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Quantum sticking of atoms on membranes
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A continuum model for low-energy physisorption on a membrane under tension is proposed and studied with
variational mean-field theory. A discontinuous change in the energy-dependent sticking coefficient is predicted
under certain conditions. This singularity is a result of the bosonic orthogonality catastrophe of the vibrational
states of the membrane. The energy-dependent sticking coefficient is predicted to have exponential scaling in
1/E at energies above the singularity. The application of this model to the quantum sticking of cold hydrogen to
suspended graphene is discussed. The model predicts that a beam of atomic hydrogen can be completely reflected
by suspended graphene at ultralow energies.
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I. INTRODUCTION

The adsorption of atoms and molecules to a surface is
of fundamental interest in science. Corrosion, heterogeneous
catalysis, and epitaxy all involve the adsorption of atoms
to a surface in a central way. Moreover, adsorption can
transform a material, since many physical properties of solids
are determined in part by their adsorbates.

The physisorption of low-energy atoms and molecules to a
surface is the focus of this study. The impetus for considering
this regime is provided by recent experimental breakthroughs
in methods to produce and manipulate ultracold atoms. Two
distinct quantum effects shape physisorption in this regime.
The first effect, called quantum reflection (QR), is a wave
phenomenon that reduces [1] the likelihood of a low-energy
quantum particle of reaching the surface, in comparison to a
classical particle. This reduction due to QR in the particle’s
probability density at low energies near the surface leads to a
reduction in the transition probability of the particle to a state
bound to the surface. QR consequently leaves its imprint on
the behavior of low-energy physisorption.

The second effect, the orthogonality catastrophe (OC), is a
many-body effect that reduces the overlap between the state
of the surface in the absence of the adsorbate and its state
in the presence of the adsorbate. The OC can cause a sharp
transition in the physisorption rate at low energies such that
one-phonon physisorption (quantum sticking) to a surface state
is completely suppressed [2]. While these effects have been
previously considered in the context of low-energy atomic
physisorption on a semi-infinite solid, adsorption to a two-
dimensional (2D) solid such as graphene has some interesting
differences from the 3D case.

There have been a variety of experimental measurements of
the sticking of cold atoms to surfaces in recent years, including,
for example, systems such as thermal neon atoms to Ru(001)
surfaces [3], spin-polarized hydrogen atoms to liquid-helium
surfaces [4,5], and sodium atoms in a dilute Bose-Einstein
condensate to silicon surfaces [6]. We now consider the case
of the physisorption of slow atoms to membranelike materials
such as graphene.
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Graphene can be suspended across μm-sized holes in a
substrate, creating a high-Q nanomechanical resonator [7]
at low temperatures. Slow-moving adatoms would primarily
exchange energy through graphene’s low frequency out-of-
plane vibrational modes—the so-called ZA flexural [8] modes.
These vibrations are very similar in character to those of a
clamped elastic membrane under tension. ZA flexural modes
are polarized normal to the membrane in equilibrium. In
contrast, the surface vibrations of a 3D elastic solid have a
different character with only partial polarization normal to the
surface. Thus the inelastic atom-membrane coupling might be
enhanced relative to a 3D solid. Furthermore, the vibrational
spectrum of suspended graphene depends on the membrane
tension and is independent of elastic constants. Thus, the
inelastic atom-membrane coupling is in principle a parameter
that might be tuned experimentally.

A recent numerical study [8] of the atomic sticking to
graphene concluded that at low incident energies the sticking
probability of atomic hydrogen to suspended graphene is
enhanced relative to a graphite surface. The model used in this
numerical study however suffers within perturbation theory
from a divergent self-energy as a result of the low-frequency
behavior of the atom-phonon [9] interaction. A low-frequency
cutoff was used to make the numerical calculation tractable
[10], and the effects of the infrared divergence were not
contained in their results. A continuum version of their model
with the same low-frequency behavior in the atom-phonon
interaction is considered here in an effort to explore the
consequences of this infrared divergence on physisorption.
Such a model should also apply to the growing number of
membranelike 2D materials (boron nitride, silicon nitride [11],
and the monolayer transition metal dichalcogenides serve
as examples of these “quantum drums” [12]) available to
experiment.

