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Spin-orbit interactions in two-dimensional electron liquids are responsible for many interesting transport
phenomena in which particle currents are converted to spin polarizations and spin currents and vice versa. Prime
examples are the spin Hall effect, the Edelstein effect, and their inverses. By similar mechanisms, it is also
possible to partially convert an optically induced electron-hole density wave to a spin density wave and vice
versa. In this paper, we present a unified theoretical treatment of these effects based on quantum kinetic equations
that include not only the intrinsic spin-orbit coupling from the band structure of the host material, but also the
spin-orbit coupling due to an external electric field and a random impurity potential. The drift-diffusion equations
we derive in the diffusive regime are applicable to a broad variety of experimental situations, both homogeneous
and nonhomogeneous, and include on equal footing “skew scattering” and “side jump” from electron-impurity
collisions. As a demonstration of the strength and usefulness of the theory we apply it to the study of several
effects of current experimental interest: the inverse Edelstein effect, the spin-current swapping effect, and the
partial conversion of an electron-hole density wave to a spin density wave in a two-dimensional electron gas with
Rashba and Dresselhaus spin-orbit couplings, subject to an electric field.

DOI: 10.1103/PhysRevB.90.245302 PACS number(s): 72.25.Dc, 71.45.−d, 75.70.Tj, 85.75.−d

I. INTRODUCTION

During the past decade, spin-orbit interactions in electron
liquids have emerged as one of the most exciting topics in
spintronics [1–4]. While classic spintronic devices (e.g., GMR
read heads) rely on strong exchange interactions between spin-
polarized conduction electrons and the local magnetization of a
ferromagnetic host, spin-orbit interactions offer the possibility
to couple spin and charge degrees of freedom directly in a
nonmagnetic material. Outstanding examples of spin-orbital
effects are the conversion of a regular electronic current into
a spin current (spin Hall effect) [5–9] and the generation of
a nonequilibrium spin polarization by an electronic current
(Edelstein effect) [10–17]. The reciprocal effects, i.e., spin
current to current [18,19] and spin polarization to current
conversions [20,21], have also been observed—the latter
being also known as spin galvanic effect [21–23]. These are
potentially useful effects, which have already been success-
fully employed to generate spin currents [24], excite and
detect spin waves [25,26], and apply spin-transfer torques
that can reverse the orientation of the spin polarization in
memory devices [27,28]. More subtle effects, such as the direct
coupling of spin currents leading to “spin-current swapping”
(see Sec. V C) have also been predicted [29,30] and await
experimental verification. In addition, recent developments
in transient spin grating spectroscopy [31–33] have opened
the way to detailed studies of the coupled dynamics of
spin and charge in inhomogeneous electronic structures. For
example, the diffusion of a spin density wave [32] and its
drift under the action of an electric field have been studied
in detail [33], revealing interesting many-body effects; the
existence of long-lived spin-helical states in GaAs quantum
wells has been confirmed [32,34]. In a recent paper, building
on a previous suggestion by Anderson et al. [35], we have

proposed that an electron-hole density wave in a GaAs
quantum well can be partially converted into a spin density
wave by the application of a strong electric field parallel to
the wave fronts [36]. This and similar effects are by no means
confined to conventional electron layers in GaAs: intermetallic
interfaces, layered oxides, monolayer materials like MoS2, and
“functionalized graphene” [37,38] are all promising platforms
for the observation of spin-charge conversion due to strong
spin-orbit interaction. It is therefore important to develop a
broadly applicable, easy-to-use formalism for describing the
coupled evolutions of spin and charge densities and their
associated currents in the presence of an external electric
field. As distinct phenomena have been discussed separately by
different approaches in the literature, the theoretical challenge
is to provide a unified treatment of the various effects,
including spin precession due to intrinsic spin-orbit coupling
from the band structure of the host material, spin relaxation,
spin-orbit interaction with impurities (leading to effects such as
skew scattering and side jump), and spin-orbit interaction with
the external electric field. Achieving such a unification will be
helpful in revealing internal connections between apparently
different effects and is therefore one of the main goals of our
present work.

An elegant and intuitively appealing set of spin-charge
coupled drift-diffusion equations, involving charge density
N , the spin density S, the charge current J, and the spin
current Ja , was derived in Refs. [39–42] from a SU(2)
gauge-field theoretical description of the spin-orbit coupling.
In this paper, we rederive and extend those equations from a
microscopic calculation, which allows us to capture all the
relevant phenomena on spin-spin and spin-charge coupled
dynamics in homogeneous and in (spin) density-modulated
systems, as well as the spin current swapping effect. The
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developed equations are summarized in the form

∂tN = −∂iJi, (1)

∂tS
a = −[∇iJi]

a − δSa/τEY , (2)

Ji = −(vi + D∂i)N − γ a
ij J

a
j , (3)

J a
i = −viS

a − D[∇iS]a − γ a
ij Jj + κ

(
J i

a − δaiJ
l
l

)
,

(4)

where

[∇iV ]a ≡ ∂iV
a − 2εabcAb

i V
c (5)

is the SU(2)-covariant derivative of a generic vector field V a

and δS = S − Seq is the deviation of the spin density from
its equilibrium value, Seq (thus the theory is applicable to
ferromagnetic states). The upper index a labels components
in spin space, while the lower index i labels components in
coordinate space. The SU(2)-vector potential Ab

i describes the
coupling between the bth component of the spin and the ith
component of the orbital motion. In the above equations, D

is the diffusion constant (D = v2
F τ/d, where vF is the Fermi

velocity and τ the current relaxation time in d dimensions),
vi is the ith component of the macroscopic drift velocity
caused by an electric field E (vi = eτEi/m), and τEY is the
Elliott-Yafet (EY) spin-relaxation time [43,44]. γ a

ij stands for
the spin Hall tensor, which connects the J a

i component of the
spin current to the Jj component of the charge current. Its
explicit form is γ a

ij = θSHεija (Ref. [41]) where θSH known as
the “spin Hall angle”: this is a direct manifestation of the SU(2)
magnetic field, i.e., the covariant curl of the SU(2) vector
potential. κ is the spin-current swapping constant, derived
in Appendix D. Lastly, εabc is the Levi-Civita antisymmetric
tensor, and a sum over repeated indices is implied throughout.

Equations (1)–(4) have a transparent physical meaning. For
example, the second equation is the generalized continuity
equation for the spin density. The relaxation term −δSa/τEY

takes into account the EY spin-relaxation process resulting
from the spin-orbit interaction with impurities. At the same
time, the spin precession that occurs between electron-
impurity collisions and is responsible for the D’yakonov-Perel’
(DP) spin-relaxation mechanism [45] is taken into account by
the vector potential term in the SU(2)-covariant derivative.
The last two equations have a similarly transparent meaning:
they express the current (spin current) as a sum of drift,
diffusion, and inverse (direct) spin Hall currents. In particular,
as we will show below, it is the diffusion part of the spin
current that yields the DP spin relaxation once is inserted back
into the continuity equation for the spin density. Additional
source terms, such as spin injection and spin electric fields can
be added to the right-hand sides of these equations [40,46].
For example, a Zeeman field H coupling to the spin density
enters the spin continuity equation through an additional
precessional term ∝(H × S)a on the right-hand side of Eq. (2),
and an additional spin current driving term σs(∇iH )a on the
right-hand side of Eq. (4), where σs is the homogeneous
spin-current conductivity. At the same time, the equilibrium
spin density Seq must be reinterpreted as the quasiequilibrium

spin density in the presence of the instantaneous (frozen) field
H(t).

The application of Eqs. (1)–(4) to homogeneous spin-orbit
coupled systems has demonstrable advantages over more
microscopic approaches, such as nonequilibrium Green’s
function theory and quantum kinetic equations. The quantities
considered here—densities and their associated currents—are
all obtained as integrals of the nonequilibrium Green’s function
over frequency and momenta. While the integrated quantities
contain less information than the underlying Green’s function,
they are more directly connected to the experimental descrip-
tion of the phenomena. Furthermore, there are certain features
of the exact kinetics that are “hard-wired” in the macroscopic
drift-diffusion equations, whereas in the microscopic theory,
they only emerge from a careful enumeration of diagrams
and delicate cancellations of seemingly different terms. For
example, the infamous “nonanalyticity puzzle,” whereby the
spin Hall conductivity of the Rashba model appears to drop
suddenly from a finite value to zero as soon as the Rashba
spin-orbit coupling is turned on, is completely demystified: the
EY relaxation time—a quantity of second order in the strength
of the extrinsic spin-orbit coupling—provides the energy scale
against which the Rashba spin-orbit coupling must be assessed
as large or small [42]. In a more recent application, the
simple addition of a spin injection term to the right-hand
side of Eq. (2) has enabled us to successfully analyze the
inverse Edelstein effect (also known as spin-galvanic effect),
i.e., the generation of charge current from a nonequilibrium
spin accumulation [20–23]. The SU(2) theory is also easily
applicable to spin-charge conversion phenomena that occur in
inhomogeneous systems. We have in mind, in particular, the
electron-hole density waves and the spin density waves that
can be generated by letting two noncollinear laser beams with
different polarization interfere with each other on the surface
of a semiconductor quantum well [31,32]. Recent experiments
have demonstrated that it is possible to probe in real time
(on a picosecond time scale) not only the diffusive dynamics
of these inhomogeneous structures, but also their drift under
the action of an externally imposed electric field [33,47]. The
(spin) Hall transport dynamics is also in principle accessible to
these experimental techniques. Experience with homogeneous
transport phenomena suggests that an extended SU(2) formu-
lation would be a very useful theoretical tool for the description
of inhomogeneous systems. This paper presents such a
formulation.

In comparison with previous derivations of spin-charge cou-
pled drift-diffusion equations for two-dimensional electronic
systems [35,48–52], the present formulation is characterized
by a careful inclusion of the spin-orbit interaction between the
electrons and the impurities, as well as the external electric
field. To this end, we have carefully re-derived the kinetic
equation in inhomogeneous systems, taking into account the
spin-orbit coupling with the impurities and the electric field
to the leading order that allows us to capture effects such as
“side jump and “spin-current swapping,” which were not in-
cluded in our previous studies of inhomogeneous density/spin
dynamics [36].

