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Atomistic-continuum modeling of short laser pulse melting of Si targets
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We present an atomistic-continuum model to simulate ultrashort-pulse laser melting processes in semiconductor
solids on the example of silicon. The kinetics of transient nonequilibrium phase transition mechanisms is addressed
with a molecular dynamics method at atomic level, whereas the laser light absorption, strong generated electron-
phonon nonequilibrium, fast diffusion of and heat conduction due to photoexcited free carriers are accounted for in
the continuum. We give a detailed description of the model, which is then applied to study the mechanism of short
laser pulse melting of freestanding Si films. The effect of laser-induced pressure and temperature of the lattice
on the melting kinetics is investigated. Two competing melting mechanisms, heterogeneous and homogeneous,
were identified. Apart from the classical heterogeneous melting mechanism, the nucleation of the liquid phase
homogeneously inside the material significantly contributes to the melting process. The simulations showed, that
due to the open diamond structure of the crystal, the laser-generated internal compressive stresses reduce the
crystal stability against the homogeneous melting. Consequently, the latter can take a massive character within
several picoseconds upon the laser heating. Due to the negative volume of melting of modeled Si material,
−7.5%, the material contracts upon the phase transition, relaxes the compressive stresses, and the subsequent
melting proceeds heterogeneously until the excess of thermal energy is consumed. The threshold fluence value,
at which homogeneous nucleation of liquid starts contributing to the classical heterogeneous propagation of the
solid-liquid interface, is found from the series of simulations at different laser input fluences. For the example of
Si, the laser melting kinetics of semiconductors was found to be noticeably different from that of metals with a
fcc crystal structure.
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I. INTRODUCTION

Short laser pulse processing of semiconductors has been
rapidly progressing during the last several decades. The
ability to deposit large amounts of energy into a tightly
localized area has found a number of applications in pico-
and femtosecond laser machining [1–3] and nanostructur-
ing [4,5] of semiconductors. Specifically, the experiments
aimed at semiconductor surface modifications have revealed
a particular interest in biotechnology [6] and information
technology [7,8]. Nevertheless, while technical progress has a
successful tendency of structure production on semiconductor
surfaces downscaled to nanometer size [9,10], the fundamental
mechanisms behind such laser-induced processes as ultrafast
melting, spallation, and ablation are still a subject of active
scientific discussion. While the melting time of Si on the order
of 10 ns, measured in experiments [11], can be explained
with a commonly accepted nucleation theory based on a
hydrodynamic model [12], the ultrafast solid-liquid phase
transition on the order of a few picoseconds and shorter implies
a closer look at the kinetics of microscopic mechanisms of
melting at the atomic level. It was shown that under extreme
conditions generated in the solids due to femtosecond laser
pulse irradiation, ultrafast melting may occur [13]. Also,
significant crystal superheating in the presence of strong
temperature and pressure gradients influences the melting
kinetics.
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Moreover, the conditions in the center of the laser spot lead
to lateral confinement of the material, so that the excited solid
is subjected to one-dimensional expansion toward the surface.
This effect may influence the stability of crystal against the
melting process [14].

At present, there are a number of modern approaches
for the theoretical description of laser-excited semiconductor
solids. Details of electron dynamics and the material’s reaction
can be studied with sophisticated kinetic methods [15–18]
and ab initio molecular dynamics (MD) approaches [19–23].
Larger ensembles and longer time scales are preferably studied
with continuum methods. For instance, hydrodynamic models
[24–26] allow for a good precision and are widely accepted
among the experimentalists for the obtained data analysis.
Due to its low computational cost, relatively simple im-
plementation, and meanwhile ability to account for laser
energy absorption, fast electron heat conduction, and strong
laser-induced electron-phonon nonequilibrium, the so-called
two-temperature model (TTM) [27] has become one of the
most famous continuum approaches in ultrashort laser pulse
experimental data interpretation and material properties de-
termination [28–33]. The essential problem of the continuum
approaches, however, is their assumption of more or less local
equilibrium conditions for a description of the laser-induced
phase transition processes in the solid such as ultrafast laser
melting, spallation, and ablation processes. Together with the
strong sensitivity of the hydrodynamic systems to variations in
parameters and the usages of phase diagrams and equation of
states derived in the assumption of the equilibrium conditions
as well, all this limits the validity of such models’ applica-
tions. This situation becomes even worse specifically under
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conditions realized during ultrashort (pico- and femtosecond)
laser pulse experiments, where the investigated material is
driven to extreme transient states and nonequilibrium phase
transition processes become dominant [34]. Noteworthy is
that the inclusion of such effects as crystal structure and
defects, as well as nonthermal phenomena, into a continuum
approach for a microscopic analysis of the femtosecond
laser-induced phase transition mechanisms is in general
questionable.

Another possible technique to model the response of
semiconductor solids to ultrashort laser irradiation is the
classical MD. The classical MD is based on the solution
of the Newtonian equation of motion for every particle in
the system in three-dimensional space using empirical or ab
initio interatomic potentials. The essential advantage of the
MD method is that no assumptions are made regarding the
kinetics of nonequilibrium phase transitions at the atomic level.
The kinetics of the laser-induced processes therefore follows
a priori from the interatomic potential only. Specifically, the
MD can provide insights into the atomic-level mechanisms
of nonequilibrium phase transitions. This method has been
demonstrated to be an efficient tool for a microscopic analysis
of the melting mechanisms under conditions of overheating
in both the bulk of a crystal [35,36] and in systems with
free surfaces [37,38]. Simulations of boiling, spinodal decom-
position and fragmentation of a metastable liquid [39–41],
generation of defects and propagation of laser-induced pres-
sure waves [42,43], and laser ablation [44–48] have also been
reported. In the case of Si, the classical MD model, imple-
menting for example such potentials as Stillinger-Weber [49]
or modified Tersoff (or MOD) [50], can describe not only the
crystal structure, bulk modulus, and cohesive energy, but repro-
duces very well such important thermophysical properties of Si
material as heat capacity, equilibrium melting temperature, and
volume of melting. The microscopical analysis of the atomic
system in the MD approach results in the availability of the full
statistical information and readily allows for the calculation of
all macroscopic parameters such as temperature and pressure.
Along with modern computational technologies and utilization
of the parallel algorithms, the MD approach can cover temporal
and spatial scales big enough to be directly attainable in the
experiment for a direct comparison with the experiment [51].
All of the above, in essence, justifies the applicability of
the MD method in investigation of the kinetics of the
ultrashort laser-induced processes in solids and in particular in
semiconductors.

The classical MD method, however, is not directly appli-
cable for the simulation of ultrashort laser interactions with
semiconductors. For instance, since the electronic contribution
to the thermal conductivity of the laser-excited semiconductors
is dominant, the conventional MD method, where only a lattice
contribution is considered [52], significantly underestimates
the total thermal conductivity. This leads to an unphysical
confinement of the deposited laser energy in the surface
region of the irradiated target. Moreover, the laser energy
deposition by multiphoton absorption and a transient state
of strong electron-lattice nonequilibrium cannot be repro-
duced since the electrons are not explicitly presented in the
model.

The analysis of the mentioned models suggests that
it is possible to consolidate different techniques within a
single computational approach. Thus, a model unifying the
atomistic description of the kinetics of the laser-induced
phase transition processes along with the description of
photoexcited free carriers dynamics in the continuum can be
constructed for semiconductors (in this work, Si), as it was
realized in the atomistic-continuum approach (MD-TTM) for
metals [53].

Several similar attempts aiming at the simulation of silicon
under the conditions of laser irradiation have been recently
undertaken. The TTM-like approaches [54–57] provide many
insights into the reaction of the material. However, the detailed
kinetics of the material modification may only be obtained with
more sophisticated approaches. In Ref. [58] the authors show
that the hydrodynamic effects play an important role in the
description of the surface modification and ripple formation.
At the same time, the kinetic approach [16], though more
difficult in the implementation, leads to a deeper understanding
of the processes involved, such as the influence of possible
local nonequilibrium in an electronic subsystem on the mate-
rial evolution. In Ref. [59] the authors suggest the atomistic-
continuum approach, in which the electronic subsystem is
described with a nondegenerate model based on the Boltzmann
distribution of the photoexcited carriers. A pioneer work [60]
presented a model for the UV laser pulse interaction with semi-
conductor solids on the example of Si, using a combination of
the MD approach (to describe the atomic subsystem) and the
Monte Carlo method (for the electrons and holes kinetics, ap-
plying the assumption of free carriers). Authors accounted for
the changes in the interatomic bonding due to carrier photoex-
citation by omitting the attraction part of the interatomic poten-
tial. Another work reported in Ref. [61] was aimed at account-
ing for the changes in the atomic bonding of Si connected to
the electron excitation. The corresponding potential depended
on the electronic temperature as a parameter and its function
was fit to density functional theory simulations of silicon in
the assumption that the electrons and holes have common
Fermi-Dirac distribution. The authors admit that they do not
have a rigorous connection between the electronic states and
the interatomic potential, which might lead to imprecise energy
conservation [62].

