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We study the local density of states (LDOS) in systems of Luttinger-liquid nanowires connected to a common
mesoscopic superconducting island, in which Majorana bound states give rise to different types of topological
Kondo effects. We show that electron interactions enhance the low-energy LDOS in the leads close to the island,
with unusual exponents due to Kondo physics that can be probed in tunneling experiments.
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I. INTRODUCTION

Majorana bound states have become of major interest
in condensed-matter physics [1–9] due to potential applica-
tions as building blocks in fault-tolerant quantum comput-
ing [10] and the possibility to engineer such topological states
using conventional s-wave superconductors and spin-orbit
coupling [11–13]. Information in these states is encoded
nonlocally, with the long-range entanglement providing a
mechanism for electron teleportation [14].

Recently, it has been realized that the topologically pro-
tected ground-state subspace formed by several Majorana
bound states can act as a nonlocal quantum impurity, which
when subjected to strong charging effects and coupled to
conduction electrons can give rise to a topological Kondo
effect [15]. Here a stable non-Fermi-liquid behavior is ob-
tained, reminiscent of the multichannel Kondo effect but
robust against perturbations. In Ref. [16], the full crossover
was studied using numerical renormalization group. The
situation with an arbitrary number of leads of interacting
electrons was studied in Refs. [17,18], where in addition
an interaction-induced intermediate-coupling unstable fixed
point was discovered. The topological protection of this Kondo
effect opens new possibilities for the experimental observation
of multichannel Kondo impurity dynamics [19,20]. Additional
physical effects can be observed when including a Josephson
coupling to the mesoscopic island hosting the Majorana bound
states; phase fluctuations then cause a nontrivial interplay
between topological Kondo and resonant Andreev reflection
processes, giving a continuous manifold of stable non-Fermi-
liquid states [21]. With N wires each connected to one
Majorana on the island, the symmetry group of this topological
Kondo effect is SO1(N ), previously encountered also for a
junction of Ising chains [22], unlike that of Ref. [15] which is
SO2(N ).

The search for observable predictions regarding the topo-
logical Kondo effect has so far been focused on charge trans-
port through the system [15,17–19,21,23] or measurements of
the occupation of pairs of Majorana zero modes, analogous
to magnetization [19]. In this paper, we show that the local
density of states (LDOS) of the lead electrons close to the
island provide a clear signature of the topological Kondo
effect of Béri and Cooper [15], directly measurable with a
scanning tunneling microscope (STM). In particular, we show
that the LDOS close to the island follows the power law

ρ(ω) ∼ ω
1

NK
+ N−1

N
K−1 as a function of energy ω → 0, where

K is the Luttinger-liquid parameter for the electron-electron
interaction strength, with K = 1 for noninteracting leads
and K < 1 for repulsive interactions. Hence, for realistic
values 1/(N − 1) < K < 1, we have a diverging LDOS in
the zero-bias limit close to the junction.

In contrast to the usual picture of a power-law vanishing
of the low-energy LDOS in a Luttinger liquid with or
without boundary/impurity [24–28], an interaction-induced
divergence is in fact a rather generic feature of Luttinger-liquid
wire junctions [29], and Luttinger-liquid junctions with a
superconductor, with [30] or without [31,32] Majorana bound
states. The key feature of the SO2(N ) topological Kondo
effect of Ref. [15] is that the power law governing the
divergence depends on the number N of leads participating in
the effect, making adjustable gate voltages a route to observe
this signature. This N dependence of the LDOS is, however,
absent in the SO1(N ) topological Kondo effect of Ref. [21],
where we find the zero-energy divergence ρ(ω) ∼ ωK−1 for
all fixed points within the non-Fermi-liquid manifold, which
is the same power law as that encountered for perfect Andreev
reflection at a single Luttinger-liquid junction with a Majorana
fermion [30].

The paper is organized as follows. In Sec. II, we review
the device under study and the emerging low-energy theories,
found in Refs. [15,17,18,21]. In Secs. III A and III B, we show
how methods [29] for calculating the LDOS in Luttinger-liquid
wire junctions can be applied to our models, and in Sec. III C
we derive the results of this paper, computing the LDOS in
the topological Kondo model. Unless stated otherwise, we use
units such that � = 1.

