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Quasi-two-dimensional (2D) systems, such as an electron gas confined in a quantum well, are important model
systems for many-body theories. Earlier studies of the crossover from 3D to 2D in ground-state density-functional
theory showed that local and semilocal exchange-correlation functionals which are based on the 3D electron gas
are appropriate for wide quantum wells, but eventually break down as the 2D limit is approached. We now consider
the dynamical case and study the performance of various linear-response exchange kernels in time-dependent
density-functional theory. We compare approximate local, semilocal, and orbital-dependent exchange kernels,
and analyze their performance for inter- and intrasubband plasmons as the quantum wells approach the 2D limit.
3D (semi)local exchange functionals are found to fail for quantum well widths comparable to the 2D Wigner-Seitz
radius r2D

s , which implies in practice that 3D local exchange remains valid in the quasi-2D dynamical regime for
typical quantum well parameters, except for very low densities.
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I. INTRODUCTION

The key concept of density-functional theory (DFT) [1]
is that all electronic many-body systems can be uniquely
characterized by their electron density n(r). The density can
be obtained in principle exactly via the Kohn-Sham equation
(here and in the following we use atomic units) [2],

[
−∇2

2
+ v0(r) + vH[n](r) + vxc[n](r)

]
ϕj (r) = εjϕj (r),

(1)

where v0(r) is a given external potential, vH[n](r) =∫
d3r ′ n(r′)/|r − r′| is the Hartree potential, and vxc[n](r)

is the exchange-correlation (xc) potential. The density is
obtained from the self-consistent solution of Eq. (1) as n(r) =∑N

j=1 |ϕj (r)|2, where N is the number of electrons, and all
physical observables follow therefrom.

The xc potential is defined as the functional derivative
vxc[n](r) = δExc[n]/δn(r). The xc energy Exc[n] is a universal
functional of the density: this means that there is one and only
one exact density functional of the xc energy that is valid for all
electronic systems with a given form of the electron-electron
interaction, for any N . If this exact xc functional were known,
it would give exact ground-state results, via Eq. (1), for all
conceivable forms of matter, including atoms, molecules, and
periodic or nonperiodic solids.

In real matter, v0(r) consists of the Coulomb potentials
of positively charged atomic nuclei. But the universality of
Exc[n] and vxc[n](r) extends beyond real matter, and includes
all mathematically reasonable forms of v0(r), whether they
exist in nature or not. In particular, it includes systems of
lower dimensionality, for instance, electrons confined in a two-
dimensional (2D) plane [3].

A stringent test for approximate xc functionals is their per-
formance during a dimensional crossover. The crossover from
3D to 2D has been previously studied in the DFT literature
[4–7]. It was found that local and semilocal functionals such
as the local-density approximation (LDA) and generalized
gradient approximations (GGAs) fail badly at this task. To

see this, consider the LDA exchange energy

ELDA
x,3D[n] = −3

4

(
3

π

)1/3 ∫
d3r n(r)4/3. (2)

What happens if we try to evaluate ELDA
x,3D[n] for a 2D system?

Let the density be n2D(r) = n(r||)δ(z), where r|| = (x,y)
denotes a 2D position vector. Using the δ function in the form
δ(z) = limε→0+(4πε)−1/2e−z2/4ε , one finds

ELDA
x,3D[n2D] = lim

ε→0+

311/6

45/3
√

πε1/6

∫
d2r||n(r||)4/3. (3)

This clearly shows that the 3D form of the LDA exchange
energy diverges in the 2D limit, instead of approaching the
proper form of the 2D LDA [8],

ELDA
x,2D[n] = −4

3

√
2

π

∫
d2r||n(r||)3/2. (4)

All standard 3D GGAs will exhibit a similar divergence in the
2D limit.

To capture the 3D-2D crossover correctly, nonlocal xc
functionals are needed. Some improvement over LDA and
GGAs can be achieved with meta-GGA and hyper-GGA xc
functionals [6,7], but only fully nonlocal xc functionals such as
the average density approximation [5] or the inhomogeneous
STLS [9,10] show a proper behavior as the 2D limit is
approached.

In this paper, we extend the study of the dimen-
sional crossover into the domain of time-dependent density-
functional theory (TDDFT) [11–13]. However, we will not
explore the full dynamical range of TDDFT, which allows one
to study electronic systems under the influence of arbitrary
external time-dependent potentials, v(r,t); instead, we will
limit ourselves to the linear-response regime and consider
electronic excitation energies [14,15]. Furthermore, in this
paper we will only consider exchange, but not correlation
effects.

The main questions are the following. What characteristic
effects or signatures occur in the excitation spectrum of a
system as it crosses over from three to two dimensions, and
how will the expected failure of LDA and GGA manifest
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FIG. 1. (Color online) Illustrations of intersubband (top) and
intrasubband (bottom) plasmon excitations with wave vector q||
in a quantum well with conduction band Fermi level εF in the
lowest subband. Intersubband plasmons involve collective transitions
between two subbands, leading to density oscillations of the quasi-2D
electron system perpendicular to the quantum well plane. Intrasub-
band plasmons (collective transitions within the lowest subband) are
characterized by density oscillations and currents flowing along the
plane.

itself? Will the breakdown be as drastic as in ground-state DFT,
or will it perhaps be less severe, under some circumstances?
How do nonlocal orbital functionals perform under the 3D-2D
crossover?

Apart from the inherent fundamental interest, there are
important practical reasons that motivate such a study. Quasi-
2D [16] electron gases (2DEGs) can be prepared in very high
quality along interfaces and in heterostructures of a wide range
of materials (most notably semiconductors and oxides), with
many practical applications [17,18]. It is important to be able to
model the electronic structure and dynamics in these systems
accurately and numerically efficiently. Since no DFT method
beats the LDA in terms of simplicity and efficiency, one would
like to know whether the 3D LDA is reliable in the quasi-2D
regime, and under what circumstances it starts to fail. We will
answer these questions in the following.

Figure 1 illustrates the two types of collective excitations
that we will study in this paper. In a quantum well, electrons
are free to move in the plane, but the levels are quantized
into subbands due to quantum confinement perpendicular to
the plane. Intersubband plasmons involve transitions from
occupied to empty states in different subbands; since different
subbands have different envelope functions, this implies
density oscillations perpendicular to the well plane. By
contrast, intrasubband plasmons involve transitions within a
subband; the accompanying currents and density oscillations
are parallel to the plane. We will study what happens to
these excitations as the quantum well becomes more and more
narrow, approaching the strictly 2D limit.