In this work, we develop the atomistic-continuum approach
for the modeling of short laser pulse interaction with free-
standing Si targets at fluences above the melting threshold. We
begin with the description of the continuum approach based
on a TTM-like model. As this model includes the equation
for the density n of electrons and holes, we will denote it
nTTM [57] here and throughout the paper. Then we give the
details on the MD approach to model silicon materials and
explain the coupling of the MD and nTTM models into the
single combined computational approach. Finally, we apply
the formulated model for investigation of the kinetics of short
laser pulse melting of Si films and discuss the obtained results.
In particular, we compare the MD-nTTM model predictions
with the results of the continuum approach nTTM alone and
with the results of simulations of metal targets. The kinetics
of laser melting of Si materials will be studied under different
fluences below and above the melting threshold.
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II. DESCRIPTION OF THE CONTINUUM
APPROACH nTTM

The continuum nTTM approach is based on the model by
van Driel [55], in which the solid (silicon) is considered as two
coupled subsystems: the phonons and the electron-hole free
carriers. Due to laser pulse irradiation (in this work Ti:sapphire
laser at 800 nm wavelength), the free carriers are generated,
electrons in the conduction band and holes in the valence
band, by one- and two-photon absorption processes. Both
types of carriers are assumed to quickly equilibrate in the
corresponding parabolic bands. To each of them, we apply
separate Fermi-Dirac distributions with different chemical
potentials, ϕe and ϕh for the electrons and holes respectively,
but with a shared carrier density n and temperature Te [63].
We assume the Dember field prevents charge separation,
and consequently the two types of carriers move together.
The model accounts for the system of three equations: a
continuity equation for free-carrier density and two coupled
energy balance equations, one for carriers and one for phonons.
Owing to its similarity with an ordinary well-known TTM
model [27], but with an additional equation for free-carrier
density n, here and later we will refer to this approach as the
nTTM model. The model parameters as well as the meaning
of symbols can be found in Appendix A. The continuity
equation for the density of excited free carriers can be written
as [55]

∂n

∂t
+ ∇ · �J = Sn − γ n3 + δn, (1)

where �J is the carrier density flux; the first term on the
right side, Sn, describes the free-carrier generation rate due
to one- and two-photon absorption; the second and third terms
account for the processes of Auger recombination and impact
ionization, correspondingly.

The balance equation for the free-carrier energy density u

can be written as

∂u

∂t
+ ∇ · �W = Su − Ce−h

τep

(Te − Ta), (2)

where �W is the carrier energy flux. It takes into account the
carrier thermal conductivity as well as the energy transfer due
to the carrier flux. The first term on the right side, Su, describes
the energy absorption processes: free-carrier energy gain, and
one- and two-photon absorption. The last term accounts for the
electron-phonon energy exchange between free carriers with
temperature Te and phonons with temperature Ta . This term
strongly depends not only on the electron-phonon temperature
difference, but also on the heat capacity of free carriers Ce−h

and electron-phonon relaxation time τep, which in general are
functions of free-carrier temperature and density. The energy
balance equation for the phonon subsystem therefore is written
as follows:

Ca

∂Ta

∂t
= ∇ · (ka∇Ta) + Ce−h

τep

(Te − Ta). (3)

The first term on the right side accounts for the phonon
conduction process, which in practice—due to small phonon
conductivity ka—is negligible and frequently omitted. The
electron-phonon energy exchange term is dominant here.

Special attention must be paid here to the source terms
describing both the rate of free-carrier density growth and the
corresponding process of their energy increase, taking place
in Eqs. (1) and (2), correspondingly, and given by

Sn = αIabs(�r,t)
�ω

+ βI 2
abs(�r,t)
2�ω

, (4)

Su = αIabs(�r,t) + βI 2
abs(�r,t) + 
nIabs(�r,t). (5)

For ultrashort laser material interactions, a one-dimensional
heating problem is often analyzed in the case of the heating
spot size being much larger than the size of the thermally
affected zone, analyzed in the modeling. The corresponding
form of laser intensity at the surface (z = 0) in this case is

Iabs(0,t) = [1 − R(Ta)]

√
ν

π

inc

tp
e−ν[(t−3tp)/tp]2

, (6)

where inc is the incident fluence, ν = 4 ln 2, and R(Ta) is the
reflectivity function. In this work, to prescribe the demanded
incident fluence, the center of the Gaussian pulse is shifted
from the initial time t = 0 to 3 pulse duration times tp, that in
turn is defined at the full width at half maximum.

The spatial dependence of Iabs can be found upon the
solution of the differential equation of the attenuation process:

dIabs(z,t)

dz
= −αIabs(z,t) − βI 2

abs(z,t) − 
nIabs(z,t), (7)

where z is the depth into the sample; the terms on the right side
are responsible for one- and two-photon absorption, and for the
free-carrier absorption processes correspondingly. According
to this equation, the spatial attenuation of the laser strongly
depends on the transient electron density and therefore may
strongly change during the pulse.

Finally, the expression for the total energy density of free
carriers (consisting of potential and kinetic parts) closes the
comprised system of equations (1)–(3) and is given by

u = nEg(n,Ta) + 3
2nkBTe

[
H

3/2
1/2 (ηe) + H

3/2
1/2 (ηh)

]
, (8)

where kB is the Boltzmann constant, Eg is the band gap,
and Hx

y (ηc) are the functions described in Appendix B. This
Appendix also includes the constitutive expressions (B5) and
(B7) for �J and �W demanded for the system solution. Here we
only show the equations needed to understand the general idea
of the approach.

The system of equations (1)–(3) is written in the conserva-
tive form, which provides the exact energy conservation in the
case of numerical solution. Nevertheless it is not convenient
to solve, since Eq. (2) includes both Te and u. One can rewrite
Eq. (2) using variables n, Ta , and Te for a more handy numerical
form. To do so, we have to note that the specific heat capacity
of the carriers is Ce−h = ∂u/∂Te|n, and using Eq. (8) we can
therefore write

Ce−h = 3

2
nkB

{
H

3/2
1/2 (ηe) + H

3/2
1/2 (ηh)

+ Te

∂ηe

∂Te

[
1 − H

3/2
1/2 (ηe) H

−1/2
1/2 (ηe)

]

+ Te

∂ηh

∂Te

[
1 − H

3/2
1/2 (ηh) H

−1/2
1/2 (ηh)

]}
. (9)
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FIG. 1. (Color online) The finite-difference grid mesh of the nTTM model and the organization of the coupling between the nTTM and
MD models. Symbol “ �” indicates the grid points for n, Te, and Ta(i = 1,2, . . . ,l); symbol “×” indicates the grid points for J, W, ka

∂Ta

∂z
, and

Eg(j = 1,2, . . . ,l + 1). Red circles represent atoms.

Calculating ∂u/∂t from Eq. (8) and substituting it to Eq. (2)
we arrive at the diffusionlike equation for the temperature of
electron-hole pairs:

Ce−h

∂Te

∂t
= Su − ∇ · �W − Ce−h

τep

(Te − Ta)

− ∂n

∂t

{
Eg + 3

2
kBTe

[
H

3/2
1/2 (ηe) + H

3/2
1/2 (ηh)

]}

− n

(
∂Eg

∂n

∂n

∂t
+ ∂Eg

∂Ta

∂Ta

∂t

)

− 3

2
kBTen

∂n

∂t

{[
1 − H

3/2
1/2 (ηe) H

−1/2
1/2 (ηe)

]∂ηe

∂n

+ [
1 − H

3/2
1/2 (ηh) H

−1/2
1/2 (ηh)

]∂ηh

∂n

}
. (10)

As opposite to Eq. (2), Eq. (10) may lead to the accu-
mulation of numerical errors in the case of low precision of
the derivative calculations of the last three terms, i.e., it is
written in the nonconservative form. The errors may come
from the last terms of Eq. (10), which numerically play a
role of extra sources in the diffusion equation. Nevertheless
our semi-implicit numerical scheme provides the precision,
which is more than enough for our purposes. The details of the
continuum approach described above and the derivation of the
main equations can be found in Ref. [55].