II. MODEL

A. Device setup

We consider the setup where the topological Kondo effect
can take place [15], namely a mesoscopic s-wave supercon-
ducting island hosting a set of Ntot localized Majorana bound
states, of which N � 3 are tunnel coupled to normal leads
of conduction electrons. This setup is sketched in Fig. 1.
Experimentally, this can be achieved by depositing Ntot/2
nanowires with strong spin-orbit coupling, e.g., InSb or InAs,
subjected to a magnetic field, on top of a floating mesoscopic
superconducting island; this creates Ntot Majorana bound
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FIG. 1. (Color online) Schematic setup for a Majorana device
hosting the topological Kondo effect. Spin-orbit coupled semicon-
ductor nanowires (two in the figure) are deposited on top of an
ordinary superconducting island (gray box) with charging energy
EC . In a magnetic field, Majorana bound states γi (red dots) are
formed at the ends of the wire parts coupled to the superconductor
(dark gray). Gate voltages create tunnel barriers between N Majorana
fermions and the N normal leads (in the figure, N = 3). This leads to
an SO2(N ) topological Kondo effect at low temperature [15]. When
Josephson coupling the superconducting island to an additional bulk
superconductor (blue), the system will, in the limit of large Josephson
energy EJ , give an SO1(N ) topological Kondo effect which becomes
tunable by the lead-Majorana couplings [21].

states, one at each end of the wire parts that are on top of
the superconductor [1–9]. With proper gating, N of these Ntot

Majoranas are tunnel coupled to the N normal parts of the
nanowires, which then act as leads. We will also consider a
generalized setup, where the island is Josephson coupled to a
bulk s-wave superconductor [21].

The full Hamiltonian of the system under consideration is
hence given by H = Hleads + Hisland + Ht .

The normal leads of effectively spinless electrons are
described by the Hamiltonian

Hleads = −ivF

N∑
j=1

∫ ∞

0
dx[�†

j,O∂x�j,O − �
†
j,I ∂x�j,I ],

(1)

with fermionic fields �j (x) for each lead j , consisting of
outgoing (O) and incoming (I ) components (i.e., right and
left movers). We assume all leads are identical. At x = 0,
we have the boundary condition �j,O(0) = �j,I (0) ≡ �j (0)
for disconnected leads. However, here the lead electrons
are coupled to the localized Majorana modes on the island.
These are described by operators γj obeying γ

†
j = γj , with

anticommutation relations {γj ,γj ′ } = δjj ′ .
The island Hamiltonian is given by

Hisland = EC(Q − ng)2 − EJ cos �, (2)

where EC is the charging energy, the number operator Q

measures the total charge on the island (the number of Cooper
pairs and occupied Majorana states), ng is the backgate
parameter (assumed to be close to an integer) determined by the
voltage across the capacitor, and EJ is the Josephson energy for

the coupling between the island and the bulk superconductor,
where � is their phase difference (we will take the phase of the
island to be �, canonically conjugate to the number of Cooper
pairs). The system on the island inherits a superconducting
gap 	sc due to proximity, which was needed for the formation
of the Majoranas. We consider this energy scale to be large,
so that only the Majorana bound states contribute to charge
transport.

The coupling between the lead electrons and the Majorana
modes on the island is given by the tunneling Hamilto-
nian [14,33]

Ht =
N∑

j=1

λje
−i�/2�

†
j (0)γj + H.c., (3)

where we choose the couplings λj to be real and positive.
This lead-Majorana tunneling gives a hybridization energy of
�j = 2πν0λ

2
j , where ν0 = 1/πvF is the density of states for

the unperturbed leads.
In the following, we will be interested in two limit-

ing cases, where the low-energy solution of the problem
simplifies [15,21]: for EJ = 0, the low-energy (i.e., for
T ,V � EC,	sc, min �j ) behavior is governed by an SO2(N )
topological Kondo effect, whereas when EJ is the largest
energy, the topological Kondo effect has symmetry group
SO1(N ).

B. Low-energy theory without Josephson coupling

In the absence of Josephson coupling, i.e., with EJ = 0, the
physics at low energies (T ,V � EC,	sc, min �j ) is governed
by virtual transitions of electrons hopping onto the dot, leading
to an effective low-energy Hamiltonian H = Hleads + H

(1)
K ,

where [15]

H
(1)
K =

∑
i �=j

J+
jkγjγk�

†
k (0)�j (0) −

∑
j

J−
jj�

†
j (0)�j (0), (4)

for the tunneling between the leads. The (positive) coupling
constants are given by J±

jk ≈ λjλk/EC . The first term in H
(1)
K

shows a nonlocal quantum impurity set up by the products
γjγk , exchange coupled to the spin object formed by the lead
electron products �

†
k (0)�j (0). The resulting entanglement

gives rise to a multichannel topological Kondo effect below
the energy scale defined by the Kondo temperature TK ; here,
TK ∼ ECe−1/ν0J when assuming isotropic J+

jk = J .
Including electron-electron interactions, the leads are con-

veniently treated using bosonization [24], which expresses the
lead Hamiltonian as