II. ATOM-MEMBRANE INTERACTION

One might start by treating the atom-membrane interaction
to be a sum of two-body interactions over the surface of
the membrane. For an atom located a distance Z above the
membrane center, the atom-membrane interaction is of the
form

V (Z) =
∫

d2r v(
√

r2 + (Z − u)2), (1)

1098-0121/2014/90(24)/245412(6) 245412-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.90.245412


DENNIS P. CLOUGHERTY PHYSICAL REVIEW B 90, 245412 (2014)

a

Z

x

y

(r, u)

FIG. 1. (Color online) Sketch of the circular membrane radius a

with an impinging atom mass M . The membrane distorts out of the
xy plane in the presence of the adatom. Each differential patch of
the membrane, located at (r,θ,u) (polar coordinates), contributes to
the atom-membrane interaction.

where v(
√

r2 + (Z − u)2) is the effective interaction between
a differential patch of the membrane located at (r,u) and the
impinging atom at Z. (Here, u is the height of the patch above
the xy plane and r sweeps over the membrane in its equilibrium
in isolation. See Fig. 1.) Expanding the interaction to linear
order in u, one obtains

V (Z) =
∫

d2rv(
√

r2 + Z2) − ∂

∂Z

∫
d2ru(r)v(

√
r2 + Z2).

(2)
The interest here is in low energies and low temperatures
where the validity of neglecting higher-order terms in the
displacement to describe atom-surface collisions has been
previously discussed [13].

The first term in Eq. (2) is the interaction with a static,
flat membrane. For the van der Waals case, the long-range
attractive interaction between two neutral, polarizable parti-
cles separated by s behaves as v(s) = −C6s

−6 for large s

(neglecting retardation effects). Thus, the static term behaves
at large distances as

V0(Z) = −πC6

2

(
1

Z4
− 1

(Z2 + a2)2

)
(3)

for a circular membrane with radius a. This is asymptotically
equal to the Casimir-Polder potential between a neutral atom
and a 2D insulating solid [14]. The short-range repulsive con-
tribution to the atom-membrane interaction can be similarly
obtained.

For incident atoms approaching near the membrane’s
center, the static interaction can be expanded efficiently in
cylindrical multipole moments. Thus for off-axis collisions
the interaction of Eq. (3) is the lowest-order term in an
expansion of R/a where R is the distance of the atom from
the membrane’s symmetry axis.

The second term in Eq. (2) is the inelastic atom-membrane
interaction, coupling the atom to excitations of the membrane.
Classically, the sound that a drum makes depends on the
location of the strike on the drumhead. For an impulse directed

at the drum’s center, only circularly symmetric modes are
excited. Similarly, it will be shown for an atomic beam focused
on the center of suspended graphene, only the circularly
symmetric modes participate in the inelastic scattering. It will
be apparent that only this portion of graphene’s vibrational
density of states is relevant to the sticking process under the
assumed conditions.

One can expand the displacement u in normal modes of the
clamped membrane [15] ρmn(r)

u(r) =
∞∑

m=−∞

∞∑
n=1

Qmnρmn(r), (4)

where

ρmn(r) = 1√
πa2

Jm(αmnr/a)

|Jm+1(αmn)|e
imθ (5)

and αmn is the nth root of Jm. Hence, the inelastic interaction
at large distances becomes

V1 = −
∞∑

m=−∞

∞∑
n=1

Qmn

∂

∂Z

∫
d2rρmn(r)v(

√
r2 + Z2)

= C6√
πa2

∑
m,n

Qmn

|Jm+1(αmn)|
∂

∂Z

∫
dθdrr

Jm(αmnr/a)

(r2 + Z2)3
eimθ

= 2πC6√
πa2

∑
n

Q0n

|J1(α0n)|
∂

∂Z

∫
drr

J0(α0nr/a)

(r2 + Z2)3
. (6)

Thus, only the m = 0 modes participate in the scattering. For
a > Z, V1 becomes

V1 ≈ 2πC6√
πa2

∑
n

Q0n

|J1(α0n)|
∂

∂Z

(
k2

0n

8Z2
K2(k0nZ)

)
, (7)

where kmn = αmn/a and K2 is a modified Bessel function of
the second kind.

By quantizing the vibrations of the membrane (see the
Appendix), one obtains

Qmn =
√

�

2σωmn

(bmn + b
†
m̄n), (8)

where ωmn = vskmn and b
†
mn (bmn) is a creation (annihilation)

operator for quanta in the mode labeled by (m,n). The speed
of sound is determined by the membrane tension γ , and the

membrane mass density σ , viz. vs =
√

γ

σ
. Thus,

V1 ≈ 2πC6√
πa2

∑
n

√
�

2σω0n

1

|J1(α0n)|
∂

∂Z

×
(

k2
0n

8Z2
K2(k0nZ)

)
(b0n + b

†
0n). (9)

For notational simplicity, the m = 0 subscript is dropped in
what follows.