Thus, from the system of equations (1), (3), and (10),
we can fully determine the dynamics of n, Te, and Ta in
one dimension (1D) with the following initial and boundary
conditions, suitable for a freestanding film:

Ta(z,0) = Te(z,0) = 300 K,

n(z,0) = neq = 1016 m−3, Ref. [64],

J (0,t) = J (L,t) = 0, (11)

W (0,t) = W (L,t) = 0,

ka

∂Ta

∂z
(0,t) = ka

∂Ta

∂z
(L,t) = 0,

where L is the thickness of the sample.

To solve the above system, we use the finite-difference grid
mesh sketched in Fig. 1 (upper part). The sample is divided
into cells according to the scheme, and the thermodynamic
parameters are calculated in each cell. The spatial derivatives
of n, Te, Ta , J , W , ka

∂Ta

∂z
, and Eg at the interior points are

approximated with the central difference, and those at the
boundary are evaluated with the first-order approximation.

During the solution of the considered system of equa-
tions we use a semi-implicit Crank-Nicolson numerical
scheme [65,66] modified for this nonlinear case with the
predictor-corrector algorithm. The details of the integration
algorithm will be published elsewhere [67]. This approach
allowed us to increase the time step of the calculations from
10−20s up to 10−16s as compared to the explicit scheme with
an energy conservation error of less than 0.2%. Thus, the time
step of 10−17s still lets the system be solved fast enough with
nearly perfect energy conservation.

When being combined with MD, the proposed implicit
scheme of the nTTM model solution gives a significant benefit.
Since its relative calculation time is significantly shorter than
that for the MD part, the inclusion of nTTM in MD will not
influence the calculation time of the combined model.

One of the most uncertain parameters in the nTTM
model is the two-photon absorption coefficient. For our
wavelength (800 nm), the experimental measurements in
Ref. [68] yield the value of β = 2 cm/GW, while fitting to
another experiment [69] gives β = 55 cm/GW. If a continuum
model is involved in fitting [54], one has the value of
β = 9 cm/GW. Since this parameter plays an important
role in laser absorption, it noticeably influences the amount
of energy absorbed in and transmitted through the sample.
Our simulations show a large difference in the absorbed
fluence when using different values of the β parameter. In
the presented productive runs, the value of β = 15 cm/GW
was chosen for calculations. This choice is justified by a good
agreement between the experimental melting threshold found
for the 130 fs laser pulse [70–72] (0.26–0.27 J/cm2), the one
predicted from nTTM (0.29 J/cm2 in our calculations), and
the one obtained from the combined model (0.27 J/cm2; see
below). Also, in our present calculations we used a constant
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FIG. 2. (Color online) Carrier/lattice temperatures and carrier
density dynamics on the sample surface according to the nTTM
model followed by the 500 fs laser pulse at the absorbed fluence
of 0.0381 J/cm2. The sample thickness is 800 nm. The laser pulse
shape and the energy density, proving energy conservation, are not in
scale.

value of γ for the Auger recombination coefficient. However,
according to [73], accounting for the effect of nondegeneracy
at high carrier densities, as is done in Ref. [54], leads to a
different characteristic time of the free-carrier recombination.
Additionally, in Ref. [57] the authors suggested an extension
to the model of van Driel, based on the Drude model. It
accounts for the changes in the optical parameters, namely,
reflectivity and free-carrier absorption coefficient, due to the
highly transient free-carrier density during the excitation with
femtosecond laser pulses. These modifications are therefore
planned for implementation in our future research.

As an example of nTTM model application, in Fig. 2
we show the electron-hole density and temperature as well
as atomic temperature dynamics on the surface, followed
by the laser pulse irradiation of 500 fs duration at the
absorbed fluence of 0.0381 J/cm2 (corresponding to the
incident fluence of 0.15 J/cm2 via the reflectivity function
used in the model [74]). The Si sample thickness was taken
to be 800 nm. The initial increase in the number of free
carriers, followed by the laser pulse, changes to its decay due
to Auger recombination and diffusion processes. Interestingly,
the electron-hole temperature exhibits two elevations. The first
one is associated with a very low density of free carriers, which
consequently have negligible heat capacity (9) and possess
very little energy. The subsequent plateau corresponds to the
temporal prevalence of one-photon absorption over all other
processes, so that all created free electron-hole pairs fall into
the same energy level u/n = �ω. The second increase of the
temperature is connected to the free-carrier absorption and its
following dynamics is pretty much the same is it is for metals
given by ordinary TTM [27]. Finally, the thermal energy from
hot electron-hole carriers goes to the atomic subsystem of the
sample leading to its gradual temperature increase upon the
electron-phonon equilibration.

Similar simulations were also performed in Ref. [75]. The
comparison of the corresponding solutions, however, shows
a significant difference in the carrier’s properties dynamics
even for the same sample geometry and set of parameters. The
essential reason for this discrepancy unfortunately originates
from a major mathematical mistake during the derivation of
the corresponding equation for the free-carrier’s temperature,
specifically in Eqs. (18) and (19) of Ref. [75]. As a result, the
energy conservation criterion is not fulfilled there.

III. MD APPROACH

One of the main disadvantages of the nTTM model is
that it is barely applicable for the description of the kinetics
of considered phase transition processes in the continuum.
Despite the fact that some of its problems can be solved
by means of more sophisticated implementation, the induced
phase transformation mechanisms, realized in the solid due
to the ultrashort pulse laser irradiation, can be quite far
from the equilibrium conditions. The transition times can be
shorter than 1 ps and the new phase nuclei may have sizes
of several interatomic distances only. Thus, the investigation
of such processes as ultrafast melting, ablation, spallation,
recrystallization, and surface effects, would require a number
of assumptions to be implemented within the nTTM model.
We overcome this problem by introducing the atomistic
description of the solid with a classical MD method, which will
eventually substitute Eq. (3) in the continuum nTTM model.
The MD approach is based on the solution of Newtonian
equations for every atom [76]. With initial conditions (initial
coordinates and velocities of all atoms), the full set of
equations in three dimensions (3D) allows for monitoring the
microscopic evolution of the system in time. This microscopic
information about the system enables us to calculate any
macroscopic (thermodynamic) parameters.

As we already mentioned, the choice of the interatomic
potential fully determines the kinetics of laser melting and
the properties of the material. For our purposes, some
potentials are not suitable due to an imprecise representation of
thermophysical material properties. For example, the Tersoff
potential [77], although well representing the elastic proper-
ties, fails in describing the melting temperature and the volume
of melting [78]. Analogously, the modified-embedded-atom
method [79] is suitable for many materials, but in silicon it
leads to an expansion coefficient significantly differing from
the experimental value as well as to a noticeably shifted
melting point [80]. Consequently, with these potentials, one
can expect significantly different melting kinetics as compared
with experimental results. In general, the choice of the poten-
tial is made upon performing a balance between the simplicity
of implementation, computational costs, and the description of
important parameters. In the presented work, the interatomic
interaction is described via a well-known Stillinger-Weber
potential [49]:

V =
∑
i,j

i<j

U2(rij ) +
∑
i,j,k

i<j<k

U3(rijk), (12)

where U2 is the two-body part and U3 is the three-body part.
Provided that the reduced radius r = rij

σ
is less than the cutoff
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distance a,

U2 = εA(Br−p − 1)e(r−a)−1
, (13)

U3 = h(rij ,rik,θjik) + h(rji,rjk,θijk) + h(rki,rkj ,θikj ), (14)

and zero otherwise. The functions h are given by

h(rij ,rik,θjik) = λ exp[γ (rij − a)−1 + γ (rik − a)−1]

×(
cos θjik + 1

3

)2
, (15)

where θjik is the angle between �rj and �rk adjoining vectors at
vertex i, etc. This dependence on θjik leads to the crystal with
an ideal tetrahedral angle, described with cos θjik = −1

/
3.

Thus, the potential describes the open diamond structure of
silicon solid. All the parameters in Eqs. (13) and (15), which
are fitted to reproduce the properties of silicon crystal, can be
found in the original paper [49].