This paper is organized as follows. In Sec. II we discuss the
necessary theoretical background: we introduce our quantum
well model, review the TDDFT linear-response formalism
for collective excitations in quantum wells, and list various

exchange functionals. In Sec. III we present our results, and
Sec. IV gives conclusions. Some technical details are given in
the Appendices.

II. THEORETICAL BACKGROUND

A. Quantum well model

We consider n-doped semiconductor quantum wells of
width L in which the electrons are confined along the z

direction and free to move in the x-y plane. The number of
electrons per unit area (the sheet density) is denoted by Ns .
In the following, we assume that the material of the quantum
well is GaAs, with effective mass m∗ = 0.067m and effective
charge e∗ = e/

√
13 (m and e are the free electron mass and

charge). We choose units in which e∗ = m∗ = � = 1. The
effective Hartree unit of energy is 10.8 meV; the effective
Bohr radius is 103 Å.

The quantum well is assumed to be confined within
infinitely high barriers at z = 0 and z = L. We further assume
that the solutions of the Kohn-Sham equation for the quantum
well envelope functions [17,18] have the standard particle-in-
a-box form,

ϕj (z) =
√

2

L
sin

(
jπz

L

)
, j = 1,2,3, . . . , (5)

with Kohn-Sham energies

εj = 1

2

(
jπ

L

)2

. (6)

The Kohn-Sham potential vs(z) = vext(z) + vH(z) + vxc(z)
that gives rise to these solutions is an infinitely deep square-
well potential. This means that for each L and Ns the external
quantum well potential vext(z) is chosen such that, if added to
the Hartree and xc potentials vH(z) and vxc(z), the resulting sum
is a constant for 0 < z < L. Thanks to the Hohenberg-Kohn
theorem [1], a unique choice of such a vext(z) is always possible
in principle; further details of the ground-state potentials do
not need to be specified in the following.

We emphasize that the particle-in-a-box form of the Kohn-
Sham eigenstates is only a matter of convenience, and does
not lead to a loss of generality of the results of the 3D-2D
crossover that we study in this paper.

The ground-state density in the well is given by

n0(z) = 1

π

∑
j

εj <εF

ϕ2
j (z)(εF − εj ), (7)

where the factor (εF − εj )/π comes from the summation
of all occupied single-particle states in the j th subband. To
determine the Fermi energy εF , we integrate the density
over z: ∫ L

0
dz n0(z) = Ns = 1

π

Nocc∑
j=1

(εF − εj ), (8)

where Nocc is the number of occupied subbands. Hence

εF = πNs

Nocc
+ 1

Nocc

Nocc∑
j=1

εj , (9)

and Nocc is fixed by requiring εNocc < εF < εNocc+1.
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B. Excitations within linear-response TDDFT

In the following, we are interested in the frequency-
dependent spin-density response in a quantum well. Because
of the translational symmetry in the x-y plane, we Fourier
transform with respect to the in-plane position vector r|| =
(x,y); this introduces the in-plane wave vector q||. The TDDFT
linear-response equation [19] then becomes

n1σ (q||,z,ω) =
∫

dz′χsσσ (q||,z,z′,ω)vs1σ (q||,z′,ω). (10)

The noninteracting response function is diagonal in the spin
σ :

χs,σσ ′(q||,z,z′,ω)

= δσσ ′

Nocc∑
j=1

∞∑
l=1

Flj (q||,ω)ϕj (z)ϕl(z)ϕj (z′)ϕl(z
′), (11)

where

Flj (q||,ω) =
∫

d2k||
(2π )2

[
θ (εF − εj − k2

||/2)

ω − ωlj − q||k|| − q2
||/2 + iη

− θ (εF − εj − k2
||/2)

ω + ωlj + q||k|| + q2
||/2 + iη

]
. (12)

Here, ωlj = εl − εj , and η is a positive infinitesimal. The
linearized effective potential, vs1σ = v1σ + vHxc1σ , consists of
an external scalar perturbation plus a linearized Hartree-xc
contribution:

vHxc1σ (q||,z,ω) =
∑
σ ′

∫
dz′

[
2π

q||
e−q|| |z−z′ |

+ fxc,σσ ′ (q||,z,z′,ω)

]
n1σ ′(q||,z′,ω) . (13)

The xc kernel fxc,σσ ′ will be discussed in more detail below.
The following external perturbation triggers both single-

particle and collective excitations with a finite in-plane wave
vector q||:

v1σ (q||,z,ω) = S±
σ E0e

q||z, (14)

which couples to the charge (+) and the spin (−) channel
via S±

σ = δσ,↑ ± δσ,↓, respectively. Having solved the response
equation (10) self-consistently, we obtain the absorption cross
section [20] as

σ (q||,ω) = − 2ω

E0q
2
||

Im
∑

σ

S±
σ

∫
dz eq||zn1σ (q||,z,ω). (15)

This expression can be viewed as a generalization of the
so-called reflection amplitude, which determines the infrared
absorption of quantum wells in the presence of a grating
coupler [21,22].

The absorption cross section (15), when plotted as a
function of frequency, has peaks at those frequencies that are
resonant with an excitation energy of the system; the peak
height is a measure of the oscillator strength.

The alternative to calculating the absorption cross section
is to directly calculate the excitation energies of the system.
The idea is that an electronic excitation can be viewed as
an electronic eigenmode, i.e., a dynamical response of the

system that is self-sustained and does not require an external
perturbation. The characteristic eigenmode frequencies are
thus obtained as those frequencies � where the linear-response
equation has a nontrivial solution in the absence of an external
perturbation [13,14]. The resulting general formalism for
calculating excitation energies in TDDFT has the form of an
eigenvalue equation [12,15]:(

A K

K A

) (
X

Y

)
= �

(−1 0

0 1

) (
X

Y

)
, (16)

where the matrix elements of A and K are given by

Aiaσ,i ′a′σ ′(ω) = δii ′δaa′δσσ ′ωaiσ + Kiaσ,i ′a′σ ′(ω), (17)

Kiaσ,i ′a′σ ′(ω) =
∫

d3r

∫
d3r ′ϕ∗

i (r)ϕa(r)

×
{

1

|r − r′| + fxcσσ ′(r,r′,ω)

}
ϕi ′(r′)ϕ∗

a′(r′)

(18)

and i,i ′ and a,a′ run over occupied and unoccupied Kohn-
Sham orbitals, respectively. In almost all applications of this
formalism one uses frequency-independent approximations
for the xc kernel.

