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Polarization-dependent Landau level crossing in a two-dimensional
electron system in a MgZnO/ZnO heterostructure
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We report electrical transport measurements in a tilted magnetic field on a high-mobility two-dimensional
electron system (2DES) confined at the MgZnO/ZnO heterointerface. The observation of multiple crossing
events of spin-resolved Landau levels (LLs) enables the mapping of the sequence of electronic states. We further
measure the renormalization of electron spin susceptibility at zero field and the susceptibility dependence on the
electron spin polarization. The latter manifests the deviation from the Pauli spin susceptibility. As a result, the
crossing of spin-resolved LLs shifts to smaller tilt angles and the first Landau level coincidence event is absent
even when the magnetic field has only a component perpendicular to the 2DES plane.
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I. INTRODUCTION

A magnetic field applied to a two-dimensional electron
system (2DES) opens several energy gaps in the electronic
spectrum. In a single-particle picture, two fundamental en-
ergy scales dominate there. One is the Zeeman gap Ez =
g∗μBBtotal, which separates the spin states in the total magnetic
field Btotal. Here g∗ is the Landé g factor and μB is the Bohr
magneton. The other is the cyclotron gap Ecyc and reflects the
quantization of electron orbital motion by the formation of
Landau levels (LLs) with energy �ωc(N + 1/2), where N is
the LL index and ωc = eB⊥/(m∗m0) is the cyclotron frequency
given by the field component normal to the 2DES plane,
B⊥ = Btotal cos(θ ). Here, θ is the angle between the direction
of Btotal and the normal to the sample, � is the reduced Planck
constant, e is the elementary charge, and m∗ is the electron
effective mass in units of the free-electron mass m0. The ratio
of the number of electrons to the LL degeneracy, given by the
amount of magnetic flux threading the sample, eB⊥/h, defines
the filling factor ν of this electron energy ladder and indicates
how many levels are occupied.

The two energy scales can be tuned relative to each other
by tilting the sample in Btotal; the electron states at different
LLs and with opposite spin orientations can eventually be
brought into coincidence. This method has been applied for
various 2DESs to evaluate their electron spin susceptibility
χ , a fundamental property in condensed matter physics that
describes the response of spin polarization P to changes of the
applied magnetic field Btotal [1–10]. It relies, however, on the
Pauli spin susceptibility with linear dependence:

P = χ

n
Btotal = e

2h

g∗m∗

n
Btotal, (1)

where n is the electron density. Such linearity is not a
given in a strongly interacting 2DES. Rather, χ depends
on P and therefore one can question the reliability of the
coincidence method for evaluating χ [11]. A high-electron-
mobility MgZnO/ZnO heterostructure is particularly suitable
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for probing this concept [12,13]. First, the cyclotron and
Zeeman gaps are comparable in size, i.e., Ecyc/Ez ≈ 3.3 at
θ = 0, when both the band electron mass (m∗ = 0.3) and
the Landé g factor (g∗ = 2) are considered. Therefore, level
coincidences may be achieved at moderate θ and consequently
multiple coincidence positions, signifying a large polarization
range, may be observed. This too may allow the mapping of
these transitions and the polarization. Second, the 2DES at
MgZnO/ZnO heterointerfaces is a strongly interacting system
with a reported enhancement of both the electron mass and
the Landé g factor [14–16]. Thus, this system ought to show a
pronounced dependence of χ on P .

In this paper, we describe magnetotransport experiments
on a 2DES confined at the MgZnO/ZnO heterointerface by
rotating the sample in the magnetic field in small steps (ca.
0.25◦) from θ = 0 up to θ approaching 90◦ and thus carefully
examine Landau level crossing events.

II. EXPERIMENTAL DETAILS

The sample has a van der Pauw geometry with eight indium
Ohmic contacts soldered at the corners and at the side centers
of the sample as shown in Fig. 1(c). The mobility of the
heterostructure is about 300 000 cm2/V s and its electron
density n = 2.05 × 1011 cm−2 [17]. The measurements are
done in a 3He refrigerator at T ≈ 500 mK. The sample is
mounted on a single-axis rotation stage, which allows variation
of θ in situ. The zero tilt angle is adjusted by rotating the
sample in 0.5 T magnetic field until the maximum value of
the Hall voltage is achieved. For a fixed θ , the longitudinal
resistance Rxx and the Hall resistance Rxy are recorded as
functions of Btotal. The measurements are done using a standard
lock-in measurement technique at 11.3 Hz and an excitation
current of 100 nA. The tilt angle is deduced by adjusting the
slope of the Hall voltage and by adjusting the pronounced Rxx

minima.