The important thermophysical properties of the modeled
silicon such as melting temperature [81], solidification and
melting rates [82], thermal conductivity [83,84], bulk modu-
lus [85], and phase diagram [60,86] reproduce the behavior of
a real solid at the equilibrium conditions quite well. Moreover,
the chosen potential gives a better overall description of
liquid phase than all frequently used potentials [85]. Ap-
pendix C presents some other important physical properties
of Stillinger-Weber potential, which we will need in order
to describe the melting kinetics quantitatively. However, it is
known that at strong photoexcitation of semiconductors, the
changes in electronic density and band structure may lead to
a reconstruction of the interatomic bonding and consequently
to nonthermal melting [87]. The Stillinger-Weber potential
does not account for this behavior; therefore, in the combined
model, we restrict ourselves to incident laser fluences below
the nonthermal melting threshold, which was determined to be
about 0.55 J/cm2 for our laser parameters [54]. In our future
works we are planning to introduce the modified potential,
which will be able to account for the nonthermal effects as
well [62].

As was mentioned above, though MD is a powerful tool
for the description of solids, it lacks the free electrons in
its classical formulation, necessary for description of the
laser light absorption, free-carrier diffusion, fast electron heat
conduction, and the electron-phonon energy exchange. For the
description of free-carrier subsystem dynamics of silicon solid,
one can incorporate the described nTTM part into the MD
method in a similar manner as was done in Ref. [53]. In other
words, we replace Eq. (3) in the nTTM approach with the set of
Newtonian equations for each atom in the computational cell,
introducing therefore the microscopic approach with all the
advantages of both MD and nTTM. The combined MD-nTTM
approach, therefore, will provide us with an accurate model
for the description of the laser-excited semiconductor solids.
The details about organization of the connection between the
MD and nTTM parts are described in the following section.

IV. THE COMBINED MD-nTTM MODEL

In this section we explain the organization of the coupling
between the continuum and atomistic parts in the combined

MD-nTTM model. The atomic subsystem in the MD part is
divided into a number of volume cells (Fig. 1, lower part).
Each of them corresponds to the same space geometry in the
continuum nTTM part describing the electronic subsystem. In
every MD cell we assume local equilibrium and calculate the
temperature of atoms under the assumption of equipartition
between the kinetic and potential energies, based on the virial
theorem:

Ta = 2

3kBNc

Nc∑
i=1

mi(�vi)2

2
, (16)

where Nc is the number of atoms in a given cell c, and �vi is the
velocity of atom i. The total number of atoms Nc in each cell
is defined from two constraints. First, calculating the atomic
temperature, we assume the applicability of thermodynamics
inside each cell. It means Nc � 1. The finite value of Nc

leads to atomic temperature fluctuations, which decay as 1√
Nc

.
Therefore, to prevent the fluctuations one needs a large enough
number of atoms in a cell. On the other hand, a smaller
number of atoms in a cell (larger number of cells) increases
spatial resolution in our carrier dynamics calculations. Thus,
the system is organized in such the way that Nc is around
1800 (160 calculation cells), so that the local temperature is
reasonably defined and at the same time a sufficient spatial
resolution is ensured. In practice, however, test calculations
showed no difference between Nc = 450 and Nc = 3600.
In the case of an explicit continuum scheme, the choice
of computational cells would also influence the time step
of nTTM in a way that bigger cells lead to decreasing the
computational costs.

If the material expands (shrinks) during the simulation, we
add (delete) a corresponding continuum computational cell.
The criterion for the creation (deactivation) of a cell is that the
atomic density exceeds (drops down to) the threshold of 10% of
the initial average density in the system. The atoms inside the
deactivated cells are included in the nearest active cell if they
are located within a distance of half-cell size from the active
cell. Herewith, all the physical properties of the electronic
subsystem such as diffusivity and thermal conductivity, the
absorption and recombination coefficients, and the electron
density are scaled with the relative changes in the atomic
density within each cell c, ρc/ρ0, where ρc is the current
atomic density in the cell and ρ0 is the initial atomic density
(averaged through the whole atomic system).

Because of the relatively high computational cost of the
MD method, we decrease the needed amount of material by
modeling a comparatively large laser spot size. This assump-
tion enables us to use a 1D diffusion model in the continuum
part and suggests the MD configuration as a thin and long
sample, which is hypothetically located at the center of a wide
laser spot along the laser pulse propagation. Therefore one can
safely apply periodic boundary conditions in the lateral sides of
the sample and free boundaries at its front/rear surfaces. In this
work all simulations are performed for a sample with 5 × 5 ×
1472 crystal cells (294 400 atoms) with the lattice parameter
of 0.543 74 nm (for 300 K), which is equivalent to dimensions
of 2.72 × 2.72 × 800.4 nm in X, Y , and Z axes, respectively.
The lateral sizes (2.72 nm) are chosen so that they are bigger
than the characteristic size of liquid nuclei (∼1 nm) in order to
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allow the nuclei to grow. This allows us to describe the kinetics
of homogeneous melting. The described computational setup
therefore is modeling a freestanding 800 nm Si film. Before the
productive simulations, the sample was equilibrated at normal
conditions (300 K and at P = 0 GPa).

The time steps of MD and continuum parts are synchronized
so that �tMD = k�tnTTM, where k is an integer number. In our
case �tMD = 0.5 × 10−15s and k = 50. This means, while
the continuum part is under calculation, the MD part is waiting
for the resulting energy, taken away from hot (or coming to
cold) electrons accumulated over k steps. As a method to
account for the influence of electrons on the atomic motion we
include the “friction” term in Newtonian equations of motion
for every atom i [53]:

mi

d2�ri

dt2
= �Fi + ξmi �vT

i (17)

with

ξ =
1
k

∑k
j=1 GVc

(
T

j
e − Ta

)
∑

i mi

(�vT
i

)2 , (18)

where G = Ce−h/τep stands for the electron-phonon coupling
coefficient, and Vc is the volume of the corresponding MD
cell. �vT

i corresponds to the thermal part of the atomic velocity
of atom i after the subtraction of the velocity of center of
mass �Uc of a given cell, �vT

i = �vi − �Uc. The coefficient ξ is
calculated in the same manner as was done in Ref. [53] based
on the energy conservation law. It describes the electron-
phonon interaction process so that the energy added to (or
removed from) each cell of the MD system at each integration
MD step would match the energy transferred between the
electrons and the lattice during k steps of the finite-difference
integration in the continuum part. This “friction approach”
is chosen due to its simplicity in the implementation. We
are aware of other ways of adding/removing the energy
to/from the atoms (for example, Langevin thermostat [88–90]).
Macroscopically we do not expect noticeable differences,
because the friction force applied here has random directions
originated from the established Maxwellian distribution in
randomly oriented atomic velocities. In the following section
we present the results of the combined MD-nTTM model for
the investigation of short laser pulse melting of freestanding
Si film.

V. RESULTS AND DISCUSSIONS

A. Comparison of the nTTM and the combined
MD-nTTM models predictions

In order to demonstrate the feasibility of the developed
atomistic-continuum model implementation and its applica-
bility in our research, we repeat the modeling of the 500 fs
laser pulse interaction with 800 nm freestanding Si film with
the combined MD-nTTM model at the absorbed fluence of
0.0381 J/cm2. Similar to the result of the nTTM model alone,
as is reflected in Fig. 2, the lattice temperature dynamics
and the temperature/density of the electron-hole free carriers
are shown in Fig. 3 for the front surface cell. As one can
see, the combined MD-nTTM model shows no qualitative
differences with the continuum calculations. In other words,

FIG. 3. (Color online) The dynamics of n, Te, and Ta on the
sample surface obtained with nTTM and MD-nTTM models at the
same conditions as indicated in Fig. 2: 800 nm sample thickness,
0.0381 J/cm2 absorbed fluence, 500 fs pulse duration. The laser pulse
shape and energy conservation are shown out of scale.

it describes the absorption of the laser light, fast electron
heat conduction, free-carrier diffusion, the laser-generated
strong electron-phonon nonequilibrium, and at the same time
contains the atomic description of the matter within the frames
of a single computational approach. A minor quantitative
difference in the surface temperature of atoms, ∼3% (apart
from the atomic temperature fluctuations, which are natural
for a finite amount of atoms), between the predictions by the
nTTM and MD-nTTM models, we attribute to the sample
expansion process and pressure dynamics, not included into the
continuum calculations. This difference is not so pronounced
as in the case of metals [91], due to the lower expansion
coefficient for silicon (see Table I). The most important benefit
of the combined model, however, and eventually the reward for
all our efforts is that—in contrast to the continuum calculations
given by the nTTM approach—the combined model is now
able to distinguish the whole complexity of the kinetics of
laser-induced transient processes with atomic precision. This
makes the MD-nTTM model a powerful tool in studying the
microscopic mechanism of short laser pulse nonequilibrium
phase transformations processes that will be discussed in detail
below. As a means to control the accuracy of our calculations
we apply the energy conservation law. For the combined
atomistic-continuum MD-nTTM model the resulting error
in energy conservation was found to be less than 0.45%
per simulation, which we accept as a good result fulfilling
our demands. The comparison of the combined MD-nTTM
approach with the nTTM continuum method together with the
energy conservation criterion fulfillment, therefore, confirms
the accuracy of the constructed model and its applicability in
our research.