Equation (16) can be adapted in a rather straightforward
manner to calculate inter- and intrasubband charge and spin
plasmon frequencies in quantum wells; all one needs to do is
use the explicit form ϕj (r) = A−1/2ϕj (z)eik||·r|| of the single-
particle wave functions and then Fourier transform with respect
to r||.

Rather than giving the general formalism, let us consider
the much simpler (but very important) quasi-2D case. Assume
that only the lowest subband is occupied, and consider the
lowest intersubband plasmon modes at wave vector q|| = 0.
Ignoring the influence of the third and higher subbands, the
intersubband charge and spin plasmon frequencies are given
by

�2
c,s = ω2

21 + ω21Ns(K↑↑ ± K↑↓), (19)

where ω21 = ε2 − ε1 and

Kσσ ′ =
∫

dz

∫
dz′ϕ1(z)ϕ2(z)[−2π |z − z′|

+ fxc,σσ ′ (z,z′)]ϕ1(z′)ϕ2(z′). (20)

For finite wave vectors, analytic expressions for the plasmon
frequencies can be obtained for small values of q|| by Taylor
expansion of the response function; however, it is easier to
determine the plasmon frequencies numerically.

C. Exchange kernels

The main purpose of this paper is to compare the perfor-
mance of different approximate xc kernels in the crossover
from 3D to 2D. In the following we shall limit ourselves to the
exchange-only case. For systems that are not spin polarized,
the spin-resolved exchange kernel fx,σσ ′ is obtained from the
spin-unresolved exchange kernel fx as

fx,σσ ′ = 2δσσ ′fx. (21)

245304-3



SHAHRZAD KARIMI AND CARSTEN A. ULLRICH PHYSICAL REVIEW B 90, 245304 (2014)

We compare three different frequency-independent exchange
kernels: ALDA, PBE, and PGG. The ALDA exchange kernel
is defined as follows:

f ALDA
x (r,r′) = d2eh

x (n̄)

dn̄2

∣∣∣∣
n̄=n(r)

δ(r − r′), (22)

where eh
x (n) is the exchange energy density of a homogeneous

electron liquid of density n [8]. Hence the 3D and 2D ALDA
exchange kernels are given by

f ALDA
x,3D (r,r′) = −[9πn2(r)]−1/3δ(r − r′), (23)

f ALDA
x,2D (r||,r′

||) = −[πn2D(r||)/2]−1/2δ(r|| − r′
||). (24)

The PBE functional [23] is probably the most widely used
GGA; it is defined only for 3D systems. The explicit expression
for the PBE exchange kernel turns out to be quite lengthy, and
is given in Appendix A.

In contrast with ALDA and PBE, the so-called PGG
functional [14,24] is a nonlocal orbital functional, given
by

f PGG
x (r,r′) = −2

∣∣∣ ∑Nocc
j=1 ϕj (r)ϕ∗

j (r′)
∣∣∣2

|r − r′|n(r)n(r′)
, (25)

where the sum runs over Nocc doubly occupied orbitals. PGG
can be viewed as an approximation to the exact exchange
kernel [12]. We give the explicit form of the PGG kernel for
quasi-2D systems and for the 2D limit in Appendix B, and
discuss its relation to exchange-only ISTLS in Appendix C.

III. RESULTS AND DISCUSSIONS

A. Plasmons: From bulk to quasi-2D

Plasmons in homogeneous electron liquids have been
thoroughly studied for many decades [25]. The plasmon
dispersions in 2D and 3D follow from the exact conditions[

4π

q2
+ fxc,3D(q,�3D)

]
χ3D

0 (q,�3D) = 1, (26)

[
2π

q||
+ fxc,2D(q||,�2D)

]
χ2D

0 (q||,�2D) = 1, (27)

where χ3D
0 (q,�) and χ2D

0 (q||,�) are the 3D and 2D Lind-
hard functions [8]. In the limit of small wave vectors, one
obtains

�3D(q → 0) = ωpl

[
1 +

(
3
(
k3D
F

)2

10ω2
pl

+ fxc,3D(0,ωpl)

8π

)
q2

]
,

(28)

where ωpl = √
4πn is the classical plasma frequency of a 3D

electron liquid of density n, and k3D
F is the associated Fermi

wave vector. The corresponding relation in 2D is

�2D(q|| → 0) = k2D
F

√
q||

[
1 + q||

2π
fxc,2D(0,0)

]1/2

. (29)

�3D(q) and �2D(q||) both describe charge plasmons (i.e., col-
lective oscillations of the charge density n). There are no corre-

sponding 3D and 2D spin plasmons (i.e., collective oscillations
of the spin density) as long as the system is not magnetic:
the conditions for spin plasmons in homogeneous systems,
fxc,3D(q,�s)χ3D

0 (q,�s) = 1 and fxc,2D(q||,�s)χ2D
0 (q||,�s) =

1, cannot be satisfied, i.e., there is no real or complex frequency
�s which makes the left-hand side equal to one.

Suppose now that we start from a homogeneous 3D system
and let one of its dimensions, say z, become confined: this
defines a neutral jellium slab [21,22]. Let us consider a jellium
slab that corresponds to the quantum well model with hard
boundaries that we described in Sec. II A. What happens to
the plasmon mode as the width L of this system shrinks down
to the quantum limit?

As soon as L becomes finite, the collective excitations are
described using the formalism of intersubband plasmons. We
consider the case where the average 3D density n̄ in the well
is constant, letting

n̄ = Ns/L. (30)

If L is very large, the difference between two consecutive
energy levels εj and εj+1, see Eq. (6), is very small, and a
large number of subbands is occupied. As L shrinks, the level
spacing increases and fewer and fewer subbands are occupied.
Let Lν be that width where the Fermi energy εF coincides with
the νth level εν . From Eqs. (6) and (9) it is straightforward to
show that

L3
ν = πν

12n̄
(4ν2 − 3ν − 1), (31)

where we used
∑ν

j=1 j 2 = ν(ν + 1)(2ν + 1)/6. In particular,
for ν = 2 we have

L2 =
(

3π

2n̄

)1/3

. (32)

For L < L2, only the lowest subband is occupied (the quantum
limit). Equation (32) can also be rewritten in terms of the 2D
Wigner-Seitz radius r2D

s as [4]

L2 =
√

3π

2Ns

= πr2D
s

√
3

2
≈ 3.85r2D

s . (33)

Figure 2 shows ALDA intersubband excitation spectra at
q|| = 0, in the charge and spin channel, for quantum wells
with different numbers of occupied subbands, ranging from
Nocc = 1 to 35. L and Ns are chosen such that the average
density remains constant at n̄ = 0.30a∗

0
−3. The insets in the

middle show how the density profile becomes more and more
square shaped as Nocc increases.