Hleads = v

2π

N∑
j=1

∫ ∞

0
dx

[
K(∂xθj )2 + 1

K
(∂xϕj )2

]
, (5)

where θj and ϕj are nonchiral bosonic fields with com-
mutation relation [ϕi(x),∂yθj (y)] = 2πiδ(x − y)δij , K is the
Luttinger-liquid interaction parameter (with K = 1 in the
absence of interactions, and K < 1 for repulsive interactions),
and v is the interaction-renormalized Fermi velocity. The
bosonized form of the electron operator is then given by
�j,I/O = χj (2πa)−1/2ei(θj ∓ϕj ), where a is the short-distance
cutoff, and χj is the Klein factor (a Majorana fermion). This
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Majorana fermion from bosonization can be hybridized with
the localized Majorana fermion γj coupled to the lead, such
that one simply replaces γjχj with a number ±i which is
gauged away; see Refs. [17,18]. This leads to a description of
the strong-coupling fixed point in terms of the bosonic field
� = (�1, . . . ,�N ), where �j = θj (x = 0), which is pinned
by the potential

V (1)[�] ∝ −
∑
j �=k

cos(�j − �k), (6)

whose minima form an (N − 1)-dimensional triangular lattice.
This means that in a rotated basis, the “zero-mode” �̌0 ≡
(1/

√
N )

∑
j �j ≡ v0 · � is a free field (physically, this is

due to current conservation at the junction), whereas the
components �̌1, . . . ,�̌N−1, described by vectors v1, . . . ,vN−1

orthogonal to v0 [spanning the reciprocal (N − 1)-dimensional
triangular lattice], are fixed. Explicitly, the rotated basis is
given by

θ̌0 = 1√
N

N∑
j=1

θj ,

θ̌1 = 1√
2
θ1 − 1√

2
θ2,

(7)

θ̌2 = 1√
6
θ1 + 1√

6
θ2 − 2√

6
θ3,

...

θ̌N−1 = 1√
N (N − 1)

N−1∑
j=1

θj − N − 1√
N (N − 1)

θN,

where for N = 3 the last line should be neglected.
Hence, at strong coupling, we have a theory of Luttinger-

liquid wires (5) connected at a junction (x = 0), where the
field θ̌0(x) obeys the Neumann (free) boundary condition
(BC), whereas the orthogonal components θ̌1(x), . . . ,θ̌N−1(x)
obey Dirichlet (fixed) BCs. By duality, we simultaneously
have that ϕ̌0(x) obeys Dirichlet BCs, and that the orthogonal
components ϕ̌1(x), . . . ,ϕ̌N−1(x) obey Neumann BCs (the ϕ̌

fields are obtained from the ϕ fields in the same way as the θ̌

fields from the θ fields).
Furthermore, instanton tunneling of the pinned fields at

strong coupling yields a leading irrelevant operator with scal-
ing dimension [17,18] 	LIO = 2K(N − 1)/N , determining
the finite-temperature scaling of the nonlocal conductance.

C. Low-energy theory with strong Josephson coupling

Another type of low-energy topological Kondo effect is
obtained in the limit of strong Josephson coupling, more
specifically when max �j � √

8ECEJ � EJ ; see Ref. [21].
The low-energy theory that emerges in this parameter regime
is given by H = Hleads + HA + H

(2)
K , where

HA = −
∑

j

λjγj�
†
j (0) + H.c., (8)

H
(2)
K =

∑
j �=k

Jjkγjγk[�†
k (0) + �k(0)][�†

j (0) + �j (0)], (9)

where λj is the Majorana tunneling coupling in (3) and
Jjk ≈ λjλk/EJ . Here, HA corresponds to the usual single-lead
resonant Andreev reflection processes, while the exchange
term H

(2)
K contains both the same processes as in (4) as well as

crossed Andreev reflection processes.
Performing the same bosonization procedure as above for

H
(1)
K now leads to a strong-coupling pinning potential [21],

V (2)[�] ∝ −
∑

j

√
�j sin �j −

√
TK

∑
j �=k

cos �j cos �k,

(10)
for the � field. This implies a manifold of strong-coupling
fixed points, tuned by the N parameters δj ≡ √

�j/TK , where
the minima of the potential V (2)[�] form an N -dimensional
generalization of the body-centered-cubic lattice for �j � TK ,
with the center point being shifted as a function of the δj

parameters. Here the Kondo temperature TK defines the energy
scale below which the Kondo effect develops, given by TK ≈√

8EJ ECe−EJ /(N−2)� for isotropic �j = �.
Hence, in the regime of strong Josephson coupling,

the strong-coupling theory is that of Luttinger-liquid
wires connected at a junction where all the fields
θ̌0(x),θ̌1(x), . . . ,θ̌N−1(x) have Dirichlet BCs, and all the dual
fields ϕ̌0(x),ϕ̌1(x), . . . ,ϕ̌N−1(x) have Neumann BCs.

