the order of 95 V/cm was generated,
which is sufficient to observe the predicted harmonics. Other
researchers have employed a multiscan technique that can be
employed in order to increase the dynamic range. Recently, an
ultrahigh dynamic range of 90 dB was reported with 1000 scans
that were taken in less than a minute [46]. The third harmonic
level for an incident field strength of 100 V/cm is predicted
by our calculations to be 0.061% in the transmission mode,
i.e., 64.3 dB less than the fundamental. Hence one should
be able to measure the third harmonic with the experimental
techniques and setups described above, as the field amplitudes
are high enough and the achieved dynamic ranges of 90 dB
and 118 dB are much larger than the required dynamic range
of approximately 70 dB.

We finally turn to the effect of scattering time on the
generated third harmonic. As mentioned in the Introduction,
the effect of the scattering time on the response of graphene
is particularly important in the THz regime. In Fig. 7, we now
present the normalized third harmonic as a function of incident
THz field amplitude for scattering times ranging from 10 fs
to 100 fs. Because scattering reduces coherences in the carrier
dynamics, it is expected that for a given field strength, larger
scattering times will result in larger amplitudes of the third
harmonic component of the transmitted and reflected fields.
Our results indeed support this hypothesis as shown in Fig. 7.
When τ is only 10 fs, the movement of the carriers in k space is
almost negligible as ν × τ = 0.01, which results in the carriers
relaxing very quickly towards a thermal distribution around the
Dirac point before they can move far from their equilibrium
positions in k space. This leads to a reduction in the interplay of
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FIG. 7. (Color online) Third harmonic amplitude of the reflected
signal normalized to the peak in the reflected field spectrum at the
fundamental frequency vs. the incident field strength with scattering
time constants of 10, 25, 50, and 100 fs.

the intraband and interband dynamics and thus a reduction in
the nonlinearity. As the scattering time increases, the required
electric field to induce the same displacement of the carriers
becomes smaller. Thus, when the scattering time is increased
by one order of magnitude to 100 fs, where ν × τ = 0.1, the
carriers can be driven much further from the Dirac point.
This results in a periodic reduction in Pauli blocking of states
near the Dirac point, that allows for a periodic increase in
the interband response at these times, which in turn yields a

strongly nonlinear response in the interband current density.
We note that although an increase in the scattering time results
in an increase in the third harmonic for fields up to about
100 V/cm (for the range of scattering times considered), due
to higher-order effects, the maximum third harmonic level
is essentially independent of the scattering time. However,
the incident field amplitude at which the maximum occurs is
strongly dependent on the scattering time. This means that our
results are robust to reductions in the scattering time down to
at least 10 fs.

IV. SUMMARY

In conclusion, we have theoretically investigated nonlinear
high harmonic generation in monolayer graphene. Our results
demonstrate a very strong interplay between the intraband
and interband dynamics, leading to large odd harmonics in
the reflected field from suspended undoped graphene at low
temperature. This work lays out conditions under which future
experiments could achieve efficient high harmonic generation
in monolayer graphene at low density where electron-electron
scattering is expected to have a minimal effect.
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Brodyanski, and M. Rahm, ACS Nano 6, 9118 (2012).

[9] K. F. Mak, L. Ju, F. Wang, and T. F. Heinz, Solid State Commun.
152, 1341 (2012).

[10] B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy,
W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, Nat. Commun.
3, 780 (2012).

[11] N. Kumar, J. Kumar, C. Gerstenkorn, R. Wang, H.-Y. Chiu,
A. L. Smirl, and H. Zhao, Phys. Rev. B 87, 121406 (2013).

[12] S.-Y. Hong, J. I. Dadap, N. Petrone, P.-C. Yeh, J. Hone, and
R. M. Osgood, Phys. Rev. X 3, 021014 (2013).

[13] P. Tassin, T. Koschny, and C. M. Soukoulis, Science 341, 620
(2013).

[14] M. Glazov and S. Ganichev, Phys. Rep. 535, 101 (2014).
[15] M. Tonouchi, Nat. Photon. 1, 97 (2007).

[16] P. U. Jepsen, D. G. Cooke, and M. Koch, Laser Photon. Rev. 5,
124 (2011).

[17] C. J. Docherty and M. B. Johnston, J. Infrared Millimeter
Terahertz Waves 33, 797 (2012).

[18] J. Hebling, G. Almási, and I. Z. Kozma, Opt. Express 10, 1161
(2002).

[19] K. Tanaka, H. Hirori, and M. Nagai, IEEE Trans. Terahertz Sci.
Technol. 1, 301 (2011).

[20] M. C. Hoffmann and J. A. Fülöp, J. Phys. D: Appl. Phys. 44,
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