In the quasi-2D limit where Nocc = 1, the spectra only
show a single peak in the energy range below 10 a.u.: the
intersubband charge plasmon at 5.17 a.u. (left bottom panel)
and spin plasmon at 4.53 a.u. (right bottom panel). As more
subbands become occupied, the spectra acquire more and more
peaks, and eventually approach very simple bulk limits for
large Nocc.

At Nocc = 35, the charge-density excitation spectrum is
dominated by a single peak at 1.94 a.u., which is the bulk
plasmon frequency ωpl corresponding to n̄. There is also a
small peak around 0.22 a.u., which corresponds to the surface
plasmon of a large jellium slab with a sharp density profile

245304-4



THREE- TO TWO-DIMENSIONAL CROSSOVER IN TIME- . . . PHYSICAL REVIEW B 90, 245304 (2014)

1

2

5

10

15

25

35

A
bs

or
pt

io
n 

cr
os

s s
ec

tio
n 

(a
.u

.)

Frequency (a.u.) Frequency (a.u.)

FIG. 2. Photoabsorption cross section for q|| = 0 intersubband excitations in quantum wells. Left panels: charge-density excitations. Right
panels: spin-density excitations. Insets: density profiles at given values of Nocc. The calculations were done with Eq. (15), setting q|| = 0 and
using the 3D ALDA exchange kernel to obtain n1σ .

[26]. On the other hand, the spin-density excitation spectrum
has become essentially featureless; in other words, the spin
plasmon is seen to disappear in the bulk limit, as expected.

Thus there is a seamless transition between the 3D bulk
plasmon and the intersubband plasmons as the 2D limit is
approached. In this regime, the 3D ALDA (or any 3D semilocal
functional) is appropriate.

B. 2D limit of intersubband plasmons

We now focus on the situation where only the first subband
is occupied (Nocc = 1), i.e., we consider quantum wells
of width L < L2. Figure 3 shows the intersubband charge
and spin plasmon dispersions for quantum wells with Ns =
1012 cm−2 and L = 100 and 40 Å, respectively, calculated
with RPA, ALDA, PBE, and PGG. In all cases, the charge
plasmon dispersion lies above the spin plasmon dispersion
(except for RPA, which has no spin plasmon). However, the
position of the intersubband plasmon dispersions relative to
the particle-hole (p-h) continuum varies.

For the 100 Å wide quantum well we find that the charge
plasmon branches are above the p-h continuum and spin
plasmon branches are below. For the 40 Å well, however,
the charge plasmon branch has moved below [27] the p-h
continuum for ALDA and PBE, but not for RPA and PGG.
This is a remarkable difference between semilocal and orbital-
dependent exchange functionals, and we will now investigate
this effect in more detail.

Let us consider the case q|| = 0 and keep the sheet
density Ns fixed. As L → 0, the system transitions from
quasi-2D to strictly 2D [16]. In this limit, the intersubband
excitation energies become infinitely large, because the system
is so strongly confined in the plane that density fluctuations
perpendicular to the quantum well plane (see Fig. 1) become

impossible. However, it is interesting to observe how the
intersubband plasmons behave as this limit is approached. This
is shown in Fig. 4.

 14.5
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Ω
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FIG. 3. (Color online) Intersubband plasmon dispersions �(q||),
for Ns = 1012 cm−2 and well widths 100 Å and 40 Å. The black
full lines indicate the intersubband p-h continuum. The RPA only
gives intersubband charge plasmons; ALDA, PBE, and PGG give
both charge (full lines) and spin plasmons (dashed lines). ALDA
and PBE break down when their charge plasmons fall below the p-h
continuum.
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FIG. 4. (Color online) Intersubband plasmon energies, at q|| = 0,
versus well width L, for Ns = 1012 cm−2. The horizontal line
indicates the lowest p-h transition ω21 (all energies are scaled by L2).
The RPA only gives intersubband charge plasmons; ALDA, PBE, and
PGG give both charge (full lines) and spin plasmons (dashed lines).
ALDA and PBE break down when the charge plasmon falls below
the p-h line.

We have calculated the q|| = 0 intersubband charge and
spin plasmon energies with RPA (charge plasmon only),
ALDA, PBE, and PGG. According to Eq. (6) the lowest p-h
transition energy is ω21 = 3π2/2L2. Hence ω21L

2 is constant,
as indicated by the thin horizontal line in Fig. 4. As L becomes
smaller, the plasmon energies (scaled by L2) approach and
eventually merge with the p-h line.

The RPA plasmon energy follows from Eq. (19) as

(
�RPA

c L2
)2 = 9π4

4
+ 20πNsL

3

3
, (34)

where the Hartree part of the intersubband matrix element (20)
is given by

−2π

∫
dz

∫
dz′ϕ1(z)ϕ2(z)|z − z′|ϕ1(z′)ϕ2(z′) = 20L

9π
.

(35)

Hence the RPA charge plasmons are always shifted above the
p-h line, but the separation vanishes as L → 0.

In ALDA, we find

(
�ALDA

c L2)2 = 9π4

4
+ 20πNsL

3

3
− c1(48π2NsL

5)1/3,

(36)

(
�ALDA

s L2)2 = 9π4

4
− c1(48π2NsL

5)1/3, (37)

where c1 = ∫ π

0 dx sin2(2x) sin2/3(x) = 1.20027. For the PBE
and PGG plasmon energies no simple analytic expressions
exist; however, numerical evaluation is straightforward using
the formulas in the Appendices.

As can be seen from Fig. 4, the ALDA and PBE charge
plasmons cross over the p-h line: this happens at L = 54.6 Å

1010 1011 1012 1013 1014

Sheet density (cm-2)

C
rit

ic
al

 w
id

th
 (Å

)

ALDA

PBE

FIG. 5. Critical width Linter
crit at which the intersubband plasmon

breakdown occurs, as a function of sheet density Ns . Full line: ALDA;
dashed line: PBE.

in ALDA and at L = 79 Å in PBE. No such crossover is
observed for PGG.