The finite-temperature behavior is governed by a leading
irrelevant operator with scaling dimension

	LIO = min

⎛
⎝2,

1

2

N∑
j=1

{
1 − 2

π
sin−1

[
δj

2(N − 1)

]}2
⎞
⎠ ,

(11)

arising from instanton tunneling of the fields between adjacent
potential minima.

III. LOCAL DENSITY OF STATES

The local density of states ρi available for electron tunneling
into the ith lead is given by

ρi(x,ω) = − 1

π
Im GR

i (x,ω)

= 1

π
Re

∫ ∞

0
dteiωt 〈�i(x,t)�†

i (x,0)〉, (12)

where GR
i (x,ω) is the equal-position retarded Green’s function

for the electrons in the ith lead. The local density of states ρi

is directly measurable using scanning tunneling microscopy,
as the differential tunneling conductance Gi(x,V ) at position
x in lead i is directly proportional to this quantity as a function
of applied voltage V , i.e., Gi(x,V ) ∝ ρi(x,ω = eV ).

Here we shall be concerned with the low-energy behavior of
the LDOS, where temperature T and energy ω are well below
the Kondo temperature TK of the system. With the N wires
effectively connected at a single junction with a boundary
condition due to the topological Kondo effect (see Fig. 2), the
problem of finding the LDOS is analogous to that for a junction
of several Luttinger-liquid wires [29,34–38].
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FIG. 2. (Color online) The topological Kondo problem at low
energy is equivalent to an N -wire junction with a splitting matrix
M describing the boundary condition at the junction. With an STM
tip, the LDOS ρi(x,ω) of wire i is probed.

A. Electron Green’s function

The zero-temperature, equal-position Green’s function
〈�i(x,t)�†

i (x,0)〉 for wire i in the N -wire junction system
can be calculated following Agarwal et al. in Ref. [29]. This
amounts to finding the current-splitting matrix M for the
junction, which relates the incoming ji,I and outgoing ji,O

currents at the junction through ji,O = ∑
j Mij jj,I . In terms

of the chiral bosonic fields φi,I = θi − ϕi and φi,O = θi + ϕi ,
such that the electron field is expressed as �j,I/O ∝ eiφj,I/O ,
the M matrix is equivalent to the boundary condition

φi,O =
∑

j

Mij φj,I . (13)

With a Bogoliubov transformation,

φj,O/I = [(1 + K)φ̃j,O/I + (1 − K)φ̃j,I/O]/(2
√

K), (14)

one obtains the free outgoing/incoming fields φ̃j,O/I with
commutation relations

[φ̃j,O/I (x,t),φ̃j,O/I (x ′,t)] = ±iπ sgn(x − x ′). (15)

Their splitting matrix M̃, which relates φ̃i,O(x) =∑
j M̃ij φ̃j,I (−x) in the “unfolded picture” (where x is

extended to the entire real line) is given by

M̃ = [(1 + K)M + (1 − K)I][(1 + K)I + (1 − K)M]−1,

(16)

where I is the identity matrix.
The Green’s function now follows from

〈�i(x,t)�†
i (x,0)〉

= 〈�i,I (x,t)�†
i,I (x,0)〉 + 〈�i,O(x,t)�†

i,O(x,0)〉
+ ei2kF x〈�i,O(x,t)�†

i,I (x,0)〉
+ e−i2kF x〈�i,I (x,t)�†

i,O(x,0)〉, (17)

where the two oscillatory terms vanish for lead lengths L →
∞ in the cases we are interested in, since the corresponding
Green’s functions contain an L dependence ∼L(M̃ii−1)K . The

remaining terms are given by

〈�i,O(x,t)�†
i,O(x,0)〉

= 1

2πa
〈eiφi,O (x,t)e−iφi,O (x,0)〉

= 1

2πa
〈ei[(1+K)φ̃i,O (x,t)+(1−K)φ̃i,I (x,t)]/(2

√
K)

× e−i[(1+K)φ̃i,O (x,0)+(1−K)φ̃i,I (x,0)]/(2
√

K)〉
= 1

2πa
〈ei[(1+K)

∑
j M̃ij φ̃j,I (−x,t)ei(1−K)φ̃i,I (x,t)]/(2

√
K)

× e−i[(1+K)
∑

j M̃ij φ̃j,I (−x,0)e−i(1−K)φ̃i,I (x,0)]/(2
√

K)〉. (18)

With the relation 〈eiα1φ(z1) · · · eiαnφ(zn)〉 = ∏
i<j (zi − zj )αiαj

for the expectation value of a product of vertex
operators with complex coordinates z = x + iτ [39],
one arrives at 〈�i,O(x,t)�†

i,O(x,0)〉 = 〈�i,I (x,t)�†
i,I (x,0)〉 =

〈�i(x,t)�†
i (x,0)〉/2, with [29]

〈�i(x,t)�†
i (x,0)〉 = 1

2πa

[
ia

−vt + ia

](K+1/K)/2

×
[ −a2 − 4x2

(−vt + ia)2 − 4x2

]M̃ii (1/K−K)/4

.