At last, all the relevant terms are included in the form
of a generalized drift-diffusion equation. It is found that the
couplings between the spin and charge components are simply
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characterized by a single parameter (spin Hall angle) and,
quite satisfactorily, skew scattering, side jump, and intrinsic
contributions enter the spin Hall angle on equal terms, i.e.,
additively. On the other hand, the full spin Hall conductivity
cannot be simply expressed as the sum of intrinsic and extrinsic
contributions for reasons that have already been discussed in
the literature [42,53] and will be further explained below.
Moreover, we predict that only the diffusion-induced spin
current can produce a swapping effect. The resulting equations
for spin and charge densities and their currents provide a
unified theoretical framework within which one can easily
treat both homogeneous and nonhomogeneous spin-charge
conversion phenomena, such as the spin Hall effect, the
Edelstein effect, the spin-current swapping effect, and the
partial conversion of an electron-hole density wave into a spin
density wave under the application of an electric field parallel
to the wave fronts. Throughout the paper we will emphasize
the main concepts and present the final results of complex
calculations. The interested reader will find the details of the
derivations in the appendices. We point out that Eqs. (1)–(4)
are valid for a broad class of intrinsic spin-orbit couplings
that are linear in momentum. Different forms of the spin-orbit
coupling may require modifications, which, however, can still
be derived from the kinetic equation approach described in this
paper.

II. MODEL HAMILTONIAN

The theory we are going to present applies to two-
dimensional model Hamiltonians of the form

H = Heff(p̂) + HE(r) + HV (r) , (6)

where

Heff(p̂) = p̂2

2m
+ 1

m

∑
i,j

p̂iA
j

i σ
j (7)

is an effective mass Hamiltonian for electrons with momentum
operator p̂ = −i∇r, σ j are Pauli matrices for the spin and
A

j

i are the components of a uniform spin-dependent [SU(2)]
vector potential, which describes both the effective spin-orbit
interaction with the crystal lattice and the spin-orbit interaction
with an in-plane field E. In addition, we have two terms that
break the conservation of crystal momentum:

HE(r) = eE · r , (8)

is the regular interaction with an in-plane uniform electric field
E, and

HV (r) = V (r) − α′σ × ∇rV (r) · p̂ , (9)

is the complete electron-impurity potential, of which V (r) is
the spin-independent part and α′σ × ∇rV (r) · p̂ the spin-orbit
coupling part (only nonmagnetic impurities are considered).
Here, α′ ≡ λ2

c/4 is the square of the effective Compton
wavelength for the material under study (α′ ∼ 5 Å2 in GaAs).
The presence of the spin-orbit term in Eq. (9) is essential for
the extrinsic spin Hall effect.

As a concrete example, consider the case of a (001) quantum
well in a semiconductor of the zinc-blende structure (e.g.,
GaAs) with Rashba and Dresselhaus interactions and an in-
plane electric field E. Then the nonvanishing components of
the SU(2) vector potential are

Ay
x = mλ1 , Ax

y = mλ2,

Az
x = mα′eEy , Az

y = −mα′eEx , (10)

where λ1 = α + β and λ2 = β − α with α and β being the
Rashba [54] and Dresselhaus [55] SOC coefficients separately.
Following common usage, the x and y axes are defined in the
[110] and [1̄10] directions, respectively. The two terms on the
last line describe the spin-orbit interaction with the in-plane
electric field.

For future use, we also define, in momentum space,
the crystal and electric-field-induced spin-orbit coupling en-
ergy, H soc

k , for the electron state with momentum k, as
follows:

H soc
k ≡ 1

m

∑
ij

kiA
j

i σ
j , (11)

such that the total energy from Heff reads

Hk = εk + H soc
k , (12)

where εk = k2

2m
.

III. KINETIC EQUATION

Our starting point is the well-known [4,56] kinetic equation
for the quasiclassical (Wigner) distribution function ρk(r,t):

∂tρk + i[Hk,ρk] + 1
2 {∇kHk,∇rρk} − eE · ∇kρk = Ik . (13)

All the quantities in this equation, including the collision
integral Ik, are functions of a position r and a time t , which
are not explicitly written down. Here, the symbols [ , ] and { ,}
stand for commutator and anticommutator, respectively and
all quantities are matrices in spin space. The collision integral
Ik arises from the interaction with impurities, Eq. (9), and is
expressed in terms of the contour-ordered Green’s function
Gk(r,t,t ′) and the self-energy �k(r,t,t ′) as

Ik(t) = −
(∫

c

dt ′[�k(t,t ′)Gk(t ′,t) − Gk(t,t ′)�k(t ′,t)]
)<

,

(14)

where the superscript < denotes the lesser component of the
contour integral. Details of the derivation can be found in
Refs. [57] and [58].

The self-energy due to the impurity potential consists
of four terms, which are graphically represented in Fig. 1.
For a short-range δ-correlated disorder potential V (r) =∑

i v0δ(r − Ri), where Ri are the random position of impuri-
ties with average density ni , these diagrams have the following
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FIG. 1. Diagrams for the impurity-averaged self-energy �0, �1,
�2, and �EY. The dashed line denotes the impurity averge and the
vertices with open circles represent the impurity-induced spin-orbit
coupling.

analytic expressions (see Refs. [39] and [42]):

�0k = niv
2
0

∑
k′

Gk′ , (15)

(i.e., the usual Born approximation)

�1k = niv
2
0α

′ ∑
k′

(
−i[σ · k × k′,Gk′]

−1

2
{σ × (k − k′),∇rGk′ }

)
, (16)

and

�2k = −iniv
3
0α

′ ∑
k′,k′′

(k × k′ · σGk′Gk′′

+Gk′k′ × k′′ · σGk′′ + Gk′Gk′′k′′ × k · σ ). (17)

The gradient term in �1k comes from the derivative operator
in Eq. (9) acting on the spatial argument of the Green function.
A similar gradient term in �2k is neglected on account of its
smallness in a system with smooth inhomogeneity. The last
diagram, denoted by �EY is given by [39]

�EYk = niv
2
0(α′)2

∑
k′

σ zGk′σ z(k × k′)2
z (18)

and is responsible for Elliott-Yafet spin relaxation.
To write out the collision integral in terms of the density

matrix ρk, we employ the standard rules of analytic contin-
uation [57] combined with the generalized Kadanoff-Baym
ansatz [57,59], which expresses the lesser or greater compo-
nents of the Green’s function (and hence the self-energy) in
terms of equal-time Green’s functions and retarded/advanced

propagators:1

G
≷
k (r,t,t1) = ∓i[θ (t − t1)e−iH̃ (t−t1)ρ

≷
k (r,t1)

+ θ (t1 − t)ρ≷
k (r,t)e−iH̃ (t−t1)]. (19)

Here, ρ<
k = ρk and ρ>

k = 1 − ρk. Notice that the Hamiltonian
H̃ contains not only Hk, but also the electric potential HE ,
i.e., H̃ (r,k) = Hk + HE(r). According to Refs. [60] and [61],
the inclusion of HE is essential to capture the full side-jump
effect.

Treating the SOCs and electric potential as small perturba-
tions,2 we expand the propagator in Eq. (19) as [60,61]

e−iH̃ t̃ ≈ e−iεk t̃
(
1 − it̃H soc

k − it̃HE

)
, (20)

where t̃ ≡ t − t1. To construct the collision integral, we
separately consider the contributions arising from the first,
the second, and the third term in the brackets in Eq. (20).

A. Collision integral from unperturbed propagator

The first term in the brackets in Eq. (20), when substituted
in Eq. (19) and subsequently in the expression (14) for the
collision integral leads to

I
(0)
k = niv

2
0

∑
k′

2πδ(εk − εk′)

[
(ρk′ − ρk)

− iα′[σ · k × k′,ρk′ ] − 1

2
{α′σ × (k − k′),∂rρk′ }

]
(21)

(from �0 and �1). Here the first term, proportional to (ρk′ −
ρk), arises from �0k and describes ordinary electron-impurity
scattering processes. The remaining two terms arise from
the two parts of �1k in Eq. (16) and are less familiar. The
second term describes the spin precession that occurs during
a single electron-impurity collision, with the precession angle
depending on the relative angle between the momenta before
and after collision. This spin precession, as we will show later,
can manifest itself through the “spin-current swapping” [29].
The third term with the gradient of the density matrix gives
rise to a spin density coupling proportional to the change in

1We have substituted the relation between equal-time Green func-
tion and nonequilibrium distribution function G<

k (t,t) = iρk(t) and
G>

k (t,t) = −i[1 − ρk(t)] and the free retarded and advanced Greens
function, i.e., Gr

k(t,t1) = −iθ (t − t1)e−iHk(t−t1) and Ga
k(t,t1) =

iθ (t1 − t)e−iHk(t−t1) into the well-known expression of the gen-
eralized Kadanoff-Baym ansatz G

≷
k (t,t1) = i[Gr

k(t,t1)G≷
k (t1,t1) −

G
≷
k (t,t)Ga

k(t,t1)]. Note that we neglect the correction due to the

impurity potential in G
≷
k (t,t1) by taking into account the fact that

the leading term in the collision integral (linear order in impurity
concentration) is sufficient to describe the present weak-disordered
case.

2We assume that the electric field lies in the linear response regime
and the SOC is weak, so that the spin precession angle between two
collision events is much smaller than 1.
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momentum. By introducing the standard relaxation time, i.e.,

niv
2
0

∑
k′

2πδ(εk − εk′) = nimv2
0 = 1

τ
, (22)

(� = 1), we obtain

I
(0)
k = −ρk − ρk

τ
− 1

τ

∫
dθk′

2π
iα′[σ · k × k′,ρk′]

+ 1

2
{α′σ × (k − k′),∂rρk′ }, (23)

where ρk corresponds to the angular average of ρk over wave
vectors of fixed magnitude |k| = k. Similarly, the self-energy
�2 generates the skew-scattering contribution I ss

k to the
collision integral [42,62]

I ss
k = −niα

′ m
2v3

0

2

∫
dθk′

2π
{k × k′ · σ ,ρk′ } , (24)

and the self-energy �EY generates the EY spin-relaxation
contribution to the collision integral:

IEY
k = − 1

τ
(α′)2

∫
dθk′

2π
(k × k′)2

z(ρk − σ zρk′σ z). (25)

B. Collision integral from first-order SOC
correction to the propagator

The second term in the brackets in Eq. (20), when
substituted in Eq. (19) and subsequently in the expression
(14) for the collision integral generates two terms related to
�0k and �1k, which we denote by I

(a)
k and I

(b)
k , respectively.