The critical width Linter
crit at which the crossover occurs in

ALDA and PBE is plotted in Fig. 5 as a function of the sheet
density Ns . In ALDA we can use Eq. (36) to find the analytical
result

Linter
crit = 3c

3/4
1

5
√

Ns

(
5

4π

)1/4

= 0.546√
Ns

a.u. (38)

For PBE, we obtain numerically Linter
crit = 0.79/

√
Ns a.u. In

terms of the 2D Wigner-Seitz radius, this becomes Linter
crit =

0.975r2D
s and 1.40r2D

s for ALDA and PBE, respectively. In
the case of ALDA, this is about four times smaller than L2

[Eq. (33)], the width of the quantum well below which only
the lowest subband is occupied; in the case of PBE, it is about
three times smaller.

In PGG, we find that the charge and spin plasmons always
lie above and below the p-h continuum, respectively. This
is similar to the case of excitation energies in atoms, where
the bare Kohn-Sham exictations are found to lie between the
singlet and triplet excitations [28–30]. Hence the crossover
of ALDA and PBE indicates a general failure of semilocal
functionals in the 2D limit of intersubband transitions.

However, it is important to note that this failure does
not appear to be a catastrophic breakdown, as in the case
of the diverging exchange energy that we discussed in the
Introduction. The intersubband plasmons may have a wrong
position with respect to the p-h continuum, but they still exist
as collective modes, and deviate not too far from the PGG
results. Furthermore, the separation between charge and spin
plasmons (the analog of the singlet-triplet splitting in atoms)
remains well described in ALDA and PBE for all L.

In practice, the width of quantum wells is limited by the
underlying material (for GaAs, the lattice constant is 5.65 Å).
Typical semiconductor quantum wells have widths of several
hundreds of Å, so that one is usually sufficiently far away
from the critical widths where the ALDA breaks down for the
intersubband dynamics, except for situations where Ns is very
small.
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C. 2D limit of intrasubband plasmons

Let us now consider the intrasubband plasmons in a
quantum well with Nocc = 1, in the limit where L → 0.
For convenience, we shift the bottom of the quantum well
potential such that the lowest subband level ε1 = 0. Assuming,
furthermore, that the second and higher subband levels are
energetically well separated from the lowest subband, the
response function (11) is given by

χs,σσ ′(k||,z,z′,ω) = δσσ ′�(z,z′)χ2D
0 (k||,ω), (39)

where χ2D
0 (k||,ω) is the 2D Lindhard function, and where we

abbreviate �(z,z′) = ϕ2
1(z)ϕ2

1(z′). The response equation (10)
for the eigenmodes then becomes

n1(q||,z′,�) =
∫

dz1�(z′,z1)χ2D
0 (q||,�)

×
∫

dz2fHxc(q||,z1,z2)n1(q||,z2,�). (40)

Multiply both sides with ϕ2
1(z)fHxc(q||,z,z′) and integrate over

z and z′. Then, n1 cancels out and we are left with the condition

1 =
∫

dz

∫
dz′�(z,z′)

[
2π

q||
e−q|||z−z′ |

+ fxc(q||,z,z′)
]
χ2D

0 (q||,�). (41)

The intrasubband plasmons of the quasi-2D quantum well are
those frequencies � where Eq. (41) is satisfied. The question
is now this: if L → 0, will Eq. (41) turn into Eq. (27) for the
2D plasmons?

A straightforward calculation shows that this is indeed the
case for the Hartree part, as expected. Using the particle-in-a-
box wave function (5) we obtain∫

dz

∫
dz′�(z,z′)e−q|||z−z′ |

= q||L
(q2

||L2 + 4π2)2

×
{

3q2
||L

2 + 20π2 + 32π4

q3
||L3

(e−q||L − 1 + q||L)

}

−→ 1 for L → 0. (42)

For the PGG exchange kernel, it is straightforward to show
that ∫

dz

∫
dz′�(z,z′)f PGG

x (q||,z,z′) −→ f PGG
x,2D (q||) (43)

for L → 0, where f PGG
x (q||,z,z′) and f PGG

x,2D (q||) are given in
Appendix B; see Eqs. (B4) and (B6). Thus the PGG exchange
kernel behaves correctly in the 2D limit.

However, it is hardly surprising to find that the ALDA does
not give the correct 2D limit. We have∫

dz

∫
dz′�(z,z′)f ALDA

x,3D (z,z′) = −2c2

3π

(
6

πL

)1/3

n
−2/3
2D ,

(44)

where c2 = ∫ π

0 dx sin8/3(x) = 1.4003. This clearly disagrees
with the form of f ALDA

x,2D = −√
2/πn2D, and in fact diverges as

 0
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PGG

q̃||

Ω̃

Ω̃

Ω̃ Ns = 1010 cm−2

Ns = 1011 cm−2

Ns = 1012 cm−2

FIG. 6. Plasmon dispersions �(q||) for strictly 2D systems with
sheet densities Ns = 1010, 1011, and 1012 cm−2, calculated with RPA,
2D ALDA, and PGG. The full lines denote the upper boundaries of the
particle-hole (p-h) continuum. Here, q̃|| = q||/k2D

F and �̃ = �/(k2D
F )2.

L → 0. Other semilocal functionals such as PBE show similar
trends.

Figure 6 shows the plasmon dispersions in the strictly 2D
limit, calculated by solving Eq. (27). The ALDA and PGG
calculations were done with the 2D exchange kernels f ALDA

x,2D

and f PGG
x,2D , respectively. The upper boundary of the particle-

hole continuum is given by the relation �̃ = q̃||2/2 + q̃||,
where q̃|| = q||/k2D

F and �̃ = �/(k2D
F )2. One observes that

the RPA plasmon dispersion always lies above ALDA and
PGG, reflecting the downshift of excitation energies caused
by exchange.