III. EXPERIMENTAL RESULTS AND DISCUSSIONS

Figure 1(a) is a color rendition plot of Rxx as a function
of B⊥ and 1/ cos(θ ) with red (blue) areas representing high
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FIG. 1. (Color online) (a) Color rendition plot of Rxx as a function of B⊥ and 1/ cos(θ ). Indicated are the electron states (N, ↑ or ↓) at the
chemical potential. (b) Scheme of LL crossings in a magnetic field assuming a fixed B⊥ (left panel). j indicates the index of LL crossings. Rxx

traces are shown for ν = 5 and 6 as functions of 1/ cos(θ ). (c) Schematic of the sample. The sample is tilted in Btotal so that the direction of the
in-plane field is collinear with the current direction.

(low) Rxx values. First, we affirm that the observed resistance
changes are associated with the crossing of spin-resolved
LLs. We start by drawing in Fig. 1(b) the fan diagram of
spin-resolved LLs for a fixed B⊥ in an increasing Btotal

represented by the 1/ cos(θ ) axis and assume for the moment a
constant χ . For a given B⊥, the energy of spin-up ↑ (spin-down
↓) electron states decreases (increases) in an increasing Btotal

as indicated by red (blue) lines in Fig. 1(b). For the discussion
below, we introduce the notation (N ,↑ or ↓) to characterize
the electron state. Such a diagram visualizes the possible LL
crossings, which show up in the experiment as an Rxx increase
at the respective ν. Figure 1(b) exemplifies Rxx traces for
ν = 5 and 6 as functions of 1/ cos(θ ), extracted from Fig. 1(a).
Horizontal lines indicate the positions of the corresponding
chemical potentials. When the chemical potential lies within
the spectrum’s gap, Rxx tends toward zero. Whenever two
levels cross at the chemical potential, the resistance rises.
Accordingly the traces exhibit characteristic sharp peaks and
thus signal both the LL crossing and the change of the
overall 2DES polarization. For ν = 5, the diagram implies
two crossing events; one is the crossing of (N = 1, ↓) with
(N = 3, ↑) and the other is (N = 0, ↓) crossing with (N =
4, ↑). Experimentally, two resistance peaks are observed and
an index, respectively j = 2 or j = 4, can be assigned to each
of them. Interestingly, the Rxx trace for ν = 6 shows also two
coincidence events with j = 3 and 5, although the fan diagram
suggests that three such events should occur. We note that this
experimental trace shows a tail of the resistance peak, which
can be associated with j = 1 at around 1/ cos(θ ) ≈ 1. Such
behavior implies χ enhancement by so much that the first
coincidence has already occurred even at θ = 0, consistent
with previous reports [14,15]. This analysis identifies also the
electronic states at the chemical potential in each region of

Fig. 1(a) and thus establishes the map of electronic states in
the magnetic field.

The level crossing takes place whenever jEcyc = Ez; the
integer j characterizes the difference between LL orbital mo-
menta N↑ − N↓. Taking into account that B⊥ = Btotal cos(θ ),
the coincidence condition is rewritten

g∗m∗

2
= j cos(θ ), (2)

which is the expression frequently used to estimate χ .
Accordingly, Fig. 2 plots 1/ cos(θ ), at which the level crossing
happens, versus j for several ν’s. For j � 3 all points fall onto
a straight line, which passes through the origin and has a slope

FIG. 2. (Color online) Estimation of spin susceptibility at several
ν’s. The inset equation describes the linear dependence with g∗m∗ =
2.0 for j � 3. The gray shaded area indicates a range of g∗m∗ of 1.8
(upper edge) to 2.2 (lower edge).
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FIG. 3. (Color online) Positions of LL crossings (closed sym-
bols) at integer ν and angles θ extracted from Fig. 1(a). The spin
polarization value P is given at each crossing point. The solid lines
are guides to the eye. A dashed red line emphasizes a systematic shift
of coincidence events to smaller 1/ cos(θ ). The open circle is one
of the j = 1 crossings obtained by extrapolating experimental data
points. It lies at 1/ cos(θ ) < 1 and emphasizes that the first crossing
event has occurred in a purely perpendicular magnetic field.