(19)

Now, close to the junction, where we can put x → 0, as
well as far from the junction, where x → ∞, the expressions
allow us to compute the LDOS. When x → 0, we have

〈�i(0,t)�†
i (0,0)〉 = 1

2πa

[
ia

−vt + ia

]{(1−M̃ii )K+(1+M̃ii )/K}/2

,

(20)

which means that the (chiral) boundary field �i(0,t) has
scaling dimension

	i = {(1 − M̃ii)K + (1 + M̃ii)/K}/2, (21)

i.e., 〈�i(0,τ )�†
i (0,0)〉 ∼ τ−	i for imaginary time τ � a/v.

Similarly, far away from the junction, where x → ∞, one
has

〈�i(x,t)�†
i (x,0)〉 = 1

πa

[
ia

−vt + ia

](K+1/K)/2

, (22)

implying the usual scaling exponent 	i = (K + 1/K)/2 for
bulk (nonchiral) electrons.

B. The local density of states

Far away from the junction, putting Eq. (22) for the Green’s
function (x → ∞) into the expression (12) for the LDOS, we
arrive at [29,40]

ρi(x → ∞,ω) = 1

aπ�(	i)

(a

v

)	i

ω	i−1e−aω/vH (ω), (23)

where � is the gamma function and H is the Heaviside step
function, and with the above scaling dimension 	i = (K +
1/K)/2. For noninteracting electrons in the leads, this reduces
to ρi(x,ω) = 1/(πv) ≡ ν0, i.e., the density of states ν0 for a
bulk spinless quantum wire, as expected.
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Considering positive energies ω � v/a, we will neglect the
factor e−aω/vH (ω) in the discussion below.

An analytical expression can also be obtained for the limit
2xω/v � 1, resulting in [32]

ρi(x,ω) = 1

πv�[(K + 1/K)/2]

(a ω

v

)(K+1/K)/2−1

+ 22−(K+1/K)/2 cos(2xω/v + δ)

πv�[M̃ii(1/K − K)/4]

×
(a ω

v

)[M̃ii (1/K−K)/4]−1

×
(a

x

)(3K+1/K)(1+M̃ii )/8+(K+3/K)(1−M̃ii )/8
, (24)

where δ ≡ Arg[i(K+3/K)(1+M̃ii )/8+(3K+1/K)(1−M̃ii )/8]. Note that
for fixed ω, the second term vanishes as x → ∞, reducing the
expression (24) to that in Eq. (23).

Finally, and most importantly, namely close to the junction,
by putting the expression (20) for the Green’s function of
the chiral boundary field at the junction (x = 0) into the
expression (12) for the LDOS, we arrive at [29]

ρi(0,ω) = 1

a2π�(	i)

(
a

v

)	i

ω	i−1, (25)

with 	i now given by Eq. (21). This behavior occurs within a
distance of the order of x < v/(2ω) from the junction.

In order to proceed, we must now see what values for the
M̃ matrix the different boundary conditions in the topological
Kondo effect correspond to.

C. Local density of states for topological Kondo systems

1. Strong Josephson coupling

The simplest case is for strong Josephson coupling, where
all of the θ̌j fields have Dirichlet BCs, and all the ϕ̌j fields
have Neumann BCs, at all strong-coupling fixed points. The
electron operator �j,I/O ∝ ei(θj ∓ϕj ) at the junction at x = 0 is
then given by

�j,O(0) ∝ ei[θj (0)+ϕj (0)] = eici eiϕj (0), (26)

where ci , a constant depending on the potential minimum
that the θj (0) field is trapped in, can be gauged away. Hence,
�j,O(0) = �

†
j,I (0), meaning that φ̃i,O(0) = −φ̃i,I (0), i.e., the

M̃ matrix is that for perfect Andreev reflection in each lead
separately, namely,

M̃ =

⎛
⎜⎜⎝

−1 0 . . . 0
0 −1 . . . 0
...

...
. . .