III. HAMILTONIAN

One can truncate the atom state space to the continuum
state |k〉 initially occupied and the bound state |b〉 in the static
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potential V0. The Hamiltonian is then of the form [2]

H = Hp + Hb + Hc, (10)

where

Hp = Ec
†
kck − Ebc

†
bcb, (11)

Hb =
∑

n

�ωnb
†
nbn, (12)

Hc = −(c†kcb + c
†
bck)gkb

∑
n

ξ (bn + b†n)

− c
†
kckgkk

∑
n

ξ (bn + b†n)

− c
†
bcbgbb

∑
n

ξ (bn + b†n), (13)

and ξ =
√

�

4aσvs
with gαβ = 〈α|V ′

0(Z)|β〉.
The frequency independence of ξ , the coupling of the

atom to low-frequency phonons, in this model leads to
problems with a straightforward perturbative expansion: the
atom-phonon coupling will shift the binding energy of the
atom to the membrane, and a calculation of the atom self-
energy to second order in gbb logarithmically diverges with
increasing membrane size [9]. Thus, results based on finite-
order perturbation theory are unreliable for this model.

IV. VARIATIONAL MEAN-FIELD THEORY

In previous work [2,16] a variational mean-field method has
been used to obtain the sticking probability at low energies.
A generalized unitary transformation U = exp(c†bcbx), x ≡∑

n fn(bn − b
†
n)/�ωn that displaces the membrane when in

the presence of the adatom is applied to the Hamiltonian H ,
resulting in the transformed Hamiltonian H̃ = H0 + H1,

H0 = Ec
†
kck−εc

†
bcb−c

†
bck − ∗c†kcb+

∑
n

�ωnb
†
nbn, (14)

H1 = −c
†
kcb

(∑
n

gkbξ (bn + b†n)e−x − ∗
)

− c
†
bck

(
ex

∑
n

gkbξ (bn + b†n) − 

)

− c
†
kck

∑
n

gkkξ (bn + b†n)

− c
†
bcb

∑
n

(gbbξ − fn)(bn + b†n), (15)

where

ε ≡ Eb + Eb, (16)

Eb =
∑

n

2fngbbξ − f 2
n

�ωn

, (17)

and

 ≡
〈
ex

∑
n

gkbξ (bn + b†n)

〉
; (18)

〈· · · 〉 denotes the thermal average over the phonon states. Eb

is a shift in the bound-state energy of the atom that results from
the atom-phonon interaction.

The optimum values of the parameters of the transformation
{fn} are determined by minimizing the Bogoliubov-Peierls
upper bound to the free energy of the system [2,17]. One thus
obtains the following expression for the variational parameters,
valid for Eb 
 :

fn = gbb ξ

1 + ω̄
ωn

coth β�ωn

2

, (19)

where �ω̄ ≡ 2/(E + ε) and β−1 = kBT .
From Eq. (19) one concludes that if the frequency of the nth

mode ωn is large with respect to ω̄, then fn ≈ gbb ξ . Thus, in
this case it is apparent from Eq. (15) that U fully eliminates the
interaction with the nth mode when the atom is bound to the
membrane. For low-frequency modes where ωn � ω̄, Eq. (19)
gives fn vanishing as ω2

n. Thus the fast, high-frequency modes
yield a new equilibrium for the membrane in the presence
of the impinging atom that is distorted relative to that of
the membrane in isolation. This is reminiscent of Leggett’s
adiabatic renormalization [18] in the spin-boson model.

V. SELF-CONSISTENT SOLUTION

A self-consistent equation for the mean-field transitional
amplitude  may be obtained from Eqs. (18) and (19) within
the continuum approximation:

 ≈ δ
gkb

gbb

ln
εDε

2
exp

(
− εδ

2

)
, (20)

where ρ = a/π�vs is the density of vibrational modes (inde-
pendent of frequency in this model), εD ≡ �ωD is the energy
of the highest frequency phonon supported by the membrane,
and δ ≡ ρg2

bbξ
2. Equation (20) applies to the low-temperature

case where the membrane temperature satisfies kBT � δ.
Equation (20) can be solved graphically (Fig. 2). By setting

y =
√

εδ/2, the self-consistent condition reduces to f (y) =
1/C where f (y) ≡ y ln Ay exp(−y2) and the dimensionless

parameter C is given by C ≡ 2gkb

gbb

√
δ
ε

and A ≡ √
εD/δ. The

value of C depends on the incident energy E through gkb.
From Eq. (20), it is apparent that  = 0 is always a

solution. In addition, a nonvanishing positive, real solution for
 exists when C = C∗(≈√