corresponding to g∗m∗ = 2.0. This magnitude is consistent
with our previous measurements which focused on j � 3 and
it was thought to represent the spin susceptibility at zero field
[14,15]. However, for larger θ , explored in this work, the
points deviate from this linear dependence when j > 3 and
systematically shift to a smaller 1/ cos(θ ) for larger j ’s. This
reveals some nonlinearity in the 2DES and a departure from
the level crossing diagram in Fig. 1(b). This in turn necessitates
a reconsideration of the spin susceptibility at zero field.

To study the level crossing in more detail, Fig. 3 summarizes
the crossing events that are unambiguously identified from gap
closing at integer ν. Both the color and shape of the symbols
group the coincidence events with the same j . The solid curves
are guides to the eye and connect particular crossing events.
The lines running from top left to bottom right represent the
crossings of (N, ↓) with fixed N with (N ′, ↑). The lines
running from bottom left to top right indicate the events when
(N, ↑) with N = 4,5,6, etc., cross (N ′, ↓) with an arbitrary
N ′. This mapping shows the absence of j = 1 coincidence;
a red open circle at 1/ cos(θ ) < 1 denotes the position of the
hypothetical j = 1 crossing by extrapolating the experimental
results. More importantly, we find that the crossing events with
the same j occur at a smaller θ , i.e., a smaller 1/ cos(θ ), for
smaller ν’s. It appears to correlate well with the electron spin
polarization estimated as P = (n↑ − n↓)/(n↑ + n↓) = j/ν.
The P values are depicted in Fig. 3 next to each crossing point.
Hence, the larger is P , the smaller is θ at which the crossing
takes place. Effectively, this corresponds to the increase of χ

with increasing P .
We scrutinize the role of P by plotting it as a function

of Btotal in Fig. 4(a). This plot covers a wide polarization
range, which otherwise is achieved only in InSb-based 2DESs
[18], and shows a nonlinear dependence of P on Btotal. This
nonlinearity is captured by using Eq. (1) and assuming a
phenomenological relation χ = χ0 + �χP , where χ0 is the

FIG. 4. (Color online) (a) Spin polarization (estimated from
Fig. 3) vs total magnetic field. The nonlinearity indicates a
polarization-dependent spin susceptibility. The experimental points
are bounded by (dashed) lines of constant χ corresponding to P = 0
and P = 1, respectively. (b) Analysis of in-plane field effect on LL
crossing yields the subband separation �10 = 5 meV and the electron
wave function extension 13 nm.

spin susceptibility at Btotal = 0 and �χ describes the rate of χ

enhancement [3,18,19]. We obtain then

P = χ0Btotal

n − �χBtotal
. (3)

This dependency describes well the P−Btotal nonlinearity
in Fig. 4(a) with the best-fit parameters (red line) χ0 =
1.77 ± 0.02 and �χ = 0.38 ± 0.03, both in units of e/2h.
Accordingly, the experimental points fall into the area bounded
by two lines representing a constant 2DES spin susceptibility
with χ0, i.e., P = 0, and with χ0 + �χ , i.e., P = 1. These
lines are also shown in Fig. 2, where they too represent the
bounds for the experimental data and demonstrate the error
caused by using coincidence techniques to evaluate χ .

Table I compares the spin susceptibilites in ZnO-, AlAs-,
and GaAs-based high-mobility 2DESs with the same Wigner-
Seitz interaction parameter rs ≈ 8. We note, however, that
the result for GaAs-based [3] and AlAs-based [20] 2DESs
were obtained using a conventional Landau level coincidence
technique. The estimated value χ0 = 1.77 in ZnO is a threefold
enhancement compared to the band value χband = 0.6 in
ZnO and thus is comparable with χ0 enhancement in AlAs.
We point out that the conventional coincidence method for
ZnO heterostructures yields a zero-field value χ (= 2.0 e

2h
)

overestimated by 12%. Since χ has a stronger dependence on
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TABLE I. Comparison of spin susceptibility(in units of e/2h) for
ZnO-, AlAs-, and GaAs-based 2DESs with charge carrier density
corresponding to the Wigner-Seitz radius rs = 8. The data for GaAs
and AlAs are extracted from Refs. [3,20], respectively. Here, χband is
the band susceptibility and P is the net spin polarization.