B. Kinetics of short pulse laser melting of Si

The above developed MD-nTTM approach is applied here
to study the kinetics of short laser pulse melting of freestanding
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Si films. The parameters of the following simulation were
taken according to the experiment [70]: 130 fs laser duration,
0.42 J/cm2 incident fluence (0.209 J/cm2 absorbed fluence
given by the used reflectivity model), and 800 nm laser
wavelength. The sample thickness was taken to be 800 nm.
From our test simulations we found that this value already
represents a thick sample, since no noticeable quantitative
or qualitative differences in melting kinetics are present with
respect to the targets of 450 and 2000 nm thicknesses. The
details of the kinetics of the melting process can be extracted
from the sequence of the following contour plots and atomic
snapshots. Figure 4(a) represents the contour plot of the
percentage of molten material (calculated as the number of
“molten atoms” in a cell related to the total number of atoms in
it). One atom is considered as “molten” if its central symmetry
parameter is lower than a threshold value of 0.9825 (see
Appendix D). Figure 4(a) allows one to observe the liquid
nuclei generation and their growth in time. The position of the
melting front was mapped by the local volumes where 50%
of the material is molten. The corresponding melting front
curve is shown with a black solid line and, for convenience,
replotted on the other contour plots, Figs. 4(b) and 4(c),
which show the contour plots of temperature and pressure
evolution, respectively. The white frames (rectangles) on the
plot in Fig. 4(a) represent the places of the corresponding
snapshot series, Figs. 5–7, and are numbered correspondingly.
These snapshots are taken at different moments of time after
the laser pulse and at different depths. In Figs. 5–7 every
point represents an atom. Colors of atoms reflect the local
structure according to the central symmetry parameter: The
atoms having a crystal surrounding are shown in blue, whereas
those submerged in liquid ambient are shown in red. The
values of the central symmetry parameter for certain depths
are shown for each particle at the figures below the atomic
structure.

Upon the laser pulse absorption, the generated strong
electron-phonon nonequilibrium leads to the electron-phonon
energy exchange, which in turn causes the elevation of
the atomic temperature to T > Tm (Tm = 1683 K; see Ap-
pendix C) up to the depth of ∼250 nm within ∼4 ps [Fig. 4(b);
in order to provide a better view, the plot only shows 210 nm
from the top of the sample]. Before the onset of melting,
however, the strong heating rate results in the increase of the
pressure [see Fig. 4(c)]. As discussed in Appendix C [see
Fig. 11(a)], due to the different slope of the melting curve from
that in metals [92], higher pressure reduces the temperature
needed to melt the crystal (by both homogeneous and het-
erogeneous mechanisms) and therefore speeds up the melting
process. In the first picoseconds, the sample has a slightly
lower pressure near the surface at a higher temperature and a
slightly higher pressure in the depth (up to ∼100 nm) at a lower
temperature. This results in the onset of homogeneous melting
taking place simultaneously from the surface up to the depth of
∼100 nm within 4 ps. Notably, the melting speed at this point
is much higher than the speed of sound. The significant excess
of thermal energy cannot convert the solid into the liquid state
by means of a classical heterogeneous solid-liquid interface
propagation, and the homogeneous melting mechanism takes a
massive character, Fig. 4(a), rectangle 5, and the corresponding
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FIG. 4. (Color online) Contour plots of (a) percentage of molten
material (according to the central symmetry parameter; see Ap-
pendix D), (b) atomic temperature, and (c) atomic pressure, obtained
from the simulation of 130 fs laser pulse focused on 800 nm silicon
film at the absorbed fluence 0.209 J/cm2. The rectangles on the plot
(a) show the corresponding positions of the atomic configuration
snapshots presented in Figs. 5–7. The black solid line shows the
position of the melting front assuming 50% of the material is molten.
For a closer look we show the sample depth only up to 210 nm,
where the phase transition processes are taking place.

snapshot series in Fig. 5. Such a phenomenon has been already
suggested in theoretical work [93].

Here we can see a major difference in the melting process
from that observed for metals [94] (which experience expan-
sion upon melting by 3%–5% [95]). In Fig. 4(c), we notice
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FIG. 5. (Color online) The snapshots of the simulation taken at
different moments of time after the laser pulse (130 fs duration,
0.209 J/cm2 absorbed fluence) at the depth of 20–40 nm [see
rectangle 5 in Fig. 4(a)]. The original laser pulse was directed from
the left to the right. According to the central symmetry parameter
(shown below each snapshot), the atoms with crystalline surrounding
are shown in blue and those submerged in liquid ambient are shown in
red. This series shows the presence of only the homogeneous melting
mechanism at this depth.

that the initial laser-induced internal compressive stresses
are relaxed not by the propagation of the pressure wave
across the sample, but essentially by the melting process
itself. From the properties of the represented material and
Fig. 12(a), we understand it by the fact that the melting process
leads to the material volume contraction by approximately
7.5% (see Appendix C), which results in the pressure drop.
Consequently, the propagating of an unloading wave decreases
the pressure of the remaining solid chunks of the material,
which in turn reinforces their stability against the melting
process. This is reflected in the abruptly irregular curve of
the melting front [Fig. 4(a)]. Upon the relaxation of the tensile
stresses via the propagation of the pressure waves, most of the
remaining solid chunks lose their stability and the melting
immediately finishes. It is reflected as the disappearance
of the yellow color in Fig. 4(a). At the places where the
temperature is not large enough, the melting proceeds further
by the classical heterogeneous mechanism at a much lower
rate, which can be seen by rectangle 6 in Fig. 4(a) and in
the corresponding snapshots, Fig. 6. Finally, rectangle 7 in
Fig. 4(a) and the corresponding snapshot series in Fig. 7
indicate the areas where the temperature-pressure interplay

FIG. 6. (Color online) The snapshots of the simulation taken at
different moments of time at the depths of 80–100 nm. This is the
same simulation and style as in Fig. 5, but refers to rectangle 6 in
Fig. 4(a). The series shows the presence of both homogeneous and
heterogeneous melting mechanisms at this depth.

mechanism did not result in the onset of either a homogeneous
or a heterogeneous melting process. There, the process of new
phase nuclei generation can be seen as noise consisting of
small molten nuclei. None of them, however, will eventually

FIG. 7. (Color online) The snapshots taken at different moments
of time at the depths of 150–170 nm. This is the same simulation and
style as in Fig. 5, but refers to rectangle 7 in Fig. 4(a). The series shows
the generation of liquid nuclei that randomly appear and disappear.
Under the realized conditions at this depth, however, the liquid nuclei
do not grow, which preserves this part of the solid from the onset of
melting.
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exceed the critical size for the onset of a solid-liquid transition
process.

Later (around 200 ps after the laser pulse; not shown),
the mentioned negative pressure wave, originated from the
material shrinkage, is reflected from the rear surface and
returns to the front surface as a compressive wave. This
decreases the stability of the lattice and therefore temporarily
speeds up the front propagation. See also Sec. V C and Fig. 10
for more details.