Their analytic expressions are

I
(a)
k = niv

2
0

∑
k′

π
{
H soc

k − H soc
k′ ,ρk′ − ρk

}
∂εk

δ(εk − εk′ )

(26)
(from �0) and

I
(b)
k = niv

2
0

∑
k′

π
({

H soc
k ,[(−iα′ 	σ · k × k′),ρk′]

}
+ {

ρk,
[
(−iα′ 	σ · k × k′),H soc

k′
]}

+ [
iα′ 	σ · k × k′,

{
ρk′ ,H soc

k′
}])

∂εk
δ(εk − εk′) ,

(27)

(from �1). We notice that I
(a)
k simply describes the SOC-

induced shift in the single particle energies that enter the
δ function of conservation of energy. In the relaxation time
approximation, this term can be readily evaluated as [36]

I
(a)
k = 1

2τ

{
H soc

k ,∂εk
ρk

}
. (28)

In contrast to this, a similar relaxation time approximation
form cannot be derived for I

(b)
k in a simple way, because of

the complicated dependence on both k and k′. Fortunately, this
part is already of the order that is required for the description of
the side-jump effect, namely first order in band SOC together
with first order in α′, which allows us to extract its contribution
to the drift-diffusion equation, as detailed in Appendix B. One
may notice that the second and third terms in I

(b)
k describe

the “anomalous spin precession” introduced in Ref. [61], here
generalized to spin-polarized distributions.

C. Collision integral from electric field
correction to the propagator

Finally, the electric potential correction to the propagator,
i.e., the third term in the brackets of Eq. (20), when combined
with the self-energy �1k, leads to a contribution to the collision
integral of the form

I
(c)
k = niv

2
0

∑
k′

π{α′eE · σ × (k − k′),ρk′ − ρk}

× [
∂εk

δ(εk − εk′)
]
. (29)

By comparison with Eq. (26) one can see that this term equals
the contribution due to electric-field-induced SOC in I

(a)
k ,

reflecting the famous factor of “2” in the side jump effect
[60,63,64]. In the relaxation time approximation it takes the
form

I
(c)
k = 1

2τ
{α′eE · σ × k,∂εk

ρk} . (30)

The remaining parts of the self-energy, �2 and the gradient
term in �1, combined with the second and third terms in the
brackets in Eq. (20), give higher-order contributions, which
are therefore neglected.

D. Full collision integral

Our complete expression for the collision integral is
therefore

Ik = I
(0)
k + I

(a)
k + I

(b)
k + I

(c)
k + I ss

k + IEY
k . (31)

Compared to our previous calculation in Ref. [36], where the
collision term was given by

Ik = −ρk − ρk

τ
+ 1

2τ
{H soc

k ,∂εkρk} + I ss
k , (32)

our careful treatment with impurity-induced SOC has pro-
duced several additional contributions, such as I

(b)
k , I

(c)
k ,

and IEY
k , as well as the second and the third terms in I

(0)
k .

Such terms describe interesting physical effects, e.g., the spin
precession within a single collision due to SOC induced by
impurity potential and/or band SOC. Even though some of
these terms had been obtained and discussed separately for
specific systems in literature [29,42,61], our derivation pulls
all the pieces together while supplying a more general and
complete kinetic theory for spatially inhomogeneous system.

IV. DRIFT-DIFFUSION EQUATIONS

The density matrix provides a microscopic description
of transport—one in which we keep track of the detailed
distribution of electrons in momentum space. Such a detailed
description is often unnecessary. For example, when studying
spintronic devices we are usually interested in equations that
connect the spin and charge currents to the corresponding
densities in space: information about the momentum distribu-
tion of the particles is discarded. We are thus facing the task of
reducing the kinetic equations to more manageable equations
for the charge and spin densities and current densities. Such
equations are referred to as “drift-diffusion equations,” and
this section presents the main steps in their derivation. More
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precisely, in Sec. IV A, we derive the equations that govern
the evolution of the densities, without explicit reference to
the currents. Explicit formulas for the currents are derived in
Sec. IV B.

A. Equations for the densities

We begin by expanding the density matrix as ρk = gi
kσ

i

and ρk = gi
kσ

i . Here, in addition to the familiar Pauli
matrices σ 1 = σx , σ 2 = σy , and σ 3 = σz, we have also
included, for convenience, the 2 × 2 identity matrix σ 0 =
1. Thus g0

k represents the charge distribution regardless of
spin orientation. Similarly, we expand the collision integral
as Ik = I i

kσ
i .

After the Fourier transformation with respect to t and r, with
conjugate variables ω and q, respectively, the kinetic equation
is rewritten as

(I + Kk)gk = (I + Tk)gk +
∫

dθk′

2π
Mk,k′gk′ + τ I(b)

k , (33)

where g is a column vector with components (g0,g1,g2,g3) and
I is also a column vector with components (I 0,I 1,I 2,I 3). Here,
I is the 4 × 4 identity matrix and Kk, defined in Appendix A,
generates what is essentially the scattering-free dynamics of
the density matrix. The right-hand side of Eq. (33) includes
all the relevant collision terms derived in the previous section,
with the matrices Tk and Mk,k′ defined in Appendix A. Notice
that, due to the spatial Fourier transformation, the matrices
Kk, Tk and Mk,k′ , which were previously functions of r, have
now become functions of the conjugate wave vector q (see
Appendix A).

In the limit in which the extrinsic SOC constant α′ vanishes,
the kinetic equation can be solved (by exploiting its relaxation
time approximation form) yielding

gk(α′ = 0) = [(I + Kk)−1(I + Tk)]gk ≡ g̃k. (34)

Notice that the full angle dependence (direction of k) of gk
is entirely determined by the k dependence of the matrices
Kk and Tk. Hence, in this limit of vanishing extrinsic SOC,
by taking the angle average over k in Eq. (34) one can obtain
a closed equation for the angle averaged density matrix
vector gk . In the diffusive regime, the relaxation time is very
short compared to the time scale over which the distribution
function varies significantly. Therefore the effect of α′ is a
small correction to the collision integral. Substituting gk 
 g̃k
into the scattering terms on the right-hand side of Eq. (33)

yields

gk 
 g̃k + (I + Kk)−1

[∫
dθk′

2π
Mk,k′ g̃k′ + τI

(b)
k (g̃k,g̃k′)

]
.

(35)

Now all terms on the right-hand side of the above equation are
linear functions of the angle averaged density matrix vector
gk , the coefficient depending on k after integration over k′.
From this, we derive closed equations of motion for the charge
(N = ∑

k g0
k ) and spin (Si = ∑

k gi
k with i = 1, 2, 3) densities

by doing the appropriate sums over k. In the diffusive regime,
ωτ � 1, we do a linear expansion with respect to ω and
transform back from ω to t , to get the diffusion equation

∂t

⎛
⎜⎜⎜⎝

�Nq

Sx
q

S
y
q

Sz
q

⎞
⎟⎟⎟⎠ = −D(q)

⎛
⎜⎜⎜⎝

�Nq

Sx
q

S
y
q

Sz
q

⎞
⎟⎟⎟⎠ , (36)

where �Nq and Si
q are, respectively, the components of the

density and the spin density deviations from the (uniform)
equilibrium state with wave vector q. The 4 × 4 diffusion
matrix D(q) is defined by

Dij = δij

τ
− 1

τ
〈[I+(I+Kk′)−1Mk′,k](I + Kk)−1(I + T k)〉ij

− 1

S
j
q

〈
[(I + Kk)−1]ilI (b),l

k (g̃jk,g̃jk′ )
〉∣∣∣∣

ω=0

, (37)

where 〈.〉 represents the average over the carrier distribution in
momentum space and includes integration over both k and k′.
In the last term, g̃jk denotes the contribution to the quasiequi-
librium distribution arising, in accordance with Eq. (34), from
the j th component of the equilibrium density matrix gk , i.e.,
g̃i

jk = [(I + K)−1(I + Tk)]ij gj

k . Thus the diffusion matrix is
independent of k and k′, but it does depend, via the matrices
Kk, Tk and Mk,k′ (see Appendix A) on the wave vector q,
conjugate to r. In order to simplify the expression, we have
introduced S0

q = �Nq in Eq. (37) for j = 0.
In the following, we assume kF q/m,|λi |kF � EF and do

a perturbation expansion with respect to Tk and Kk. We retain
the zeroth- and first-order contributions in the extrinsic SOC
parameter α′. Terms of second order in α′ are retained only
insofar as they are responsible for the EY spin-relaxation
process. The details of the calculation are given in the
Appendix B. The final equation of motion is3

∂t

⎛
⎜⎜⎜⎝

�Nq

Sx
q

S
y
q

Sz
q

⎞
⎟⎟⎟⎠ = −

⎛
⎜⎜⎜⎜⎝

Dq2 − iq · v −iθSHDqyq1 −iθSHDqxq2 −iθSH(v × q)z

−θSH(vy + iDqy)q1 Dq2 − iq · v + 1
τsx

iκ(v × q)z (i2Dqx + vx)q1

−θSH(vx + iDqx)q2 −iκ(v × q)z Dq2 − iq · v + 1
τsy

−(i2Dqy + vy)q2

−iθSH(v × q)z −(i2Dqx + vx)q1 (i2Dqy + vy)q2 Dq2 − iq · v + 1
τsz

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

�Nq

Sx
q

S
y
q

Sz
q

⎞
⎟⎟⎟⎠ , (38)

3We retain the leading term in each matrix element here, as well as
the current matrices below.

with q1 = 2mλ1, q2 = 2mλ2, and kF the Fermi wave vec-
tor. The dimensionless parameter κ = α′k2

F describes the
efficiency of spin current swapping, which will be dis-
cussed later. v = τeE/m and D = τ 〈k2/(2m2)〉 represent the
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drift velocity and the two-dimensional diffusion constant,
respectively.