Figure 7 compares the intrasubband plasmon dispersions of
PGG and 3D ALDA for well widths L = λL2, where we let
the scaling parameter λ take on values between 1 and 0.001
[recall that L2, Eq. (32), is the maximum well width for which
only the lowest subband is occupied for a given Ns]. The sheet
density is Ns = 1010 cm−2, and we have L2 = 217 nm.
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FIG. 7. (Color online) Intrasubband plasmon dispersions for
quantum wells with sheet density Ns = 1010 cm−2, for different
widths L = λL2, where λ takes on the values 1, 0.5, 0.2, 0.1, 0.05,
0.02, 0.01, 0.005, 0.002, and 0.001. L2 = 217 nm is the largest
width for which only the lowest subband is occupied. The individual
plasmon dispersions are offset for clarity. The dashed lines are the
upper boundaries of the p-h continuum. The squares indicate the wave
vector q̃||p-h where the plasmons enter the p-h continuum. Top panel:
3D ALDA. Bottom panel: PGG.

As expected, PGG nicely approaches the 2D limit that was
shown in Fig. 6. For λ < 0.01, the intrasubband plasmon
dispersion becomes indistinguishable from the strictly 2D
limit.

The situation is drastically different for the ALDA. As λ

decreases from 1 to 0.1, the intrasubband dispersion appears to
approach the 2D limit. However, below λ = 0.1 the 3D ALDA
starts to fail. The performance at small values of q|| is still good,
but the plasmon branch enters the particle-hole continuum
too soon, and the trend of the entry point as a function
of q|| is reversed. Eventually, as λ → 0, the intrasubband
plasmon completely disappears, rather than approaching the
2D plasmon shown in Fig. 6.

We have repeated these calculations for several different
values of the sheet density Ns , focusing on the wave vector
q̃||p-h where the intrasubband plasmon enters the p-h contin-
uum, as indicated by the blue squares in Fig. 7.

Figure 8 shows q̃||p-h versus the well width scaling factor
λ for Ns = 1010, 1011, 1012, and 1013 cm−2, calculated with
ALDA and PGG. For PGG we see in each case that q̃||p-h

smoothly approaches its limiting value for the strictly 2D

hpq||
~

1010

1110

1210

1310

FIG. 8. (Color online) Wave vector q̃||p-h at which the intrasub-
band plasmon merges with the p-h continuum, plotted vs well
width scaling factor λ, calculated with PGG (blue) and ALDA
(red). The dashed lines indicate the respective limits for the strictly
2D case. The calculations were done for sheet densities Ns =
1010, 1011, 1012, and 1013 cm−2, as indicated. The breakdown of the
3D ALDA occurs around λ = 0.1 for all Ns .

plasmon, shown by the dashed line. The ALDA initially
approaches the 2D limit as λ decreases from 1. However,
around λ = 0.1 all ALDA curves turn around and rapidly drop
off, moving away from the 2D limit.

Thus we find that the 3D ALDA exchange kernel behaves
reasonably as long as the well width is sufficiently large.
The breakdown for intrasubband (in-plane) dynamics occurs
for Lintra

crit ≈ 0.1L2 ≈ 0.4r2D
s . Interestingly, this is significantly

smaller than the critical intersubband width Linter
crit ≈ r2D

s ; see
Sec. III B.

IV. CONCLUSIONS

In this paper we have carried out systematic numerical
studies of the electron dynamics in quantum wells whose
width L crosses over from the 3D to the quasi-2D regime
(where only the lowest subband is occupied, but the finite size
is still relevant) and finally to the strictly 2D limit (where
L = 0). The purpose was a comparison of different classes
of exchange kernels in TDDFT: standard semilocal kernels
(such as ALDA and PBE) and nonlocal kernels (such as PGG
and ISTLS). ALDA and PBE are based on the electron gas
as reference system, whereas PGG and ISTLS are orbital
functionals, whose definition does not invoke any reference
system.

The main conclusion does not come as a surprise: ALDA
and PBE fail in the 3D-2D crossover; PGG succeeds. This is
already well known for the ground state [4–7], and there was no
reason to expect otherwise for the dynamical case. However,
the details are interesting and of practical relevance.

First of all, we discover a universal behavior of the
breakdown of the inter- and intrasubband dynamics in 3D
ALDA. At a critical well width of Linter

crit ≈ r2D
s , intersubband

plasmons are no longer qualitatively correctly described (the
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charge plasmon falls below the single-particle excitation ω21).
For well widths below Lintra

crit ≈ 0.4r2D
s , intrasubband plasmon

dispersions start to become suppressed compared to the 2D
limit. The interesting finding is thus that Lintra

crit < Linter
crit , so the

in-plane dynamics appears to be well described using the 3D
ALDA down to much smaller widths than the out-of-plane
dynamics.

Compared to the ground state, the failure of the (semi)local
xc functionals in the dynamical case is of a different nature.
In fact, while the exchange energy diverges for L → 0,
intersubband plasmons can still be reasonably described (apart
from the fact that they drop below the p-h continuum [27],
which is an artifact of these functionals). In turn, intrasubband
plasmon dispersions become suppressed and cease to exist,
instead of approaching the limit of 2D plasmons.

In practice, it is important to know for what quantum
well widths the 3D ALDA is still applicable. For instance,
if Ns = 1011 cm−2 (which is a very typical value for many
semiconductor quantum well samples), we find Linter

crit = 17 nm
for GaAs, which is rather narrow. Higher sheet densities
allow one to push this limit to even narrower wells; and
the breakdown for intrasubband dynamics occurs at even
smaller well widths, as low as a few Å. This is certainly
good news, considering the popularity of the ALDA and its
ease of implementation. We also find that these values can
be significantly higher for the PBE; in other words, using
gradient-corrected xc functionals for quantum wells does not
seem to pay off [31].

Clearly, the best option to describe the dynamics in strongly
confined systems is using nonlocal orbital functionals such as
PGG or ISTLS, since these are not tied to a particular choice
of reference system (such as the 2D or 3D ALDA) and hence
have no problem with dimensional crossover.

Finally, let us say a few words about correlation. In the
ground state [4–7], it was observed that local and semilocal
correlation functionals break down in a similar manner as ex-
change functionals. This will also be the case for the dynamics.
However, nonlocal, orbital-dependent correlation functionals
are much more complicated than exchange functionals; for
instance, implementing the ISTLS beyond exchange in linear
response will remain a task for the future.