For comparison, in Fig. 8 we show the contour plots
for another simulation with a smaller absorbed fluence,
namely, 0.161 J/cm2 (corresponding to the incident fluence
of 0.34 J/cm2 via the reflectivity function used in the model).
All other conditions in this simulation are the same as before.
Figure 8(a) shows the contour plot of the molten material
percentage (it is shown with a different scale, compared to
the other contour plots, in order to provide a better view).
In contrast to the result of the higher fluence simulations, in
this case the melting process is fully heterogeneous. Figure 9
shows the corresponding snapshots with a well-defined solid-
liquid interface. Despite the fact that the atomic temperature
[Fig. 8(b)] rises to the melting temperature and above up to the
depth of ∼200 nm (as a result of the electron-phonon energy
exchange) and the pressure [Fig. 8(c)] reaches ∼1.5 GPa
[as a result of thermal expansion; see the blue crosses in
Fig. 12(a)], the homogeneous melting does not occur. The
reason is that the necessary overheating conditions needed
for homogeneous melting do not hold long enough (50 ps,
according to the criterion suggested in Appendix C; see
Fig. 11, upper line). Since the homogeneous melting process
is suppressed here, it cannot prevent the development and
propagation of the compressive pressure wave [Fig. 8(c)]. The
initial spatial pressure profile (at t ≈ 3 ps) has a peak near the
front surface (because the laser energy absorption is stronger
near this surface), but not at the surface itself, since the surface
expansion allows the pressure to relax [cf. Fig. 8(a)]. The
evolution of this pressure profile is essentially the same as
in metallic targets [96,97]. It evolves as a superposition of a
number of pressure sources propagating in two directions: to
the front surface and to the rear surface. These waves sooner or
later reach the free surfaces and are reflected with the opposite
sign. Consequently, after two reflections from the front and rear
free surfaces, the superposition of the wave sources gives the
strongest positive pressure wave returning to the front surface
[Fig. 8(c)].

As seen in Fig. 8(a), initially the heat expansion pushes the
surface away, temporarily creating a 4 nm surface bump. After
about t ≈ 100 ps the shrinking of the material starts to prevail
and the melting front is pushed back to the frontal surface.
The material continues shrinking until t ≈ 200 ps, when the
mentioned returning positive pressure wave starts to provide
additional energy for the heterogeneous melting mechanism
near the surface. The pressure wave pushes the surface back
out of the material and assists the advance of the solid-liquid
interface deeper into the bulk of the material, in accordance
with Fig. 11. For higher fluences such effect is much more
pronounced and is seen as peaks in the effective melting depths
(see Sec. V C).

(a)

(b)

(c)

FIG. 8. (Color online) Contour plots of (a) percentage of molten
material (according to the central symmetry parameter; see
Appendix D), (b) atomic temperature, and (c) atomic pressure,
obtained from the simulation of the 130 fs laser pulse focused on
800 nm silicon film at the absorbed fluence 0.161 J/cm2. The plot
(a) is shown with different scale in order to provide a better view
of the melting front. The black solid line is obtained from the plot
(a) and shows the melting front assuming 50% of the material is
molten. The rectangle on the plot (a) shows the position of the atomic
configuration snapshots presented in Fig. 9.

C. Melting depth versus fluence

In this section, we discuss the effective melting depths for
different laser fluences. The effective melting depths were
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FIG. 9. (Color online) The snapshots of the simulation taken at
different moments of time after the laser pulse. The laser pulse is
directed from the left to the right. Only the front surface volume of
the sample is shown. The original laser pulse was directed from the
left to the right. This is the same simulation as in Fig. 8. This is the
same style as in Fig. 5, but refers to rectangle 9 in Fig. 8.

found from the number of “molten atoms” (according to the
central symmetry parameter; see Appendix D) at the certain
moment of time by calculating the corresponding volume of
liquid for this amount (referring to the atomic density under
normal conditions). Cells with <50% of molten material were
excluded in order to exclude unstable liquid nuclei, such as
those in Fig. 7. We vary the total fluence, leaving all the other

FIG. 10. (Color online) The effective melting depth depending
on time for a set of the absorbed fluences: 0.161–0.222 J/cm2. The
lowest line corresponds to heterogeneous melting only.

parameters the same: 130 fs pulse duration, 800 nm laser
wavelength, and 800 nm Si film thickness. The simulations
were performed for the set of absorbed fluences from 0.114
to 0.221 J/cm2 (corresponding to the incident fluences from
0.26 to 0.44 J/cm2). The temporal evolution of the effective
melting depths is shown in Fig. 10. The model shows that
for the absorbed fluences higher or equal to 0.173 J/cm2,
the quick initial increase in melting depth reflects that the
homogeneous mechanism is dominant, whereas the following
lower slope is connected to the heterogeneous process only
[see Figs. 4(a) and 5–7]. In the case of lower fluences
(Fig. 10; only 0.161 J/cm2 is shown) only the heterogeneous
melting occurs, which is confirmed by the snapshots in Fig. 9
and the contour plot in Fig. 8(a). The simulations under
the same conditions, but performed for a 2000-nm-thick Si
target confirm the threshold value of 0.173 J/cm2. To our
knowledge, this threshold was not mentioned in the literature
before.

In Fig. 10, we observe humps in the effective melting
depths for higher fluences at a time around ∼200 ps after
the pulse. As we already mentioned in the previous section,
these sudden increases in the melting depth are connected
to a compression wave, incoming to the front surface and
assisting the propagation of the solid-liquid interface. The
maximum effective melting depths were not reached for all our
simulations. For the case of absorbed fluence of 0.209 J/cm2,
the maximum effective melting depth was reached in 850 ps
after the laser pulse and its value was found to be 143 nm.
This result differs from the corresponding experimental values
of 60 nm (in the case of n-doped thick single-crystalline
〈111〉-silicon [70]) and 55 nm (for 450-nm-thick undoped
silicon wafers [69]). We mainly attribute it to the difference
in the value of heat of fusion [see Fig. 12(b) and Table I],
which is 31.2 kJ/mol for the Stillinger-Weber potential (as is
confirmed by other MD simulations using the same poten-
tial [80,82]); yet its experimental value is 50.21 kJ/mol [98].
Nevertheless, the melting kinetics is described qualitatively
accurate, because of the good representation of Clapeyron’s
equation at our pressure conditions and other parameters of
the material (Table I). Finally, the smallest absorbed fluence
of 0.120 J/cm2 (corresponding to the incident fluence of
0.27 J/cm2; not shown), at which the surface melting was
detected, can be considered as the threshold value for the
material modification and is in agreement with its experimental
value [70] for our chosen value of a two-photon absorption
coefficient.

VI. CONCLUSION

We have implemented an atomistic-continuum MD-nTTM
model for silicon. First calculations showed its benefits as a
powerful numerical tool to study short laser pulse interaction
with freestanding Si films. The model is able to describe the
melting kinetics with atomic resolution for fluences above
the melting threshold. The approach provides microscopic
insight into the processes occurring during and after the
laser pulse. The energy conservation criterion fulfillment and
the comparison of the obtained results with the ordinary
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continuum model have confirmed the reliability of the model
implementation.

The laser irradiation leads to two different melting regimes:
heterogeneous and homogeneous. According to the simula-
tions, at absorbed fluences below 0.173 J/cm2, the temperature
and pressure—though providing the conditions for classical
melting—are not high enough for the homogeneous melting.
Therefore only heterogeneous melting occurs, starting from
the surface, with a well-defined propagation front. Higher
fluences induce the homogeneous melting, which takes the
dominant character, and the resulting speed of melting front
propagation becomes faster than the speed of sound. The
temperature and pressure interrelation allowed one to explain
these processes in detail and revealed the consequences of
negative dependence of the equilibrium melting temperature
on pressure. In first picoseconds, the strong heating rate results
in the growth of compressive stresses, leading to positive
pressure. In contrast to metals, positive pressure weakens the
crystal stability against both heterogeneous and homogeneous
melting, but is immediately consumed by the shrinkage of
the material upon the melting process. This further results
in the temporal relaxation of the material, undergone in the
homogeneous melting process, and a number of liquid nuclei
are incorporated into the yet crystal structure. The subsequent
unloading (negative) pressure wave temporarily reinforces the
stability of the residual crystalline structures. A heterogeneous
process takes over the homogeneous one only after some tens
of picoseconds and takes a much longer time.

For fluences higher or equal to the threshold value of
0.173 J/cm2, the effective melting depth rapidly increases
in the first 10 ps after the laser pulse due to the quick
homogeneous melting. Then the heterogeneous mechanism
prevails and further melting proceeds at a much slower rate.
At later stages, the incoming positive pressure waves from
the rear side of the sample assist the heterogeneous melting
resulting in the humps in the effective melting depth. Finally,
after plateaus are reached, the material starts to recrystallize
back to the diamond structure.