We notice that the coupling between charge and spin de-
grees of freedom is controlled by a cumulative spin Hall angle,
θSH = θ ss

SH + θ
sj
SH + θ int

SH, which sums up the contributions due
to skew scattering, side-jump and intrinsic mechanisms:

θ ss
SH = α′ni

2π

(mv0

�2

)3 mD

�
, (39)

θ
sj
SH = −2α′m

�τ
, (40)

θ int
SH = 2λ1λ2mτ

�
, (41)

(we have reinstated � to highlight the dimensionless character
of the spin Hall angle). However, this charge-spin coupling is
asymmetric, due to the presence of the electric field, which
manifests itself in the drift velocities vx and vy in the first
column of the matrix. (To avoid misunderstanding, we point
out that the spin Hall angle controls only part of the total
spin Hall current: the complete spin Hall current also contains
a diffusion term—see next section—which is responsible for
the well-known vanishing of the spin Hall conductivity in the
absence of spin-orbit coupling from impurities.) The spin-
relaxation times arise from the combination of the DP and EY
mechanisms:

1/τsi = 1/τDP
si + 1/τEY

si , (i = x,y,z) , (42)

where, for the special case of a (001) quantum well of a zinc-
blende semiconductor,

1/τDP
sx = Dq2

1 ,

1/τDP
sy = Dq2

2 ,

1/τDP
sz = D

(
q2

1 + q2
2

)
, (43)

and

1/τEY
sx = 1/τEY

sy = (
α′k2

F

)2
/τ. (44)

The vanishing of 1/τEY
sz is a somewhat artificial feature of our

model, in which we have assumed the impurity potential to be
strictly two-dimensional and thus conserving the z component
of the spin. A more realistic model, in which the impurity

potential depends also on z, would yield finite EY relaxation
time in the z direction [65,66].
When θSH = θ int

SH and E = 0, the above Eq. (38) reduce to those
of Ref. [67]. We have thus generalized those equations to take
into account not only the extrinsic mechanisms of spin Hall
effect, but also the effect of the electric field.

B. Equations for the currents

The diffusion equations derived in the previous subsection
correspond to a “reduction” of the full set of Eqs. (1)–(4),
amounting to an elimination of the currents in favor of the
densities. To complete the formalism, we must now derive
the expressions for the charge and spin current densities.
The “obvious” expression J̃i = ∑

k(1/2)Tr[ρk{σ i,∇kHk}] is
incomplete, because it fails to include the anomalous velocity
arising from the spin-orbit coupling with impurities. The
complete and correct expression for the matrix element of
the velocity between states k and k′ is

vkk′ = (∇kHk)δkk′ − i[HU,r]kk′

= (∇kHk)δkk′ − iα′σ × (k − k′)v0 . (45)

The current due to the last term on the right-hand side can
be calculated from the “off-diagonal” density matrix ρk′k 

iπv0δ(εk − εk′)(ρk′ − ρk), which is zeroth order in spin-orbit
coupling and first order in the impurity potential. After some
simplification, the corresponding contribution is cast in the
relaxation time approximation form:

J̃′i = α′

τ

∑
k

(1/2)Tr[ρk{σ i,k × σ }], (46)

and the complete current is

Ji = J̃i + J̃′i =
∑

k

(1/2)Tr[ρk{σ i,ṽk}] (47)

with a modified velocity operator ṽk = ∇kHk + (α′/τ )k × σ .
We notice that this result is consistent with the calculation of
the velocity from the time derivative of the “physical” position
operator, discussed, for example, in Refs. [60,61,68,69].
Finally, by substituting in Eq. (47), the solution for the density
matrix ρk, we obtain the currents in terms of the densities:

⎛
⎜⎜⎜⎝

J 0
x (q)

J x
x (q)

J
y
x (q)

J z
x (q)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

−(iDqx + vx) 0 −θSHDq2 θSH(iDqy + vy)

0 −(iDqx + vx) iκDqy Dq1

0 −iκDqy −(iDqx + vx) 0

θSH(iDqy + vy) −Dq1 0 −(iDqx + vx)

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

�Nq

Sx
q

S
y
q

Sz
q

⎞
⎟⎟⎟⎠ , (48)

⎛
⎜⎜⎜⎜⎝

J 0
y (q)

J x
y (q)

J
y
y (q)

J z
y (q)

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

−(iDqy + vy) −θSHDq1 0 −θSH(iDqx + vx)

0 −(iDqy + vy) −iκDqx 0

0 iκDqx −(iDqy + vy) −Dq2

−θSH(iDqx + vx) 0 Dq2 −(iDqy + vy)

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

�Nq

Sx
q

S
y
q

Sz
q

⎞
⎟⎟⎟⎠ . (49)
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The details of the derivation can be found in Appendix C.
Again, the coupling between charge current and spin
polarization, as well as that between spin current and charge
density, is found to be proportional to the total spin Hall
angle θSH.

We can now verify by direct inspection that the expressions
for the charge and spin currents read from Eqs. (48) and
(49) agree with the phenomenological equations (3) and
(4). The presence of the spin current swapping term in
Eq. (4) is essential to obtain this perfect agreement, as
will become evident in the discussion of Sec. V C. This
gives us confidence that the spin-current swapping effect
has been included properly at the phenomenological level.
Moreover, by substituting Eqs. (48) and (49) into the con-
tinuity equations, i.e., Eqs. (1) and (2), we can demonstrate
that the resulting drift-diffusion equations for the densities
coincide with Eq. (38), proving the consistency of our
theory.

V. DRIFT-DIFFUSION EQUATIONS AT WORK:
HOMOGENEOUS SITUATIONS

In this section, we consider a few basic applications of
the formalism to homogenous situations, for which the wave
vector q = 0. For definiteness, we consider a (001) quantum
well in a semiconductor of the zinc-blende structure (e.g.,
GaAs) with Rashba and Dresselhaus spin-orbit interactions.
The SU(2) vector potentials for this system are given in
Eq. (10). The effects we study are the Edelstein effect and
its inverse, the spin Hall effect and its inverse, and the spin-
current swapping effect. As shown below, we can recover the
well-known results on (inverse) spin Hall effect and (inverse)
Edelstein effect very easily from our drift-diffusion equations,
revealing the advantage of those equations. In addition, we
predict the vanishing of the spin current swapping effect due
to the compensation effect between external electric field and
impurity potential.

A. Edelstein effect and its inverse

As a first application, consider the generation of a spin
polarization from an electric field applied along the x direction.
From the third equation in (38), we find that the time evolution
of Sy is determined by

∂tS
y = 2mλ2θSHvxN − Sy

τsy

, (50)

where the first term on the right-hand side is the spin-pumping
generated by the partial conversion of the charge current into
a transverse spin current, while the second term represents the
spin-relaxation process. In the steady state, setting the time
derivative of Sy to zero, one obtains the spin density

Sy = −2θSHmλ2τsyJ
0
x , (51)

where we have used −vxN = J 0
x to zeroth order in the SOC.

As expected, the spin polarization vanishes for λ2 → 0, which
corresponds to weak band SOC limit or balanced Dresselhaus
and Rashba SOCs.

For the inverse process, i.e., the charge current induced by a
nonequilibrium homogeneous spin-accumulation Sy , the first

equation in (48) gives

J 0
x = −vxN − 2θSHDmλ2S

y . (52)

In the absence of an electric field (vx = 0), we recover the
known expression for the inverse Edelstein effect [46]:

J 0
x = −2θSHDmλ2Sy . (53)

We note that the role of “driving field” in the direct Edelstein
effect is played by the electric field Ex , while in the inverse
Edelstein effect, it is played by the “spin-injection field” Ḃy

(see Ref. [46]). Thus, to check Onsager’s reciprocity relations,
we must compare the ratio Sy/Ex from Eq. (51) to the
ratio J 0

x /Ḃy from Eq. (53). Substituting J 0
x = −eNExτ/m

in Eq. (51), and Sy = −gμBN0Ḃ
yτsy (Ref. [46]) in Eq. (53),

where N0 = N/EF is the two-dimensional density of states,
we can readily verify that Sy/Ex = eJ 0

x /(gμBḂy), showing
that Onsager’s reciprocity relation is fulfilled.

B. Spin Hall effect and its inverse

Next, we consider the homogeneous spin Hall effect
resulting from an electric field applied along the x direction.
According to the last equation in (49), the transverse spin
current is given by

J z
y = −θSHvxN + 2mλ2DSy. (54)

We can clearly see that, as anticipated in the previous section
after Eq. (43), the spin Hall angle θSH controls only part of
the spin current—a part that we refer to as “drift current.”
The remaining part is a “diffusion current,” which arises in
the SU(2) theory even in the absence of a spatial gradient of
the spin density. Its physical origin is in the spin precession
caused by the Rashba and Dresselhaus fields. By substituting
the steady-state solution of spin polarization, i.e., Eq. (51), we
arrive at the complete expression for the spin Hall spin current:

J z
y = θSH(

τEY
sy /τDP

sy

) + 1
J 0

x , (55)

(again, we have used −vxN = J 0
x to zeroth order in the

SOC), which correctly describes the crossover between the
finite impurity-driven spin Hall conductivity in the limit of
weak spin precession (τDP

sy � τEY
sy ) and the vanishing spin Hall

conductivity in the strong precession (τDP
sy � τEY

sy ) [42].
To exhibit the inverse spin Hall effect, we consider the first

of Eqs. (49), which yields, in the absence of an electric field
in the y direction,

J 0
y = −2θSHDmλ1S

x − θSHvxS
z . (56)

The first term on the right-hand side is the inverse Edelstein
effect current. The second term, in the leading order, can be
written as θSHJ z

x , where J z
x is the spin current. We now observe,

according to the second of Eqs. (38), at the steady state,

Sx

τsx

+ 2mλ1vxS
z = 0 . (57)

We can then write

Sx = 2mλ1τsxJ
z
x (58)
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and, by substituting in Eq. (56), get

J 0
y = [1 − D(2m2λ1)2τsx]θSHJ z

x

=
(

1 − τsx

τDP
x

)
θSHJ z

x

= θSH(
τEY
sy /τDP

sy

) + 1
J z

x . (59)

This equation is the mathematical formulation of the inverse
spin Hall effect, which converts a spin current into a perpen-
dicular charge current. Comparison with Eq. (55) shows that
the Onsager reciprocity relation is satisfied.