2e/ ln(A/
√

2)) for A 
 1. (Here,
e is Napier’s constant, e = 2.718 28 . . . .) For C > C∗, two
positive, real solutions for  exist; for C < C∗, only the trivial
solution  = 0 exists.

It is straightforward to show that the largest value of
 possible yields the minimum free energy. Hence, 

changes discontinuously at criticality, dropping from  =
c(≈ √

2εδ) for C = C∗ to  = 0 for C < C∗.
The form of the self-consistent equation in Eq. (20)

is substantially different from the nonperturbative model
previously considered for a 3D target [2] where  was found
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FIG. 2. Graphical solution of the self-consistent equation for 

for the case of C = 1 and A = 50. The solution y = y1 corresponds
to larger value of  and the minimum free energy.

to smoothly vanish at a critical incident energy. The difference
is due to the low-frequency enhancement of the atom-phonon
coupling in the case of the membrane.

VI. QUANTUM STICKING RATE

The rate of transitions from the continuum state with
incident energy E to the lowest energy bound state can be
calculated using Fermi’s “golden rule”:

� = 2π

�

∑
if

pi |〈b; f |H̃int|k; i〉|2δ(E + ε − εf i) (21)

with

H̃int = −c
†
kcbgkb

∑
n

ξ (bn+b†n)e−x

− c
†
bcke

xgkb

∑
n

ξ (bn + b†n) (22)

and pi ∝ exp(−βεi), the probability of the membrane initially
having vibrational energy εi and εf i = εf − εi . An incident
beam with uniform circular cross section (radius R0 � a) is
the assumed initial state |k〉.

The sticking rate is proportional to the square of the Franck-
Condon factor � ∝ exp(−2F ) where

2F =
∑

n

f 2
n

(�ωn)2
coth

β�ωn

2
. (23)

For the case of low incident energy E < Ec, gkb becomes too
small to support a nonvanishing solution to Eq. (20) (C < C∗).
With  = 0, the Franck-Condon factor tends to vanish for
large membranes, with

e−2F ∼ exp

(
−kBT δ

ε2
0

)
, ε0 → 0, (24)

where ε0 is the energy of the lowest frequency phonon
supported by the clamped membrane. As the radius a becomes
large, ε0 tends to zero in inverse proportion to a. Thus,

the sticking rate of low-energy particles is exponentially
suppressed for large membranes.

For incident energies approaching Ec from above, Eq. (23)
yields 2F ≈ 2δ/�ω̄. For low incident energies, gkb ∝ √

E and
�ω̄ ∝ E, an artifact of the energy scaling due to quantum
reflection [2,16]. Thus, the Franck-Condon factor contributes
exp(−Ec/E) to the sticking rate.

The total sticking rate is a sum over contributions from
all bound states. Thus at low temperatures such that ε0 �
kBT � δ,

� =
nb∑

n=1

�n ≈ 2πδ

�

(
gkb

gbb

)2

e−2F

nb∑
n=1

2π

α0n

J 2
1

(
α0nR0

a

)
,

(25)

where nb is the radial quantum number of the highest bound
state and R0 is the radius of the incident atomic beam. The sum
in Eq. (25) approaches a number close to unity as nb becomes
large compared to a/R0.

The probability of sticking is the rate of sticking per
incoming flux of atoms. It is straightforward to show from
Eq. (25) that for energies above Ec, the sticking probability
behaves as

s ∝
√

Ee−Ec/E. (26)

The exponential scaling in 1/E is different from the case of
sticking to an elastic 3D solid [2] where the sticking above
the superreflective transition behaves as s ∝ √

Ee−√
Ec/E . The

difference is a direct result of the difference in the low-
frequency behavior of the inelastic atom-surface interaction;
the inelastic atom-membrane interaction is enhanced at low
frequencies in comparison to the interaction for a 3D solid.