Therefore, from the obtained results, which reproduce the
experimental data values up to the limit of the precision of
the interatomic potential, and from the performed microscopic
analysis of the melting process, we conclude that the suggested
model can be used for a number of close insights of the
laser-generated nonequilibrium processes in the Si material.
Moreover, with additional efforts in the implementation of
the parallel algorithm and three-dimensional heat conduction,
simulations can cover temporal and spatial scales big enough to
be directly attainable in the experiment for a direct comparison
with the experiment. Finally, based on the model construction
idea and the performed analysis, one can expect that, although
the analyses in this work were done for silicon, the model
in general should be applicable for other semiconductor
solids with the appropriate interatomic potentials and the
implemented properties of the electron-hole free-carrier’s
subsystem.

The melting kinetics of semiconductors under ultrashort
laser irradiation is significantly different from that of metals
with a fcc crystal structure due to the differences in crystallic
structure and thermophysical properties. The close-packed

structure of metallic targets leads to low-pressure assisted
melting, whereas in semiconductors low pressure reinforces
the crystal stability against melting. In both, metals and
semiconductors, liquid nuclei, formed inside the crystallic
solid during homogeneous melting, reinforce the stability of
the surrounding crystal. However, the reasons for that are dif-
ferent: In metals the expansion of the material during melting
by 3%–5% leads to increased pressure, whereas semiconductor
materials contract during melting by the order of 5%–7%.
Particularly, this effect is strongly pronounced for silicon (the
volume of melting is −7.5%), which results in its rough melt-
ing front. The effect of heat expansion is not so pronounced in
semiconductors; therefore the laser-induced pressure is weaker
than in metals. In metals, at the fluences around the melting
threshold, the laser energy deposition depth can be estimated
from the properties of material and is usually a constant not
larger than a few tens of nanometers. Consequently, the areas
of both homogeneous and heterogeneous melting are near to
the surface, resulting in a well-defined solid-liquid interface
despite possible homogeneous melting. In semiconductors,
however, the laser energy deposition depth depends on the
laser parameters and transient material state. This depth is
much larger than the critical size of liquid nuclei, which is
reflected in several nucleation regions remaining on different
depths for a long time (sometimes until recrystallization).

The application of the model, however, is limited to
fluences below those, at which changes in the interatomic
potential due to electronic excitations become significant.
Also, the one-dimensional model for the diffusion of free
carriers and heat propagation, implemented in the current
approach, is valid as long as the investigated target lateral
size remains small as compared to the laser spot for particular
experimental applications. Whenever this assumption is no
longer valid, and the laser spot on the material surface becomes
comparable with the size of the damaged region (ablation
crater, generated surface feature), the suggested model must
account for the 3D diffusion process in its continuum part. All
listed limitations, however, are planned to be resolved in our
future investigations.
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APPENDIX A: MODEL PARAMETERS

Name and symbol Expression and units References

Initial carrier density, n0 1016 m−3 [64]
Initial lattice and carrier temperature, T0 300 K
Lattice specific heat, Ca 1.978 × 106 + 3.54 × 102Ta − 3.68 × 106/T 2

a , J/(m3K) (Ta in K) [99]
Lattice thermal conductivity, ka 1.585 × 105Ta

−1.23, W/(m�K) (Ta in K) [99]
Carrier thermal conductivity, ke = kh −3.47 × 1018 + 4.45 × 1016Te, eV/(s m K) (Te in K) [100]
Indirect band gap, Eg 1.170 − 4.73 × 10−4 × T 2

a /(Ta + 636) − 1.5 × 10−10 × n1/3 [101,102]
if 1.170 − 4.73 × 10−4 × T 2

a /(Ta + 636) − 1.5 × 10−10 × n1/3 � 0
and 0 otherwise, eV (Ta in K, n in m−3)

Interband absorption (taken from 694 nm laser), α 1.34 × 105exp(Ta/427), m−1 (Ta in K) [103]
Two-photon absorption, β 15 cm/GW See Sec. II
Reflectivity, R 0.329 + 5 × 10−5(Ta − 300) (Ta in K) [74]
Auger recombination coefficient, γ 3.8 × 10−43 m6/s [104]
Impact ionization coefficient, δ 3.6 × 1010exp(−1.5Eg/kBTe), s−1 [105]
Free-carrier absorption cross section, 
 2.91 × 10−22Ta/300, m2 (Ta in K) [106]
Electron-phonon relaxation time, τ ep 0.5 × 10−12(1 + n/(2 × 1027)), s (n in m−3) [100]
Electron effective mass, m∗

e 0.36me [107]
Hole effective mass, m∗

h 0.81me [107]
Mobility of electrons (taken at Te = 1000 K), µe 0.0085 m2/(V�s) [106]
Mobility of holes (taken at Te = 1000 K), µh 0.0019 m2/(V�s) [106]

APPENDIX B: ADDITIONAL EQUATIONS DEMANDED
FOR THE CARRIER DESCRIPTION

In this Appendix we present the additional equations
demanded to complement the system (1), (3), and (10). The
full set of nonlinear differential equations therefore allows
the description of laser irradiation of silicon in continuum.
The derivation of the following expressions can be found
elsewhere [55]. The electrons and holes are assumed to
have two separate Fermi-Dirac distributions with shared
temperature Te, but different chemical potentials ϕe and ϕh,
respectively [63]:

fc(E) = 1

e±(E−ϕc)/kBTe + 1
, (B1)

where subscript c stands as e for electrons and h for holes; the
+ sign is associated with electrons and the − sign with holes.
The reduced chemical potentials are defined as follows:

ηe = ϕe − EC

kBTe

and ηh = EV − ϕh

kBTh

, (B2)

where EC and EV are the conduction and valence band energy
levels, respectively, so the energy gap is Eg = EC–EV . The
integration of the carrier distribution functions over the energy
leads to the expressions for the carrier density (parabolic bands
are assumed):

n = 2

[
m∗

ckBTe

2π�2

]3/2

F1/2(ηc). (B3)

The Fermi-Dirac integral is defined as

Fξ (ηc) = 1

�(ξ + 1)

∫ ∞

0

xξ

1 + exp(x − ηc)
dx. (B4)

The electrons and holes are assumed to move together due to
the Dember field preventing the charge separation. The carrier
current is therefore

�J = −D

{
∇n + n

kBTe

[
H

1/2
−1/2 (ηe) + H

1/2
−1/2 (ηh)

]−1∇Eg

+ n

Te

⎡
⎣2

H 1
0 (ηe) + H 1

0 (ηh)

H
1/2
−1/2 (ηe) + H

1/2
−1/2 (ηh)

− 3

2

⎤
⎦∇Te

}
, (B5)

where H
ξ
ζ (ηc) ≡ Fξ (ηc)/Fζ (ηc) and the ambipolar diffusion

coefficient is

D = kBTe

qe

μeμhH
0
1/2 (ηe) H 0

1/2 (ηh)

μeH
0
1/2 (ηe) + μhH

0
1/2 (ηh)

× [
H

1/2
−1/2 (ηe) + H

1/2
−1/2 (ηh)

]
. (B6)

Ambipolar energy flow is the sum of diffusion and thermal
energy currents inside the carrier subsystem and can be written
as

�W = {
Eg + 2kBTe

[
H 1

0 (ηe) + H 1
0 (ηh)

]} �J − (ke + kh)∇Te.

(B7)

APPENDIX C: PROPERTIES OF THE
STILLINGER-WEBER SILICON

In order to have our atomistic-continuum MD-nTTM
modeling results analyzed quantitatively, we must first find
out the properties of the material represented with Stillinger-
Weber potential for Si [49]. Among the properties that are
of essential interest for us, one can point out the equilibrium
melting temperature, volume of melting, enthalpy of fusion
(latent heat of melting), linear expansion coefficient, and
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FIG. 11. (Color online) Equilibrium melting temperatures, Tm,
and maximum overheating temperatures, Toh and T1D−P , for different
pressure conditions. Green crosses are the results of liquid-crystal
coexistence simulations with MD. Green solid line is the result of the
corresponding fitting procedure. Blue pluses are the results of MD
simulations on the maximum overheating temperature that the crystal
can have without melting within at least 50 ps (see text). Blue solid
line is the result of the corresponding fitting procedure. Red circles
were calculated at conditions similar to blue pluses, except that the
expansion and contraction of the sample were one dimensional.

heat capacity. In this Appendix we perform classical MD
calculations in order to determine the material properties.