There is another aspect of correlation that is unique
to the dynamical case, namely, it leads to dissipation of
plasmon excitations even outside the particle-hole continuum.
Plasmon damping in quantum wells has been studied within
time-dependent current DFT [32–35], using the complex and
frequency-dependent xc kernel of Vignale and Kohn [36–38].
This xc kernel is a local approximation of the current, and
can lead to overdamping of charge plasmons if the system
becomes too inhomogeneous [33,39]. The effect is even more
dramatic for spin plasmons, where the damping due to the
spin Coulomb drag effect is significantly overestimated using
a local approximation [40]. Again, it is found that the cure to
this overdamping is provided by orbital functionals [41].
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APPENDIX A: PBE EXCHANGE KERNEL

1. PBE exchange energy

The PBE exchange energy functional is defined as [23]

EPBE
x [n] =

∫
d3r ′eh

x (n)

[
1 + κ − κ

1 + μs2/κ

]
. (A1)

Here, the exchange energy density of a homogeneous 3D
electron liquid of density n is

eh
x (n) = −3c

4
n4/3, c =

(
3

π

)1/3

. (A2)

In Eq. (A1), κ = 0.804 and μ = 0.21951 are parameters given
in atomic units. The quantity s is defined as s = |∇n|/2nk3D

F ,
where k3D

F = (3π2n)1/3 is the Fermi wave vector. Thus

s = |∇n|
2(3π2)1/3n4/3

. (A3)

Putting this into Eq. (A1), we obtain

EPBE
x [n] =

∫
d3r ′eh

x (n)

[
1 + κ − κ

1 + γ |∇n|2/n8/3

]
,

(A4)

where γ = (μ/4κ)(3π2)−2/3 = 0.007132 a.u. For what fol-
lows, it is convenient to introduce the abbreviation

g(r) = 1 + γ |∇n(r)|2/n(r)8/3. (A5)

2. PBE exchange potential

The PBE exchange potential in its spin-unresolved form is
given by

vPBE
x (r) = δEPBE

x [n]

δn(r)

=
∫

d3r ′
(

δeh
x (n(r′))
δn(r)

)[
1 + κ − κ

g(r′)

]

−
∫

d3r ′eh
x (n(r′))

δ

δn(r)

(
κ

g(r′)

)
. (A6)

The first part is easy, with

δeh
x (n(r′))
δn(r)

= −cn(r′)1/3δ(r′ − r).

The second part requires more effort, involving functional
derivatives of the gradient of n, which leads to gradients of
δ functions. The final result is

vPBE
x (r) = −cn(r)1/3

[
1 + κ − κ

g(r)

]

+ 3c

4
n(r)−4/3∇

[
2κγ

g(r)2

]
· ∇n(r)

+ 3c

4
n(r)−4/3 2κγ

g(r)2
∇2n(r). (A7)

The spin-dependent version of the PBE exchange energy
functional follows from the spin-scaling relation

Ex[n↑,n↓] = 1
2Ex[2n↑] + 1

2Ex[2n↓]. (A8)
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This gives the spin-resolved exchange potential

vPBE
xσ (r) = vPBE

x [2nσ ](r). (A9)

For a system whose density is not spin polarized we have
n↑ = n↓ = n/2. In this case, all potentials are the same, i.e.,
vPBE

x↑ (r) = vPBE
x↓ (r) = vPBE

x (r).

3. PBE exchange kernel

The parallel-spin exchange kernel is defined as follows:

f PBE
x,σσ (r,r′) = δvPBE

xσ (r)

δnσ (r′)
(A10)

(in the exchange-only case, the antiparallel-spin kernel is zero).
For spin-unpolarized systems, we have

f PBE
x,↑↑(r,r′) = f PBE

x,↓↓(r,r′) = 2f PBE
x (r,r′), (A11)

where

f PBE
x (r,r′) = δvPBE

x [n](r)

δn(r′)
. (A12)

After a rather lengthy calculation, one obtains

f PBE
x (r,r′) = − c

3
n(r)−2/3δ(r − r′)

[
1 + κ − κ

g(r)

]
− cn(r)1/3 κγ

g(r)2
h(r,r′) − cn(r)−7/3δ(r − r′)∇

[
2κγ

g(r)2

]
· ∇n(r)

− 3c

4
n(r)−4/3∇n(r) · ∇

(
4κγ 2

g(r)3
h(r,r′)

)
+ 3c

4
n(r)−4/3∇

[
2κγ

g(r)2

]
· ∇δ(r − r′) − cn(r)−7/3δ(r − r′)

2κγ

g(r)2
∇2n(r)

+ 3c

4
n(r)−4/3 2κγ

g(r)2
∇2δ(r − r′) − 3c

4
n(r)−4/3∇2n(r)

4κγ 2

g(r)3
h(r,r′), (A13)

where we defined

h(r,r′) = 2∇n(r) · ∇δ(r − r′)
n(r)8/3

− 8|∇n(r)|2
3n(r)11/3

δ(r − r′). (A14)

To calculate excitation energies, one needs matrix elements of the exchange kernel. We here consider the case of quantum
wells where everything becomes a function of z and z′, and we limit ourselves to intersubband excitations in the quasi-2D limit.
Then, only the following matrix element is needed:

K12 =
∫

dz

∫
dz′ϕ1(z)ϕ2(z)f PBE

x (z,z′)ϕ1(z′)ϕ2(z′). (A15)

With the explicit form (A13) of the PBE exchange kernel, and abbreviating ξ (z) = ϕ1(z)ϕ2(z), one obtains

K12 = − c

3

∫
dz ξ (z)2n(z)−2/3(1 + κ) + cκ

3

∫
dz ξ (z)2 n(z)−2/3

g(z)
+ 2cκγ

∫
dz ξ (z)

∂

∂z

(
ξ (z)n′(z)

g(z)2n(z)7/3

)

+ 8c

3
κγ

∫
dz ξ (z)2 n′(z)2

n(z)10/3g(z)2
− 2cκγ

∫
dz ξ (z)2n(z)−7/3n′(z)

∂

∂z

(
1

g(z)2

)

− 6cκγ 2
∫

dz ξ (z)
∂

∂z

(
n′(z) ∂

∂z
(ξ (z)n′(z)n(z)−4/3)

g(z)3n(z)8/3

)
− 8cκγ 2

∫
dz ξ (z)

n′(z)2

n(z)11/3g(z)3

∂

∂z
(ξ (z)n′(z)n(z)−4/3)

− 3c

2
κγ

∫
dz ξ (z)

∂

∂z

[
ξ (z)n(z)−4/3 ∂

∂z

(
1

g(z)2

)]
− 2cκγ

∫
dz ξ (z)2 n(z)−7/3

g(z)2
n′′(z)

+3c

2
κγ

∫
dz ξ (z)

∂2

∂z2

(
ξ (z)n(z)−4/3

g(z)2

)
+ 6cκγ 2

∫
dz ξ (z)

∂

∂z

(
ξ (z)n′′(z)n′(z)

n(z)4g(z)3

)
+ 8cκγ 2

∫
dz ξ (z)2 n′′(z)(n′(z))2

n(z)5g(z)3
.