C. Spin-current swapping

As a final example in the homogeneous class, we discuss the
spin-current swapping (SCS) effect [29], whereby a primary
spin current, [J i

j ](0), induces a transverse spin current in which
the spin direction and the direction of flow are interchanged
according to the equation

[
J

j

i

]SCS = κ
([

J i
j

](0) − δij

[
J l

l

](0))
. (60)

To observe experimentally the spin swapping effect, one might
think to apply a uniform electric field Ex to a homogeneous
electron liquid, with a uniform spin-polarization Sx in the
x direction. This naturally creates a primary spin current
[J x

x ](0) = −vxS
x , which should then induce the spin current

[
J y

y

]SCS = −κ
[
J x

x

](0) = κvxS
x. (61)

Unfortunately, our equations demonstrate that the swapped
spin current is undetectable in this homogeneous setup,
because it is exactly canceled by the SU(2) diffusion current
arising from the spin precession in the spin-orbit field
generated by the electric field Ex . This cancellation is already
evident from the fact that the matrix elements containing κ

in Eqs. (48) and (49) vanish in a homogeneous situation,
because q = 0. However, our phenomenological Eq. (4) gives
more insight into the underlying physics. The SOC effective
magnetic field due to the in-plane external electric field is in the
same direction (z direction) as that from the impurity and both
contribute to the SCS. The SCS term on the right-hand side
of Eq. (4) takes into account only the effect of the impurity,
which, in this case, is given by Eq. (61). The additional effect
of the electric field, due to the vector potential Az

y in Eq. (10),
is taken into account by the covariant derivative in Eq. (4). The
two contributions cancel each other exactly for essentially the
same reasons that lead to the cancellation (on the average) of
the force exerted by the electric field against the force exerted
by the impurities on the electrons in a steady state situation.

In order to observe the spin-current swapping effect in
an experiment, one should avoid the influence from electric-
field-induced SOC. One way to achieve this is to inject the
spin current by optical means. Another possibility is to inject
a pure spin current via the spin Seebeck effect [70] or via
multiterminal electrical spin injection techniques [71]. We will
return to this point in Sec. VI E.

VI. DRIFT-DIFFUSION EQUATIONS AT WORK:
INHOMOGENEOUS SITUATIONS

Let us now consider some applications of our theory to
inhomogeneous situations. We have in mind, specifically, the
electron-hole density waves and spin density waves, which
can be optically induced on the surface of a semiconductor
quantum well through the interference of laser beams coming
from different directions with different polarizations. These
structures are also referred to as “gratings,” because the
nonuniformity of the densities causes a modulation in the
refractive index of the electron gas. The spin density generated
in this manner is typically associated with the electrons
only (the holes losing their polarization during a very short
relaxation time) and is perpendicular to the plane of the
quantum well. Recently, developed pump-probe techniques
have allowed detailed studies of the spontaneous dynamical
evolution of these systems on a picosecond time scale: by
this we mean that it is possible to record the density, the
spin density and the overall velocity of propagation of the
grating on a picosecond scale. Through such experiments it
has been possible, for example, to establish the presence of
a long-lived “persistent spin helix” in nearly balanced (001)
quantum wells (i.e., quantum wells with α 
 ±β), and to
demonstrate interesting effects related to Coulomb drag in
spin diffusion and electron-hole diffusion.

In this section, we focus on the partial conversion of
an electron-hole density grating into an electronic spin
density wave under the action of an electric field, which
we choose, for definiteness, to be parallel to the x axis:
E = Ex̂. In addition to the experimentally observed Doppler
effect, we also predict several interesting phenomena, such
as periodic Edelstein effect and collective spin Hall effect.
The numerical calculations are carried out for a 10-nm
GaAs QW grown in (001) direction, in which the Dressel-
haus coefficient β = 10 meV Å, unless otherwise specified.
The Rashba coefficient α is assumed to be tunable via
gate voltage. The Elliott-Yafet spin-relaxation process is
neglected.

In Fig. 2, we plot the magnitudes of the three components
of the homogeneous spin Hall drift velocity vss = θ ss

SHv, vsj =
θ

sj
SHv, and vint = θ int

SHv as functions of momentum relaxation
time. The latter is varied by changing the concentration of
impurities. Here, v is the standard drift velocity of the electrons
given by v = μE, where μ 
 eτ/m is the mobility, whose
value is shown on the upper axis of Fig. 2. Qualitatively,
the side jump drift velocity is independent of momentum
relaxation time, whereas the intrinsic spin Hall drift velocity
and the skew scattering spin Hall drift velocity are proportional
to τ 2 (provided τ � τDP ) and τ , respectively. It is seen that
the spin Hall drift velocities due to the side-jump effect and
the skew scattering are comparable when the mobility is below
0.1 m2 V−1 s−1, while the skew scattering is dominant in an
intermediate regime. In the high-mobility region, the relative
contribution of skew scattering and intrinsic mechanism can
be effectively controlled by changing the Rashba coefficient.
This can be easily understood from vint = 2τm(β2 − α2)v,
which demonstrates the vanishing of the intrinsic mechanism
for α = ±β. In the following, we consider a few situations of
experimental interest, in which an electric field is applied to a
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FIG. 2. (Color online) Magnitudes of spin Hall velocities due to
skew scattering (vss), side jump (vsj), and intrinsic mechanism (vint)
as functions of momentum relaxation time (lower axis) and mobility
(upper axis) in 10-nm GaAs QW grown in (001) direction with
electron density ne = 1012 cm−2. The electric field is taken to be
1 kV/cm. The results for the intrinsic mechanism are computed with
two different values of Rashba coefficient.

density or a spin density grating, parallel or perpendicular to
the direction of the wave vector.

A. Density grating with q‖E: periodic Edelstein effect

Let us begin with the case in which the system is initially
prepared in a density wave state (no spin density), with the
wave vector of the electron-hole density wave parallel to
the direction x of the external electric field. From the drift-
diffusion equations (38), we see that only the y component of
the spin density is coupled to the particle density:

∂t�Nq = (iqv − Daq
2)�Nq + iθSH Dsqq2S

y
q , (62)

∂tS
y
q = [

iqv − Ds

(
q2 + q2

2

)]
Sy

q + θSH(iDsq + v)q2�Nq .

(63)

The spin density coupling strength is proportional to θSHq2,
where q2 ≡ 2mλ2 = 2m(β − α), and therefore it vanishes in
the balanced case α = β.

Notice that we have replaced the plain diffusion constant D

by the ambipolar diffusion constant Da for the electron-hole
density grating and by the spin diffusion Ds for the spin
grating [36]. The first replacement takes into account the
almost perfect screening of the space charge that occurs when
electrons and holes diffuse together in an electron-hole density
wave [33,36,72]. The second takes the effect of spin Coulomb
drag, which reduces the spin diffusion constant relative to
standard D [32,73–76].

Neglecting the feedback from spin grating to density
grating, i.e., the second term on the right-hand side in
Eq. (62), which is of second order in spin-Hall angle, we
find that the density evolves according to the standard analytic
formula

�Nq = A0e
(iqv−Daq

2)t+iqx, (64)

where A0 is the amplitude of the initial electron-hole density
grating. Substituting this in the equation for the spin density,
we obtain an analytically solvable equation whose solution is

Sy
q = A0θSH(iDsq + v)q2 exp[iq(x + vt)]

Ds

(
q2 + q2

2

) − Daq2

× {exp(−Daq
2t) − exp

[−Ds

(
q2 + q2

2

)
t
]}

. (65)

In the absence of the electric field (v = 0), the density
grating simply decays at a rate Daq

2 determined by the
ambipolar diffusion constant. The spatially periodic diffusion
current generates a spin polarization in the y direction—an
effect that can be viewed as the analog of the uniform
Edelstein effect except that (i) it is spatially periodic and
(ii) it is driven by a diffusion current. This polarization,
starting from zero at the initial time, reaches a maximum
at time t = ln[Ds(q2 + q2

2 )/(Daq
2)]/[Ds(q2 + q2

2 ) − Daq
2]

before eventually tending to zero at long times, when the
density grating disappears.

When the electric field is applied, the phase of the grating
acquires a linear variation in time, corresponding to a drift
with velocity v in the direction of the electric field. The y

component of the spin polarization also drifts with the same
velocity v. Thus the periodic Edelstein effect offers a way
to generate a drifting in plane-polarized spin grating: this
would be difficult, if not impossible, to produce by optical
means.

B. Spin grating with q‖E: helical Doppler effect

To exhibit the dynamics of an optically created spin
grating polarized along z direction, we write the drift-
diffusion equations in terms of the two helical modes
S±

q = (Sx
q ± iSz

q)/
√

2,

∂tS
±
q =

[
i(q ± q1)v − Ds(q ± q1)2 + Dsq

2
1 − 1

τ+
s

]
S±

q − S∓
q

τ−
s

(66)

where 1/τ±
s = (1/τsx ± 1/τsz)/2 and q1 = 2mλ1. For |λ1| �

|λ2|, we can neglect the coupling between the two modes
(∝1/τ−

s ), which leads us to the analytic solution

S±
q = (±iAz/

√
2) exp[iqx + i(q ± q1)vt − Ds(q ± q1)2t],

(67)

where the two spin helical modes show different phase
evolutions, with phases φ± = (q ± q1)vt . Here, Az is the
amplitude of the initial spin grating. We see that the “Doppler
shifts” are different for the two helical components. Recall
that the helical mode S− describes the “persistent spin helix”
in the balanced case [34,77–82], when the wave vector q

of the grating matches the SOC wave vector q1. In recent
experiments by Yang et al. [33,47], the time evolution of the
spatial phase has been measured by Doppler velocimetry. It is
easy to see that, on a short time scale, when the exponential
in the above equation can be linearized, the superposition
of the two helical modes with comparable amplitudes leads
to a global phase velocity φ̇ 
 (φ̇+ + φ̇−)/2 
 qv, which is
the same as in Eq. (65). However, on a long-time scale,
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only the long-lived mode S−, which corresponds to the
persistent spin helix, is relevant (assuming, of course, that q is
close to q1) leading to φ̇ 
 φ̇− 
 (q − q1)v, which can have
positive or negative sign depending on the whether q > q1

or q < q1 (Refs. [50,83,84]). The switching sign of the phase
velocity has been experimentally observed and provides strong
evidence for the existence of a long-lived spin helix in this
system [47].