...
0 0 . . . −1

⎞
⎟⎟⎠ , (27)

such that M̃ii = −1 for all i.
Let us now consider the electron Green’s function (19) close

to the junction, i.e., letting x → 0. With M̃ii = −1,

〈�i(x,t)�†
i (x,0)〉 = 1

2πa

[
ia

−vt + ia

]K

, (28)

implying a scaling dimension (21) equal to 	i = K . The lead
LDOS at the junction therefore behaves as

ρi(0,ω) ∼ ωK−1. (29)

Hence the LDOS has exactly the same behavior as for a single-
wire perfect Andreev reflection [30], meaning that tunneling
spectroscopy follows the same power law for all fixed points
appearing, i.e., there is no difference between the Kondo
fixed-point manifold and the resonant Andreev reflection fixed
point.

For noninteracting lead electrons, i.e., with K = 1, Eq. (25)
results in

ρi(0,ω) = 1

2πv
= ν0

2
, K = 1, (30)

such that the electron density of states at the junction is half
of that for bulk spinless electrons.

This can be confirmed by the exact solution for a Majo-
rana fermion coupled to a quantum wire. Decomposing the
lead electron into two Majorana fermions η and ζ , such
that �j (x) = [ηj (x) + iζj (x)]/

√
2, the Majorana tunneling

term (8) reads HA ∝ ∑
j

√
�jγj ζj (0). Hence at the resonant

Andreev reflection fixed point (�j → ∞), the ζj Majorana
is hybridized with the γj Majorana within a “screening
cloud” of size [41] ξM ∼ v/�j . In particular, the x = 0
Matsubara Green’s function Gζj

for the ζj Majorana is given
by [42]

Gζj
(0,iωn) = −isgn(ωn)

2v

iωn

iωn + i�j sgn(ωn)
. (31)

Hence the ζj contribution ∝ Im Gζj
(0,iωn → ω) to the LDOS

vanishes as �j → ∞.
Therefore, at x � ξM , only the ηj Majorana contributes to

the LDOS of the lead electron, which thus is half the bulk
value, i.e., ρj (0,ω) = ν0/2.

2. Without Josephson coupling

For the topological Kondo model without Josephson
coupling, i.e., the SO2(N) model of Béri and Cooper [15],
the fields θ̌0(x),ϕ̌1(x), . . . ,ϕ̌N−1(x) have Neumann BCs, and
the fields ϕ̌0(x),θ̌1(x), . . . ,θ̌N−1(x) have Dirichlet BCs at the
strong-coupling fixed point.

The original fields in terms of the rotated ones in Eq. (7)
are given by

θ1 = 1√
N

θ̌0 + 1√
2
θ̌1 + 1√

6
θ̌2 + · · · + 1√

N (N − 1)
θ̌N−1,

θ2 = 1√
N

θ̌0 − 1√
2
θ̌1 + 1√

6
θ̌2 + · · · + 1√

N (N − 1)
θ̌N−1,

θ3 = 1√
N

θ̌0 − 2√
6
θ̌2 + · · · + 1√

N (N − 1)
θ̌N−1, (32)

...

θN = 1√
N

θ̌0 − N − 1√
N (N − 1)

θ̌N−1,

where for N = 3 the terms after the dots should be neglected.
The change of basis between ϕj and ϕ̌j is the same.
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Hence, the electron operator �j,I/O ∝ ei(θj ∓ϕj ) at the
junction at x = 0 is then given by, for simplicity considering
lead j = 1,

�1,O(0) ∝ ei[ϕ1(0)+θ1(0)] = e
i[ 1√

N
ϕ̌0(0)+···+ 1√

N
θ̌0(0)+...]

= eic1e
i[ 1√

N
θ̌0(0)+ 1√

2
ϕ̌1(0)+···+ 1√

N(N−1)
ϕ̌N−1(0)]

, (33)

with c1 a constant, depending on the pinning value of the fields
with Dirichlet BCs, which we gauge away.

From Eqs. (18)–(20), it follows that the term θ̌0/
√

N in
the exponent in Eq. (33) contributes a term 1/(NK), and each
term ϕ̌n/

√
n(n + 1) contributes a term K/[n(n + 1)], in the

exponent of 〈�1(0,t)�†
1(0,0)〉, which gives

〈�1(0,t)�†
1(0,0)〉 = 1

πa

[
ia

−vt + ia

] 1
NK

+∑N−1
k=1

1
k(k+1) K

(34)

(see also the Appendix for a derivation of the M̃matrix). Hence
we have the scaling exponent

	i = 1

NK
+ N − 1

N
K. (35)

For x � v/(2ω), the lead LDOS therefore goes as

ρi(x → 0,ω) ∼ ω
1

NK
+ N−1

N
K−1. (36)

Thus, for 1
N−1 < K < 1, we have a diverging LDOS at zero

energy in the vicinity of the junction. For noninteracting lead
electrons, K = 1, we get 	i = 1, again giving the result
ρi(0,ω) = ν0

2 according to Eq. (25).
Note also that in the 2xω/v � 1 limit, there is an

unusual exponent in the x dependence of the subleading
oscillatory term in Eq. (24), which has an envelope decaying
as ∼x−3/(4K)−(K−1/K)/(2N) as a function of distance x from the
junction, and diverging as ∼ω(1−2/N)(K−1/K)/4−1 as a function
of energy.