(A16)

APPENDIX B: PGG KERNEL FOR QUASI-2DEGS

In a quantum well of finite width, the single-particle orbitals have the form

ϕj (r) = eiq||·r||ϕj (z), (B1)

where we ignore the normalization factor A−1/2 for simplicity. The PGG exchange kernel (25) becomes

f PGG
x (r,r′) = − 2

|r − r′|n(z)n(z′)

∣∣∣∣∣∣
Nocc∑
j=1

ϕj (z)ϕj (z′)
∑
k||

θ (kj − k||)eik|| ·(r||−r′
||)

∣∣∣∣∣∣
2

, (B2)
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where kj = √
2(εF − εj ). Carrying out the integral over k||,

and defining ρ || = r|| − r′
||, one finds

f PGG
x (r,r′)

= − 2

|r − r′|n(z)n(z′)

∣∣∣∣∣∣
Nocc∑
j=1

ϕj (z)ϕj (z′)
kjJ1(kjρ||)

2πρ||

∣∣∣∣∣∣
2

,

(B3)

where J1 denotes a standard Bessel function. Fourier transfor-
mation with respect to ρ|| yields

f PGG
x (q||,z,z′) = −

Nocc∑
j,l

kj kl

ϕj (z)ϕl(z)ϕj (z′)ϕl(z′)
πn(z)n(z′)

×
∫ ∞

0
dρ||

J0(q||ρ||)J1(kjρ||)J1(klρ||)

ρ||
√

ρ2
|| + (z − z′)2

.

(B4)

If only the first subband is occupied, this simplifies to

f PGG
x (q||,z,z′) = − 2

Ns

∫ ∞

0
dρ||

J0(q||ρ||)J 2
1 (k1ρ||)

ρ||
√

ρ2
|| + (z − z′)2

. (B5)

In the limit of a pure 2DEG, the PGG exchange kernel thus
becomes

f PGG
x,2D (q||) = − 2

n2D

∫ ∞

0

dρ||
ρ2

||
J0(q||ρ||)J 2

1

(
k2D
F ρ||

)
. (B6)

Let us mention that the PGG exchange kernel (25) can also be
written as

f PGG
x (r,r′) = 2

g0(r,r′) − 1

|r − r′| , (B7)

where g0(r,r′) is the noninteracting pair correlation function.
One then finds the following alternative form of the PGG
exchange kernel for a 2DEG:

f PGG
x,2D (q||) = − π

q||
GS

↑↑(q||), (B8)

where

GS
↑↑(q||) = − q||

2π2n

∫
d2q ′

||
|q|| − q′

|||
[S0(q ′

||) − 1] (B9)

= − 2q||
π2n

∫ ∞

0

q ′
||dq ′

||
q|| + q ′

||
K

(√
4q||q ′

||
q|| + q ′

||

)
[S0(q ′

||) − 1]

(B10)

is the so-called Slater local field factor (S0 is the noninteracting
static structure factor and K is the complete elliptic integral of
the first kind) [8].

APPENDIX C: ISTLS IN THE EXCHANGE-ONLY LIMIT

In the inhomogeneous STLS (ISTLS) approach, the xc
kernel has the following tensorial form [9,10]:

f ISTLS
xc,μν (r,r′) = − 2

ω2
[g(r,r′) − 1]

∂

∂μ

1

|r − r′|
∂

∂ ′
ν

, (C1)

where μ,ν denote Cartesian coordinates and g(r,r′) is the pair
correlation function. The exchange-only limit of this expres-
sion is obtained by using the noninteracting pair correlation
function, which yields

f ISTLS
x,μν (r,r′) = 2

∣∣∑Nocc
j=1 ϕj (r)ϕ∗

j (r′)
∣∣2

ω2n(r)n(r′)
∂

∂μ

1

|r − r′|
∂

∂ ′
ν

. (C2)

We consider the case of a quantum well with finite width,
where the Kohn-Sham orbitals have the form (B1), and we
limit ourselves to plasmon modes with in-plane wave vector
q|| = 0, so that the dynamics is uniform within the plane of
the well and, hence, effectively one dimensional. Then, only
the zz component of the tensorial xc kernel is relevant, and it
is straightforward to transform it to a scalar exchange kernel
[12]. Using the same notation as in Appendix B, we obtain

f ISTLS
x (q|| = 0,z,z′)

=
∫ ∞

z

dz1

∫ ∞

0

dρ||
ρ||

∣∣∑Nocc
j ϕ∗

j (z1)ϕj (z′)kjJ1(kjρ||)
∣∣2

πn(z1)n(z′)

×
⎛
⎝ ∂

∂z1

1√
ρ2

|| + (z1 − z′)2

⎞
⎠ . (C3)

Comparing with Eq. (B4) [notice that J0(0) = 1], we can
rewrite this as

f ISTLS
x (0,z,z′) = f PGG

x (0,z,z′) −
∫ ∞

z

dz1

∫ ∞

0

dρ||
ρ||

×
Nocc∑
l,m

klkmJ1(klρ||)J1(kmρ||)√
ρ2

|| + (z1 − z′)2

× ∂

∂z1

(
ϕl(z1)ϕ∗

l (z′)ϕ∗
m(z1)ϕm(z′)

πn(z1)n(z′)

)
. (C4)

It thus turns out that the ISTLS exchange kernel is equal
to the PGG exchange kernel plus a correction term. If only
the lowest subband is occupied (Nocc = 1), the correction
term vanishes because then the derivative with respect to z1

gives zero.
Figure 9 gives a comparison of PGG and ISTLS for the

case of a quantum well with five occupied subbands. The
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FIG. 9. Photoabsorption cross section for q|| = 0 intersubband
charge plasmons, for a quantum well with five occupied subbands,
comparing PGG and exchange-only ISTLS.
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figure shows the frequency-dependent photoabsorption cross
section corresponding to the intersubband charge plasmons.

As can be seen, the difference between PGG and ISTLS is
marginal.
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