C. q ⊥ E: collective spin Hall effect, extrinsic

When q is perpendicular to the external electric field, an
electron-hole density grating becomes coupled, via the spin
Hall effect, to the z component of the spin density. This
coupling generates a spin density grating polarized in the z

direction, which can be observed in a Kerr/Faraday rotation
measurement. The diffusion matrix D in this configuration
turns to be

⎛
⎜⎜⎜⎜⎝

Dq2 −iθSHDqq1 0 −iθSHvq

−iθSHDqq1 D
(
q2 + q2

1

)
0 vq1

−θSHvq2 0 D
(
q2 + q2

2

) −2iDqq2

−iθSHvq −vq1 2iDqq2 D
(
q2 + q2

1 + q2
2

)

⎞
⎟⎟⎟⎟⎠ . (68)

Let us first consider the case in which the band SOC is zero
(this is the case for a GaAs (110) quantum well, see Ref. [36]).
Then both Sx and Sy are decoupled from the density grating,
and the solution for the Sz component is given by

Sz = iA0θSHv exp(iqy)

(Ds − Da)q
[exp(−Daq

2t) − exp(−Dsq
2t)],

(69)

with the spin Hall angle θSH being entirely due to electron-
impurity scattering, i.e., of entirely extrinsic origin. Here
we are neglecting, for simplicity, the small electron-hole
recombination rate �, which would modify the decay rate of
density grating from Daq

2 to Daq
2 + � (Ref. [36]). A nonzero

value of � 
 1 ns−1 is, however, included in the calculations
plotted in Fig. 3. The spin density from Eq. (69) vanishes
both at short times (t → 0), when the electric field has not had
sufficient time to produce its effect, and for long times (t → ∞)

Sz/A0 (10-2)

 0  0.5  1  1.5  2

t (ns)

 0

 0.2

 0.4

 0.6

 0.8

 1

q 
(1

/µ
m

)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

FIG. 3. (Color online) Time evolution of the amplitude of the
spin grating Sz arising from an electron-hole grating of wave vector
q in the presence of an electric field perpendicular to the wave vector.
Here only the extrinsic spin Hall effect (skew scattering and side-jump
effect) is considered. The largest amplitude of the spin grating occurs
in the central region of the plot (in red), and is maximized about
q = 0.2 μm−1. In this section, we take τ = 1 ps, Da = 20 cm2/s,
and Ds = 200 cm2/s unless otherwise specified. The electron-hole
recombination rate � = 1 ns−1 is used.

when the original density grating has diffused away. Its
maximum amplitude occurs at t = ln(Da/Ds)/[(Da − Ds)q2]
and is given by

Amax
Sz

(q)

A0
= θSHv

Daq

(
Ds

Da

)Ds/(Da−Ds )

, (70)

which is approximately the fraction of the grating wavelength
∼1/q through which the electrons move, with drift velocity
θSHv, during the grating lifetime ∼1/Daq

2. In Fig. 3, we plot
the time evolution of the amplitude of the induced spin grating
as a function of wave vector. In this figure, the optimal value
of q, leading to the largest amplitude of the induced spin
grating, is about qopt ∼ 0.2 μm−1, which is not too far from
experimentally realized values [32,33].

D. q ⊥ E: collective spin Hall effect, intrinsic

Let us now consider the interesting case in which the
collective spin Hall effect occurs in the presence of band
SOC and Rashba coupling. We will consider three cases: (i)
the SOC balanced case with α = −β (q1 = 0 and q2 = q0

with q0 = 4mβ/�
2), (ii) the SOC balanced case with α = β

(q1 = q0 and q2 = 0), and (iii) the generic α �= ±β case.
(i) In the SOC balanced case with α = −β, the x component

of the spin decouples from the rest, while the Sy and Sz

components remain coupled to the density and to each other.
Transforming to the helical basis, S± = (Sy ± iSz)/

√
2, we

obtain

∂t�Nq = −Daq
2(�Nq) + θSHvq

(S+
q − S−

q )√
2

, (71)

∂tS
+
q = (θSH/

√
2)q−v(�Nq) − Dsq

2
−S+

q , (72)

∂tS
−
q = (θSH/

√
2)q+v(�Nq) − Dsq

2
+S−

q , (73)

where q± ≡ q0 ± q. From the last two equations, we see that
the electric field “pumps” the spin helical modes S+ and S−
at a rate proportional to q− and q+, respectively. At the same
time, the diffusion process causes these modes to decay at rates
Dsq

2
− and Dsq

2
+, respectively. As before, we discard the small

feedback of the spin on the evolution of the electron-hole
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density. Then taking the density from Eq. (64), but without
the drift term (because q ⊥ E), we easily obtain an analytic
solution for the helical modes:

S±
q = A0θSHvq∓ exp(iqy)√

2(Dsq
2∓ − Daq2)

[exp(−Daq
2t) − exp(−Dsq

2
∓t)].

(74)

Interestingly, at the special wave vectors q = ±q0, for which
a persistent spin helix is expected to appear in the S+
channel (if q = q0), or in the S− channel (if q = −q0) the
present result shows that only the short-lived spin mode is
generated, i.e., only S− if q = q0, or only S+ if q = −q0.
The reason for this somewhat counterintuitive behavior is that
pumping the persistent helical mode is equivalent, modulo
an SU(2) rotation, to pumping a uniform spin polarization
in the z direction of the rotated frame. However, the SU(2)
rotation in question eliminates the band SOC, leaving only
an extrinsic SOC which cannot change the spin polarization
in the z direction and therefore cannot “pump” the long-lived
mode [36].

The time evolution of the Sz grating amplitude is plotted in
Fig. 4(a) for different magnitudes of the wave vector. Observe
the change in the sign of the amplitude of the spin grating
around q = q0 in the long-time regime. This is because, when
the grating wave vector exactly equals q0, only the short-lived
chiral mode, of which the amplitude is negligibly small after
100 ps, can be pumped by spin Hall effect [also see Fig. 4(c),
where we show the Sz spin profile at different times]. For a
wave vector slightly above or below q0, the long-lived mode is
also pumped, and inevitably becomes dominant after a few tens
of picoseconds. According to Eq. (74), the amplitude of the
pumped long-lived-mode changes sign from q > q0 to q < q0

and vanishes at q = q0. In Figs. 4(b) and 4(d), we plot the spin
configurations for two typical wave vectors, q = 1.05q0 and
q = 0.95q0. At short times, the short-lived component of the
response dominates, leading to similar behaviors in the two
cases. At long times, only the long-lived mode components
survive, leading to responses of opposite sign.

(ii) In the SOC balanced case with α = β, it is the coupling
between Sy and the other densities that vanishes. Then, the
equation of motions for helical modes S±

q = (Sx
q ± iSz

q)/
√

2
takes the form

∂tS
±
q = θSH√

2
(iDsq0 ∓ v)q(�Nq)−[

Ds

(
q2 + q2

0

) ∓ ivq0
]
S±

q .

(75)

Note that the pumping and decay rates are the same
for the amplitudes of the two modes, determined by
θSHq(�N )

√
v2 + (Dsq0)2 and Ds(q2 + q2

0 ), respectively,
whereas their phases are different. The time evolution of the
amplitude of the Sz component is shown in Fig. 5(a). The spin
profiles with q = q0 at different times are shown in Fig. 5(b).

(iii) For α �= ±β, all the spin components are coupled
together, which makes the analysis much more complicated.
Since the intrinsic mechanism is switched on, the collective
spin Hall effect can produce large-amplitude spin gratings in a
high mobility sample, see Fig. 6, where the Rashba coupling is
excluded. Again, spin relaxation restricts the opportunity for
observation to a relatively short time window immediately
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FIG. 4. (Color online) (a) Time evolution of the amplitude of the
spin grating Sz arising from an electron-hole grating of wave vector
q (normalized by q0 
 3.5 μm−1) in the presence of an electric
field perpendicular to the wave vector with α = −β. (b)–(d) The
corresponding spin profiles Sy-Sz induced by collective spin Hall
effect with different grating wave vectors around q0. Four typical
times are chosen for each case. For q �= q0, the profile at short time is
a superposition of S+ and S− with weights q − q0 (large) and q + q0

(small). At long time, only the S+ mode (∝q − q0) survives. (c) For
q = q0, the long-lived mode disappears and the long-time spin profile
is qualitatively similar to the short-time state.

following the initial creation of the electron-hole density
grating.

E. Spin-current swapping again

We conclude this section by showing how the spin-current
swapping effect, which vanishes in the homogeneous situation
of Sec. V C, can be observed in an inhomogeneous situation,
such as the one proposed by Lifshitz and D’yakonov in
Ref. [29]. At variance with Sec. V C, we assume that a
spin current J x

x is injected into an unpolarized 2DEG in a
(001) quantum well, coming from a ferromagnetic electrode
polarized along the x axis. In the vicinity of the contact
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FIG. 5. (Color online) (a) Time evolution of the amplitude of the
spin grating Sz arising from an electron-hole grating of wave vector
q in the presence of an electric field perpendicular to the wave vector
with α = β. (b) The corresponding spin profiles Sx-Sz induced by
collective spin Hall effect at q = q0. We observe that the helical
modes S+ and S− have the same lifetime and amplitude.

an inhomogeneous spin accumulation Sx is induced, which
decays on the scale of the spin-diffusion length (we neglect
the ferromagnetic proximity effect). The inhomogeneous spin
accumulation drives an additional diffusion spin current, which
must be added to the drift spin-current considered in Sec.
V C. For simplicity, we ignore the intrinsic SOC, i.e., we set
λ1 = λ2 = 0. However, we retain the SOC with the electric
field Ex [given by Az

y in Eq. (10)] and, of course, the
spin-current swapping term due to extrinsic impurities. From
Eq. (4), after expanding the covariant derivative and setting
vy = 0 and Sy = Sz = 0, we obtain

J x
x = −(vx + D∂x)Sx − κJ y

y

J y
y = −2Dmα′eExS

x − κJ x
x . (76)
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FIG. 6. (Color online) Time evolution of the amplitude of the
spin grating Sz arising from an electron-hole grating of wave vector
q in the presence of an electric field perpendicular to the wave vector
without Rashba SOC.