One of the most important parameters in our work, the
equilibrium melting point, can be found from a sequence
of liquid-crystal coexistence simulations. For this purpose a
sample with 6 × 6 × 40 lattice cells in X, Y, and Z dimensions,
containing 11 500 atoms, was prepared partially molten at a
certain pressure. Thereafter, the sample was equilibrated over
a nanosecond so that the liquid and solid phases coexisted
together at the stable pressure and temperature across the
whole sample. This method excludes the presence of the
nucleation barrier upon the phase transformation, and we
therefore surely measure the equilibrium melting temperature
at the given pressure. Performing a series of such simulations
at different pressures, one can apply a linear fit to the obtained

data points according to Clapeyron’s equation,(
dT

dP

)
Tm

= �Vm

�Sm

= Tm�Vm

�Hm

. (C1)

This equation not only helps to define the equilibrium
melting temperature for normal conditions, Tm = 1683 ±
2 K (P = 0 GPa), but is also linked to other thermophysical
properties such as entropy of fusion �Sm, volume of melting
�Vm, and the latent heat of melting �Hm (enthalpy of
fusion). From Fig. 11 one can see the relation between
equilibrium melting temperature and pressure is different from
that in metals [53,92]. Higher (lower) pressure assists (hinders)
the melting process, therefore decreasing (increasing) the
necessary temperature needed to melt the crystal. This result
is in agreement with the silicon shrinkage during melting [see
below, Fig. 12(a)].

Figure 11 further shows data at higher temperatures, which
refer to the maximum possible overheating of the crystal before
the onset of homogeneous nucleation of the liquid phase (blue
pluses and blue solid line) for different pressure conditions.
The corresponding simulations involved 12 × 12 × 12 lattice
cells with periodic boundary conditions. The crystal was
considered stable in case liquid nuclei of the critical size
do not appear within 50 ps after giving the velocities to the
atoms. Note, that the choice of this time slightly influences the
resulting maximum possible overheating temperature Toh.

Similarly, we calculated the maximum possible overheat-
ing temperatures, T1D−P , in the case of one-dimensional
expansion/contraction of the solid (red circles in Fig. 11).
The calculations show that, in contrast to metals [53],
the presence of lateral crystal confinement for the realized
heating conditions does not noticeably affect the maximum
possible overheating of the crystal from that obtained at the
homogeneous conditions. We therefore use Toh in our analysis.

Other thermophysical properties such as volume of melting
�Vm, latent heat of melting �Hm, linear expansion coefficient,
and heat capacity of the represented material can be found from
another sequence of constant pressure/constant temperature
simulations. In these simulations for a sample with dimensions
of 8 × 8 × 8 lattice parameters, consisting of 4096 atoms, we
can measure the volume and energy density as a function
of temperature at P = 0 GPa, first for solid and then for
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FIG. 12. (Color online) Thermophysical properties of the Stillinger-Weber silicon: (a) equilibrium lattice parameter for different
temperatures at zero pressure; (b) equilibrium energy density for different temperatures at zero pressure. Blue crosses (showing solid phase)
and red circles (showing liquid phase) are the results of MD simulations. Dashed lines are guides to the eye.
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TABLE I. Comparison of the properties between the Stillinger-Weber silicon and experimental crystal.

Parameter Calculated value Experimental value References

Lattice parameter (taken at 300 K) 0.543 74 nm 0.543 05–0.543 07 nm [98,108]
Melting temperature 1683 ± 2 K 1687–1688 K [98,108]
Volume shrinkage during melting 7.5% 7–9.6% [108–111]
Enthalpy of fusion 31.2 kJ/mol 50.21 kJ/mol [98]
Linear expansion coefficient 3.8 × 10−6 1/K 4.3 × 10−6 1/K [98,112]
(taken at 1000 K)
Heat capacity at constant pressure 1.94 × 106 + 2.32 See plotted data in the Reference [113]

×103Ta, J/(m3 K)

Heat capacity at constant volume 2.00 × 106 + 1.84 1.978 × 106 + 3.54 × 102Ta [99]
×102T 2

a ,J/(m3K)(Ta in K) −3.68 × 106/T 2
a ,J/(m3K)

(Ta in K)

Melting curve slope −46.49 K/GPa −58.7 K/GPa (near P = 0) or −60 K/GPa [114], and references
therein; [108]

liquid phases [Figs. 12(a) and 12(b)]. The jump between solid
and liquid curves at the melting temperature corresponds to
the volume of melting [Fig. 12(a)] and enthalpy of fusion
[Fig. 12(b)]. Moreover, applying a linear fit to the lattice
parameter as a function of temperature [Fig. 12(a)] and a fit
of type E = ATa + BT 2

a /2 for the energy as a function of
temperature [Fig. 12(b)] we can take the derivative with respect
to temperature and obtain the linear expansion coefficient and
the heat capacity at zero pressure (see Table I).

The obtained results are collected in Table I and compared
with their experimental values. We can see that the material
properties represented by the Stillinger-Weber potential [49]
for Si generally have a good match with the experimental
data. We therefore analyze our results obtained with the
MD-nTTM model quantitatively for the material represented
with the given potential, and have some possibilities for their
semiquantitative comparison with the experimental data.

APPENDIX D: PARAMETERS FOR DISTINGUISHING
BETWEEN CRYSTAL AND LIQUID STRUCTURES

We use two different order parameters to distinguish
between the crystal and liquid states of matter: local or-
der parameter (LOP) [115] and modified central symmetry
parameter (CSP), similar to that in Ref. [116]. We construct
them for the diamond crystal structure and average their values
over the nearest neighbors (first or second neighbor shell) to
prevent large fluctuations.

To calculate the LOP for atom i we use the following
definition:

LOPi =
∣∣∣∣∣∣
1

6

1

N2

N2∑
j=1

6∑
k=1

exp(i �qk�rij )

∣∣∣∣∣∣
2

. (D1)

Index j runs through all the neighbors of atom i inside the
second neighbor shell (N2 = 12 for ideal diamond structure).

The vectors {�qk}6
k=1 are defined as follows: �q1 = 8π

a
{1; −1; 1},

�q2 = 8π
a

{−1; 1; 1}, �q3 = 8π
a

{1; 1; −1}, �q4 = 8π
a

{0; 2; 2}, �q5 =
8π
a

{2; 2; 0}, and �q6 = 8π
a

{2; 0; 2}. a = a (T ) is the lattice
parameter of the crystal depending on the atomic temperature
[see Fig. 12(a)].

The CSP of atom i is calculated from the following
expression:

CSPi = 1 −
[∑N1

j=1 (�rij )
]2

N1
∑N1

j=1 �r2
ij

, (D2)

where j runs over the nearest neighbors inside the first
neighbor shell r < 1

2 (
√

3
4 +

√
2

2 )a, N1 = 4 for ideal diamond
structure.

In the case of ideal crystal, the values of LOP and CSP
are 1 for every atom and when the melting occurs, they
quickly decay. Both LOP and CSP allow for a sharp distinction
between the two phases of silicon with the chosen criteria
(0.0155 for LOP and 0.9825 for CSP; please note that these
values depend on the choice of the interatomic potential). CSP
has somewhat higher precision (weaker noise) and does not
depend on the crystal orientation. It also allows to distinct
homogeneous recrystallization inside the liquid phase. For the
discussions and interpretations, the CSP is used throughout
the paper. We only apply LOP for coloring the graphs of CSP
below the snapshots in Figs. 5–7 and 9.

The mentioned threshold values were found from the
contour plot in Fig. 4(a). Initially the plot was calculated using
LOP. We were decreasing the threshold for LOP starting from
1 until the first signs of (yellow) noise appear in the liquid
(red) area in the plot. This means the noise became balanced
between the crystal (blue) area and the liquid (red) area and is
not greater than 20%. This led to the threshold value of 0.0155
for LOP. On the other hand, CSP does not show any noticeable
noise in Fig. 4(a) even when its threshold is not well adjusted.
We therefore found the latter from the best match of 50%
melting fronts (black curves) between LOP and CSP variants
of Fig. 4(a). As a result of using CSP with the found threshold
value, the noise in Figs. 4(a), 5–7, 8(a), and 9–10 has been
significantly decreased.
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