VII. RESULTS FOR GRAPHENE

For the case of suspended graphene, potential parameters
are obtained from a comparison of the asymptotic behavior
of Eq. (2) to a previous model [8,19]. Numerical calculations
give a binding energy of ε ≈ 25 meV and δ ≈ 60 μeV. The
energy-dependent coupling gkb is also computed numerically
for this system (see Fig. 3). The ratio of the binding energy ε to
δ is sufficiently large that C remains much smaller than C∗ over
incident energies less than 15 meV for atomic hydrogen (see
Fig. 4). Thus, Ec cannot be less than 15 meV for this system.
In this case, there is only the self-consistent solution  = 0 for
E � 15 meV. One concludes that within this model, quantum
sticking is forbidden for ultracold atomic hydrogen impinging
on graphene under the conditions considered. Graphene might
then serve as a perfect atomic mirror in this regime, completely
reflecting incident matter waves. The model suggests that other
2D solids with large values of ε/δ are also potential candidates
for low-loss atomic mirrors.

VIII. SUMMARY

A continuum model for low-energy sticking of a quantum
particle to a membrane was proposed and studied with a
variational mean-field method. A discontinuous change in the
energy-dependent sticking coefficient is found at a critical
energy Ec. This discontinuity is a result of low-frequency
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FIG. 3. Plot of gkb vs incident energy E for a hydrogen atom
interacting with graphene. Energy scaling is consistent with quantum
reflection in the sub-meV range, with gkb ∝ √

E. The maximum value
of gkb ≈ 6.25 meV/Å, found near E ≈ 16 meV, is roughly a factor
of 6 below the critical value necessary to give a nonvanishing .

fluctuations of the membrane that suppress the sticking rate
for particles with energies below Ec. The energy-dependent
sticking coefficient is predicted to have exponential scaling in
1/E above the discontinuity.

This model is then applied to the case of the sticking of
cold hydrogen to suspended graphene. Because of the large
binding energy of hydrogen to graphene (relative to δ), the
model predicts that atomic hydrogen is completely reflected
by suspended graphene in the quantum sticking regime where
hydrogen energies are below 15 meV.

These nonperturbative results are contrary to a recent
numerical calculation [8] over the energy range of 1–20 meV
where the phonon Fock space is restricted to zero and one-
phonon states and a low-frequency cutoff is used to make the
numerics tractable. In this restricted subspace, one would not
expect that the effects of the infrared divergence should appear,

0 0.5 1 1.5
C

0

1

2

3

Δ/
√ε

 δ

C*

FIG. 4. (Color online) Plot of /
√

εδ vs C for A = 50. Here,
C∗ ≈ √

2e/ ln(A/
√

2) ≈ 0.65 and c/
√

εδ ≈ √
2.

as the use of a low-frequency cutoff prevents the divergence
of F in Eq. (23).
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APPENDIX: QUANTIZATION OF THE VIBRATIONS
OF A MEMBRANE

The continuum Lagrange density for a membrane under
tension is

L = 1
2σ u̇2 − 1

2γ |∇u|2. (A1)

The corresponding Hamiltonian is thus

H =
∫

Hd2r =
∫ (

1

2σ
�2 + 1

2
γ |∇u|2

)
d2r, (A2)

where � is the canonical momentum density.
The normal displacement field u can be expanded in normal

modes of clamped membrane [u(a) = 0],

u(r) =
∞∑

m=−∞

∞∑
n=1

Qmnρmn(r), (A3)

where the (normalized) modes of the membrane ρmn(r) are
given in Eq. (5).

The momentum density can also be expanded in normal
modes,

�(r) =
∞∑

n=1

∞∑
m=−∞

Pm̄nρmn(r). (A4)

The Hamiltonian is thus

H =
∑
n,m

(
1

2σ
PmnPm̄n + σ

2
ω2

mnQmnQm̄n

)
(A5)

Imposing the quantization condition [u(r),�(r′)] =
i�δ(r − r′) and introducing the creation and annihilation
operators in this polar basis,

bmn = i

√
1

2σ�ωmn

Pm̄n +
√

σωmn

2�
Qmn,

(A6)

b†mn = −i

√
1

2σ�ωmn

Pmn +
√

σωmn

2�
Qm̄n,

yields the following Hamiltonian:

H =
∑
n,m

�ωmn

(
b†mnbmn + 1

2

)
. (A7)

The displacement u(r) can then be expressed in second
quantized form using Eqs. (A3) and (A6),

u(r) =
∞∑

m=−∞

∞∑
n=1

√
�

2σωmn

ρmn(r)(bmn + b
†
m̄n). (A8)
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