Noting that −2Dmα′eEx = −κvx , we rewrite the second
equation as

J y
y = −κ

(
vxS

x + J x
x

)
. (77)

Solving the coupled equations for J x
x and J

y
y yields

J x
x = −vxS

x − D

1 − κ2
∂xS

x,

J y
y = κD

1 − κ2
∂xS

x . (78)

Thus the J x
x component of the spin current remains, up to

first order in κ equal to the primary current injected by the
ferromagnetic electrode. However, the spin-current swapping
effect manifests itself in the appearance of a J

y
y component

of the spin current, which is proportional to the diffusion part
of the primary spin current: J

y
y 
 κD∂xS

x . This should be
observable.

VII. SUMMARY

We have derived the microscopic spin kinetic equation in
periodically modulated two dimensional electron liquids from
nonequilibrium Green’s function approach. We include the
spin-orbit couplings due not only to the band structure but also
to the external electric field and the (nonmagnetic) impurities.
Starting from the solution of the spin kinetic equation obtained
from a perturbation expansion in the relaxation time approx-
imation, we have derived a set of complete drift-diffusion
equations for the charge and spin densities, in the presence of
an external electric field and a grating wave vector in arbitrary
directions. We find that in the drift-diffusion equations the
three mechanisms of spin Hall effect, i.e., skew scattering, side
jump, and the intrinsic mechanism, can be combined together
into a single spin Hall angle. Moreover, we also derive explicit
expressions for the charge current and the spin current and, by
combining them with the drift-diffusion equations, we analyze
Edelstein effect, spin Hall effect and their inverses, as well as
the spin current swapping effect. We then apply our theory to
the study of spin and density gratings in GaAs quantum wells.
We recover the results of Doppler velocimetry experiments
when the grating wave vector is parallel to the external electric
field. For the grating wave vectors perpendicular to the electric
field, we predict the conversion from electron-hole density
grating to spin grating due to spin Hall effect. We show
that single-spin-helical-mode pumping can be realized via
spin Hall effect in (001) GaAs quantum well with identical
Rashba and Dresselhaus coefficients. We also show that
the spin-current-swapping effect vanishes in a homogeneous
situation, but can be detected in a spin injection experiment.

Missing from the analysis is the effect of electron-electron
scattering on the spin conductivity and the spin diffusion
constant (the so-called spin Coulomb drag [32,75,76]). This
can be included without difficulty: the connection between
spin currents and electric fields in a spin-polarized interacting
electron gas will be considered elsewhere. Finally, we note
that it will be interesting to apply the present formalism to the
theoretical analysis of surface acoustic wave experiments as
done recently in Ref. [85].
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APPENDIX A: MATRICES IN EQ. (33)

Including spin precession, diffusion and drift terms, Kk
reads

Kk

=

⎛
⎜⎜⎜⎝

� iλ2τqy iλ1τqx imα′(q × v)z

iλ2τqy � −2Bzτ 2Byτ

iλ1τqx 2Bzτ � −2Bxτ

imα′(q × v)z −2Byτ 2Bxτ �

⎞
⎟⎟⎟⎠ ,

(A1)

where � = −iωτ + i τ
m

k · q − eτE · ∇k with ω and q being
the Fourier conjugate variables with respect to t and r. Note
that the spin-spin coupling components actually show the
precession effect due to the effective SOC field, which has
components Bx = −kyλ2, By = −kxλ1, Bz = −eα′(k × E)z.

The second matrix, Tk, which describes the energy correc-
tion due to SOC, shows the density-spin coupling from the
collision term I

(a)
k and I

(c)
k as

Tk =

⎛
⎜⎜⎜⎝

0 −Bx∂εk
−By∂εk

−2Bz∂εk

−Bx∂εk
0 0 0

−By∂εk
0 0 0

−2Bz∂εk
0 0 0

⎞
⎟⎟⎟⎠ .

(A2)

Note that one half of the coupling between the density and the
spin component along the z direction comes from I

(a)
k , while

the other half comes from I
(c)
k as mentioned in the main text.

The matrix Mk,k′ , depending on the relative angle between
the incoming momentum and the outgoing momentum in an
electron-impurity scattering process, has three contributions.
The first piece comes from the second term in I

(0)
k [see

Eq. (23)], corresponding to the spin current swapping term,
which leads to

Msw
k,k′ = α′

⎛
⎜⎜⎜⎝

0 0 0 0

0 0 −2(kxk
′
y − kyk

′
x) 0

0 2(kxk
′
y − kyk

′
x) 0 0

0 0 0 0

⎞
⎟⎟⎟⎠ .

(A3)

The second piece, coming from the third term in I
(0)
k , can be

expressed as

Minh
k,k′ = α′

⎛
⎜⎜⎜⎝

0 0 0 i[q × (k − k′)]z
0 0 0 0

0 0 0 0

i[q × (k − k′)]z 0 0 0

⎞
⎟⎟⎟⎠ ,

(A4)

where the superscript “inh” suggests that this term reflects
the effect of the spatial inhomogeneity during the scattering.
The last contribution corresponds to the skew scattering I ss

k
[Eq. (24)] resulting in

Mss
k,k′ = αss

⎛
⎜⎜⎜⎝

0 0 0 −(kxk
′
y − kyk

′
x)

0 0 0 0

0 0 0 0

−(kxk
′
y − kyk

′
x) 0 0 0

⎞
⎟⎟⎟⎠,

(A5)

with αss = τniα
′ (mv0)3 (2πm)−1. Thus the matrix Mk,k′ in

Eq. (33) is expressed by

Mk,k′ = Msw
k,k′ + Minh

k,k′ + Mss
k,k′ . (A6)

Notice that Mk,k′ is proportional to α′. In our kinetic equation
(33), I

(b)
k is not written in the form of a matrix, because, as

explained in Sec. III, the relaxation time approximation is
inapplicable to it.

APPENDIX B: DERIVATION OF THE DRIFT-DIFFUSION
EQUATIONS FOR THE DENSITIES

In this section, we present the details of the derivation of
the drift-diffusion equations for the densities. Intuitively, the
total diffusion matrix in Eq. (37) can be separated into two
parts, the intrinsic part and the extrinsic one, according to the
extrinsic SOC parameter α′. That is

D = Dint + Dext, (B1)

where the intrinsic contribution Dint corresponds to the zeroth-
order term in α′, equal to Dα′=0. The extrinsic part Dext in
principle contains all high-order contributions in α′, however,
because of the small value of α′, it is sufficient to include only
the first-order term.

Specifically, the intrinsic diffusion matrix is given by

Dint = (1/τ )[I − 〈(I + Kk)−1(I + Tk)〉]ω=0,α′=0. (B2)

In the presence of an external electric field and a grating
modulation, there are three scale parameters with the units
of a wave vector, i.e., qx,y , vx,y/D, and 2mλ1,2. 1/q is the
grating wave length. lE ≡ D/v is the length scale over which
the electric field changes the energy of an electron by a quantity
comparable to the Fermi energy; in the diffusive regime, we
require the mean free path to be much smaller than this length,
i.e., vF τ � lE . lSO ≡ 1/(mλ) is the length scale over which the
spin of an electron traveling at the Fermi velocity completes a
full round of precession in the spin-orbit field. In the diffusive
regime, the Dyakonov-Perel spin-relaxation time, which is the

245302-14



THEORY OF COUPLED SPIN-CHARGE TRANSPORT DUE . . . PHYSICAL REVIEW B 90, 245302 (2014)

time over which electrons diffuse on the length lSO , must be
much longer than the elastic scattering time. This requires
that the mean free path must be much smaller also of this
length vF τ � lSO. This also means that the spin-orbit splitting
is small with respect to the disorder-induced broadening of
the electron states. In order to make our theory applicable for
general values of the ratios between these scale parameters,
we treat them on equal footing in the calculation and define
a characteristic inverse length scale l−1 ≡ max(qx,y,l

−1
E ,l−1

SO)
as the largest of the three wave vectors. Hence the diffusive
limit is defined by the condition vF τ � l. Furthermore, the
assumption of a weakly disordered Fermi gas requires the

condition EF τ � 1, which corresponds to a mean free path
much larger than the Fermi wave length. The above inequalities
are then used to carry out a perturbation expansion with
respect to Tk and Kk. We find that the leading order of
the density-density and spin-spin couplings is given by l−2,
while the first nonvanishing spin density couplings are of the
order of l−4. Specifically, the spin-spin and density-density
couplings are given by 〈−K2

k〉 and the spin density couplings
are carried by 〈K3

k + K3
kTk〉 (the lowest-order terms 〈Kk〉 and

〈KkTk〉 cancel against each other). Collecting all the relevant
contributions in the leading order, we obtain the diffusion
matrix due to the intrinsic mechanism:

Dint =

⎛
⎜⎜⎜⎜⎝

Dq2 − iq · v −iθ int
SHDqyq1 −iθ int

SHDqxq2 −iθ int
SH(v × q)z

−θ int
SH(vy + iDqy)q1 Dq2 − iq · v + 1

τDP
sx

0 (i2Dqx + vx)q1

−θ int
SH(vx + iDqx)q2 0 Dq2 − iq · v + 1

τDP
sy

−(i2Dqy + vy)q2

−iθ int
SH(v × q)z −(i2Dqx + vx)q1 (i2Dqy + vy)q2 Dq2 − iq · v + 1

τDP
sz

⎞
⎟⎟⎟⎟⎠ . (B3)