2DES χband χ = χ0 + �χP �χ/χ0 χ/χband

ZnO 0.6 1.77 + 0.38 P 21% 2.95 + 0.63 P
AlAs 0.92 2.76 + 0.36P 13% 3 + 0.4 P
GaAs 0.029 0.10 + 0.075 P 75% 3.6 + 2.57 P

P in GaAs, the χ0 evaluation can be more strongly affected
when the conventional coincidence method is employed.

IV. EFFECT OF THE IN-PLANE FIELD

We discuss now whether the χ enhancement in ZnO is the
result of the in-plane magnetic field coupling to the electron
orbital motion. Such a coupling is known to mix the subbands
of the confinement potential and to enhance the electron
effective mass, which in turn enhances χ [21–23]. When only
the coupling between the ground and the first excited states is
considered, the mass increases by a factor 1 + 1

2 ( �ω‖
�10

)2, where
ω‖ = eB‖/(m∗m0) with B‖ being the in-plane field component
and �10 the subband splitting. Then the coincidence condition
attains an in-plane field dependence

j cos(θ ) = 1

2
g∗m∗ ≈ 1 + 1

2

(
�e/m∗m0

�10
B‖

)2

. (4)

This model does not include the electron correlation effects
and thus provides an upper bound on the in-plane field
effect. Figure 4(b) analyzes this model and plots j cos(θ )
versus B2

‖ . For small B‖, no noticeable field dependence
is observed, indicating no significant effect of the orbital
coupling. However, starting at B2

‖ ≈ 15 T2 a linear dependence
persists up to B2

‖ = 40 T2. In this regime the effect of the
in-plane field can account for 8% of the mass enhancement.
Thereafter no field dependence is observed again, suggesting
a saturation of the orbital coupling effect and no further
electron mass enhancement. Therefore, the χ dependence
discussed above originates primarily from electron correlation
effects, with some (8%) contribution from the electron mass
enhancement caused by in-plane field coupling. According to
the theory presented in Refs. [22–25], the mass saturation is
not expected. Rather the mass should grow linearly with B2

‖ .
However, it is also known that the polarization of the electron

system suppresses the effective mass [26–28]. Therefore,
this mechanism can counteract the further increase of the
electron mass. This is likely to happen in our system, since
the saturation effect in our system occurs for P > 80%.

For the sake of analysis, we exploit the constructed model of
the in-plane field effect and estimate the parameters of the elec-
tron confinement potential, for which data obtained through
transport experiments in MgZnO/ZnO heterostructures appear
to be lacking. First, the slope of the linear dependence yields
a lower bound for the subband separation of the confinement
potential �10

∼= 5 meV. It is larger than the Fermi energy of
this 2DES, 1.6 meV, and confirms the single-band population.
Second, the coupling of B‖ to the orbital motion is effective if
the radius of the electron orbit, characterized by the magnetic
length lB , becomes comparable with the extension of the
subband wave function. Therefore, we estimate its extension
of 13 nm from the field at which the linear dependence sets in.

V. CONCLUSION

In conclusion, electrical transport experiments in a tilted
magnetic field mapped out the sequence of electronic states
in a MgZnO/ZnO heterostructure. Due to the observation
of multiple coincidence events, we evaluated a nonlinear
dependence of the net spin polarization on the total magnetic
field. For a strongly interacting electron system this is in
line with the theory of Ref. [11]. We further measured the
polarization-dependent spin susceptibility χ = 1.77 + 0.38P

for rs ≈ 8 and thus revealed a deviation from the Pauli
spin susceptibility. This observation along with the spin
susceptibility renormalization at Btotal = 0 supports the theory
that ZnO-based 2DESs are interacting Fermi liquids. Our result
demonstrates that the position of LL crossings depends on
the spin polarization in a strongly interacting system. As a
consequence, the conventional coincidence method, yielding
χ = 2.0 e

2h
, overestimates the zero-field spin susceptibility.
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