IV. DISCUSSION

In this work, we have investigated the tunneling spec-
troscopy of topological Kondo systems, providing a route
complementary to transport measurements in the search for
experimental signatures of the predicted non-Fermi-liquid
behavior.

We have found that for the minimal topological Kondo
setup of Béri and Cooper [15], with a strong-coupling SO2(N )
Kondo fixed point, the LDOS of the effectively spinless
electrons in lead i in the immediate neighborhood of the
junction [meaning that the distance x from the junction is less
than v/(2ω)] follows the power law in Eq. (36), i.e., it goes as
∼ω

1
NK

+ N−1
N

K−1 as a function of energy ω. For noninteracting
leads, K = 1, the LDOS close to the junction is a constant,
equal to half the bulk value, i.e., 1/(2πv). However, for
interacting lead electrons, K < 1, the scaling dimension (35)
controlling the LDOS and hence the tunneling conductance of
an STM tip probing lead i depends on the number N of leads.
An experimental signature of the topological Kondo fixed
point is therefore obtained by using gate voltages, changing
the number N of leads coupling to the Majoranas on the island,
and then observing how the scaling exponent of the tunneling
conductance in lead i changes.

In the topological Kondo system with a strong Josephson
coupling, realizing an SO1(N ) topological Kondo fixed point
together with a resonant Andreev reflection fixed point and
a continuous manifold of fixed points where Kondo and
resonant Andreev reflection processes coexist [21], we find
that the LDOS of the lead electrons close to the junction
instead follows the power law ∼ωK−1 as a function of energy,
also with the constant value 1/(2πv) for K = 1. Hence in
the strong Josephson coupling case, an STM experiment
cannot distinguish the Kondo fixed point, or the coexistence
manifold, from the pure resonant Andreev reflection fixed
point.

The only trace of the topological Kondo physics in the
LDOS in the SO1(N ) case would come from the corrections
due to the leading irrelevant operators at the fixed points. With
scaling dimension 	LIO > 1, given by Eq. (11), these operators
contribute terms ∼ω	LIO−1 to the LDOS at x → 0. Hence, in
these subleading corrections, there is a difference between the
resonant Andreev reflection fixed point where 	LIO = 2 and
in the Kondo fixed-point manifold, where 1 < 	LIO � 3/2
(1 < 	LIO � 2) for N = 3 (N > 3). However, any repulsive
interaction among the lead electrons renders the LDOS (29)
divergent at zero energy, obscuring the subleading corrections
which vanish as ω → 0.

In summary, we have provided analytical expressions for
the LDOS of the leads in Majorana devices hosting the
topological Kondo effect. This provides a clear signature, com-
plementary to previously proposed transport measurements, to
look for in experiments.
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APPENDIX: SPLITTING MATRIX FOR TOPOLOGICAL
KONDO

Here let us compute the M̃matrix for the topological Kondo
effect of Béri and Cooper [15].

First, note that the nonchiral and chiral bosonic fields (see
Sec. III A) are related by

ϕ̃i(x) = 1√
K

ϕi(x) = (φ̃O,i − φ̃I,i)/2

= 1√
K

(φO,i − φI,i)/2, (A1)

θ̃i(x) =
√

Kθi(x) = (φ̃I,i + φ̃O,i)/2

=
√

K(φI,i + φO,i)/2. (A2)

The topological Kondo BC, i.e., the fields
θ̌0(x),ϕ̌1(x), . . . ,ϕ̌N−1(x) having Neumann BCs and the
fields ϕ̌0(x),θ̌1(x), . . . ,θ̌N−1(x) having Dirichlet BCs,
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means that we pin the following vector (cf. Refs. [36,37]):⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
N

[ϕ̃1(x = 0) + ϕ̃2(x = 0) + ϕ̃3(x = 0) + · · · + ϕ̃N (x = 0)]
1√
2
[θ̃1(x = 0) − θ̃2(x = 0)]

1√
6
[θ̃1(x = 0) + θ̃2(x = 0) − 2θ̃3(x = 0)]

1√
12

[θ̃1(x = 0) + θ̃2(x = 0) + θ̃3(x = 0) − 3θ̃4(x = 0)]
...