The notation is defined in main text.
The extrinsic part of the diffusion matrix originates from two SOC sources, i.e., the one due to the external electric field and

the other due to impurity potential. The contribution from the former one can be carried out from (1/τ )[I − 〈(I + Kk)−1(I +
Tk)〉]ω=0 − Dint, leading to

Dext,E 
 (1/τ )
[〈
Kk + KkTk − K2

k

〉
ω=0 − 〈

Kk + KkTk − K2
k

〉
ω=0,α′=0

]

=

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 −i
(
θ

sj
SH/2

)
(v × q)z

−(
θ

sj
SH/2

)
vyq1 0 i2κ(v × q)z κvxq2

−(
θ

sj
SH/2

)
vxq2 −i2κ(v × q)z 0 −κvyq1

−i
(
θ

sj
SH/2

)
(v × q)z κvxq2 −κvyq1 0

⎞
⎟⎟⎟⎟⎟⎠ , (B4)

where the spin-spin coupling is from 〈−K2
k〉. Similarly, we can calculate the contribution from the extrinsic SOC due to impurity

potential. By substituting the three M matrices into − 1
τ

〈
(I + Kk′)−1Mk′,k(I + Kk)−1(I + T k)

〉
ω=0, we obtain

Dext,sw 
 (1/τ )
〈
Kk′Msw

k′,kTk − Kk′Msw
k′,kKk

〉
ω=0

=

⎛
⎜⎜⎜⎜⎝

0 0 0 0

iθ
sj
SHDqyq1 0 −iκ(v × q)z iκDqxq2

iθ
sj
SHDqxq2 iκ(v × q)z 0 −iκDqyq1

0 −κq2(iDqx + 2vx) κq1(iDqy + 2vy) 2κDq1q2

⎞
⎟⎟⎟⎟⎠ , (B5)

Dext,inh 
 (1/τ )
〈
Kk′Minh

k′,k − Minh
k′,kTk + Minh

k′,kKk
〉
ω=0

=

⎛
⎜⎜⎜⎜⎜⎝

0 −i
(
θ

sj
SH/2

)
Dqyq1 −i

(
θ

sj
SH/2

)
Dqxq2 −i

(
θ

sj
SH/2

)
(v × q)z

−i
(
θ

sj
SH/2

)
Dqyq1 0 0 0

−i
(
θ

sj
SH/2

)
Dqxq2 0 0 0

−i
(
θ

sj
SH/2

)
(v × q)z 0 0 0

⎞
⎟⎟⎟⎟⎟⎠ , (B6)

Dext,ss 
 −(1/τ )
〈
Kk′Mss

k′,kKk
〉
ω=0

=

⎛
⎜⎜⎜⎝

0 −iθ ss
SHDqyq1 −iθ ss

SHDqxq2 −iθ ss
SH(v × q)z

−θ ss
SH(vy + iDqy)q1 0 0 0

−θ ss
SH(vx + iDqx)q2 0 0 0

−iθ ss
SH(v × q)z 0 0 0

⎞
⎟⎟⎟⎠ . (B7)
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To calculate the contribution from the spin-precession scattering term, i.e., the last term in Eq. (37), we substitute g̃i
k 


(1 + τeE · ∇k − iτq · k/m)gi
k into I (b). After some straightforward calculation, we obtain the current from 〈(Kk − I)I (b)

k 〉 and
rewrite the result in the form of diffusion matrix as

Dext,(b) =

⎛
⎜⎜⎜⎜⎝

0 −i
(
θ

sj
SH/2

)
Dqyq1 −i

(
θ

sj
SH/2

)
Dqxq2 0

−(
θ

sj
SH/2

)
(3iDqy + vy)q1 0 0 0

−(
θ

sj
SH/2

)
(3iDqx + vx)q2 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎠ . (B8)

Finally, we obtain the total extrinsic contribution in the diffusion matrix

Dext = Dext,E + Dext,sw + Dext,inh + Dext,ss + Dext,(b). (B9)

By collecting all the intrinsic and extrinsic pieces, we write out the final diffusion matrix shown in Eq. (38). Note that the extrinsic
contribution is discarded in Eq. (38) for the matrix element containing intrinsic contribution, by taking into account the fact the
extrinsic SOC is weaker than the intrinsic one.

APPENDIX C: DERIVATION OF THE DRIFT-DIFFUSION EQUATIONS FOR THE CURRENTS

The goal of this Appendix is to derive the transformation matrices Ĵx and Ĵy , which connect the (spin) currents to the (spin)
densities, so that one can obtain the currents directly from the densities via the equation

J
j

i (q) = Ĵ
j l

i Sl
q. (C1)

The transformation matrices, according to Eqs. (35) and (47), can be expressed as

Ĵ
ij

x(y) = 〈Jx(y)k[I + (I + Kk′ )−1Mk′,k](I + Kk)−1(I + T k)〉ij + (
τ/Sj

q

)〈
Jx(y)k[(I + Kk)−1]ilI (b),l

k (g̃jk,g̃jk′ )
〉∣∣

ω=0, (C2)

where the current matrices are given by

J ij

x(y)k = (1/4)Tr[σ i{σ j ,ṽx(y)k}]. (C3)

Specifically, we have

Jxk =

⎛
⎜⎜⎜⎜⎝

kx/m 0 λ1 α′(eEy + ky

τ

)
0 kx/m 0 0

λ1 0 kx/m 0

α′(eEy + ky

τ

)
0 0 kx/m

⎞
⎟⎟⎟⎟⎠ (C4)

and

Jyk =

⎛
⎜⎜⎜⎜⎝

ky/m λ2 0 −α′(eEx + kx

τ

)
λ2 ky/m 0 0

0 0 ky/m 0

−α′(eEx + kx

τ

)
0 0 ky/m

⎞
⎟⎟⎟⎟⎠ , (C5)

for the current flowing along the x and y directions, respectively. In the following, we take the current in the x direction as an
example to show the details of perturbation calculation.

By using the same technique introduced in Appendix B, we obtain the intrinsic contribution

Ĵ int
x = 〈Jx(I + T + K2 + K2T − K − KT)〉ω=0,α′=0

=

⎛
⎜⎜⎜⎝

−(iDqx + vx) 0 −θ int
SHDq2 θ int

SH(iDqy + vy)

0 −(iDqx + vx) 0 Dq1

0 0 −(iDqx + vx) 0

θ int
SH(iDqy + vy) −Dq1 0 −(iDqx + vx)

⎞
⎟⎟⎟⎠ . (C6)

With the same notation as used in the diffusion matrix, the relevant extrinsic terms are Ĵ ext,E
x = 〈Jxk(I + Tk − Kk)〉ω=0 −

〈Jxk(I + Tk − Kk)〉ω=0,α′=0, Ĵ ext,sw
x = 〈Jxk′Msw

k′,k(Tk − Kk)〉ω=0, Ĵ ext,inh
x = 〈Jxk′Minh

k′,k〉, and Ĵ ext,ss
x = −〈Jxk′Mk′,kKk〉ω=0,
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resulting in

Ĵ ext,E
x =

⎛
⎜⎜⎜⎜⎝

0 0 0
(
θ

sj
SH/2

)
vy

0 0 −κvy 0

0 κvy 0 0(
θ

sj
SH/2

)
vy 0 0 0

⎞
⎟⎟⎟⎟⎠ , (C7)

Ĵ ext,sw
x =

⎛
⎜⎜⎜⎜⎝

0 0 0 0

0 0 κ(iDqy + vy) κDq2

θ
sj
SHDq2 −κ(iDqy + vy) 0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎠ , (C8)

Ĵ ext,inh
x = θ

sj
SH

2

⎛
⎜⎜⎜⎝

0 0 0 iDqy

0 0 0 0

0 0 0 0

iDqy 0 0 0

⎞
⎟⎟⎟⎠ , (C9)

Ĵ ext,ss
x =

⎛
⎜⎜⎜⎝

0 0 −θ ss
SHDq2 θ ss

SH(iDqy + vy)

0 0 0 0

0 0 0 0

θ ss
SH(iDqy + vy) 0 0 0

⎞
⎟⎟⎟⎠ . (C10)

The (spin) current induced by the spin-precession scattering term, at the leading order, can be directly calculated from (J ext,(b)
x )j =

〈(kx/m)τI (b),j 〉 by substituting g̃i
k 
 gi

k . The result in the form of matrix leads to

Ĵ ext,(b)
x = θ

sj
SH

⎛
⎜⎜⎜⎝

0 0 −Dq2 0

0 0 0 0

−Dq2 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎠ . (C11)

Then the extrinsic mechanisms totally contribute to the transformation matrices

Ĵ ext
x = Ĵ ext,E

x + Ĵ ext,sw
x + Ĵ ext,inh

x + Ĵ ext,ss
x + Ĵ ext,(b)

x . (C12)

Note that in the final result in Eqs. (48) and (49), only the leading term in each matrix element is retained.

APPENDIX D: DERIVATION OF SPIN-CURRENT
SWAPPING

As mentioned in the main text, the spin current swapping
in our theory is included as the second term in the collision
integral I

(0)
k , i.e., −iα′(2πτ )−1

∫
dθk′ [σ · k × k′,ρk′ ], and ap-

pears already in the first Born approximation. In the leading
order, the correction in the steady-state density matrix due to
spin current swapping term is given by

δg
sw,j

k = (2α′/N0)
∑
lmn

εzlj εzmnkm

[
J l

n

](0)
, (D1)

with the primary spin current [J l
n](0) = ∑

k′ k′
ng

l
k′ . One then

can calculate the swapped spin current from[
J

j

i

]SCS 

∑

k

(ki/m)gsw,j

k

= α′k2
F

∑
ln

εzlj εzin
[
J l

n

](0)

= α′k2
F

([
J i

j

](0) − δij

∑
l

[
J l

l

](0)

)
, (D2)

whose symmetry is consistent with previous work [29]. Here,
the coefficient of spin-current swapping reads κ = α′k2

F .
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