1√
(N−1)N

[θ̃1(x = 0) + θ̃2(x = 0) + θ̃3(x = 0) + θ̃4(x = 0) + · · · − (N − 1)θ̃N (x = 0)]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= −→
0 (A3)

to a value that we set to be the null vector �0. With the notation �̃j ≡ θ̃j (x = 0) and �̃j = ϕ̃j (x = 0), we write this as⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
N

(�̃1 + �̃2 + �̃3 + · · · + �̃N )
1√
2
(�̃1 − �̃2)

1√
6
(�̃1 + �̃2 − 2�̃3)

1√
12

(�̃1 + �̃2 + �̃3 − 3�̃4)
...

1√
(N−1)N

(�̃1 + �̃2 + �̃3 + �̃4 + · · · − (N − 1)�̃N )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= −→
0 . (A4)

From Eqs. (A2) and (A1), we have⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(�̃O,1 − �̃I,1 + �̃O,2 − �̃I,2 + �̃O,3 − �̃I,3 + · · · + �̃O,N − �̃I,N )

(�̃O,1 + �̃I,1 − �̃O,2 − �̃I,2)

(�̃O,1 + �̃I,1 + �̃O,2 + �̃I,2 − 2�̃O,3 − 2�̃I,3)

(�̃O,1 + �̃I,1 + �̃O,2 + �̃I,2 + �̃O,3 + �̃I,3 − 3�̃O,4 − 3�̃I,4)
...

(�̃O,1 + �̃I,1 + �̃O,2 + �̃I,2 + �̃O,3 + �̃I,3 + �̃O,4 + �̃I,4 + · · · − (N − 1)�̃O,N − (N − 1)�̃I,N )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= −→
0 , (A5)

where �̃O/I,j = φ̃O/I,j (x = 0). Hence,⎛
⎜⎜⎜⎜⎜⎜⎜⎝

�̃O,1 + �̃O,2 + �̃O,3 + �̃O,N

�̃O,1 − �̃O,2

�̃O,1 + �̃O,2 − 2�̃O,3

�̃O,1 + �̃O,2 + �̃O,3 − 3�̃O,4
...

�̃O,1 + �̃O,2 + �̃O,3 + �̃O,4 + · · · − (N − 1)�̃O,N

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

�̃I,1 + �̃I,2 + �̃I,3 + �̃I,N

−�̃I,1 + �̃I,2

−�̃I,1 − �̃I,2 + 2�̃I,3

−�̃I,1 − �̃I,2 − �̃I,3 + 3�̃I,4
...

�̃I,1 + �̃I,2 + �̃I,3 + �̃I,4 + · · · − (N − 1)�̃I,N

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(A6)

⇔

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 · · · 1
1 −1 0 0 · · · 0
1 1 −2 0 · · · 0
1 1 1 −3 · · · 0
...

...
...

...
. . .

...
1 1 1 1 · · · −(N − 1)

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

�̃O,1

�̃O,2

�̃O,3

�̃O,4
...

�̃O,N

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 · · · 1
−1 1 0 0 · · · 0
−1 −1 2 0 · · · 0
−1 −1 −1 3 · · · 0

...
...

...
...

. . .
...

−1 −1 −1 −1 · · · (N − 1)

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

�̃I,1

�̃I,2

�̃I,3

�̃I,4
...

�̃I,N

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

(A7)

It follows that

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

�̃O,1

�̃O,2

�̃O,3

�̃O,4
...

�̃O,N

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
N

1
2

1
6

1
12 · · · 1

N(N−1)
1
N

− 1
2

1
6

1
12 · · · 1

N(N−1)
1
N

0 − 1
3

1
12 · · · 1

N(N−1)
1
N

0 0 − 1
4 · · · 1

N(N−1)

...
...

...
...

. . .
...

1
N

0 0 0 · · · − 1
N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 · · · · · · 1
−1 1 0 0 · · · 0
−1 −1 2 0 · · · 0
−1 −1 −1 3 · · · 0

...
...

...
...

. . .
...

−1 −1 −1 −1 · · · (N − 1)

⎞
⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
=M̃

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

�̃I,1

�̃I,2

�̃I,3

�̃I,4
...

�̃I,N

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (A8)
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Thus the splitting matrix M̃ for the topological Kondo effect is

M̃ =

⎛
⎜⎜⎝

2/N − 1 2/N · · · 2/N

2/N 2/N − 1 · · · 2/N
...

...
. . .

...
2/N 2/N · · · 2/N − 1

⎞
⎟⎟⎠ . (A9)

For Fermi-liquid leads (K = 1, i.e., M̃ = M), this agrees [17,18] with the expression Gij = (e2/h)(δij − Mij ) for the K = 1
conductance tensor.

Hence, according to Eq. (21), the scaling dimension for electron tunneling into a lead, close to the junction, is

	i = {(1 − M̃ii)K + (1 + M̃ii)/K}/2 = (N − 1)K/N + 1/(NK). (A10)
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