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We present a large-scale combinatorial-diagrammatic computation of high-order contributions to the strong-
coupling Kato-Takahashi perturbation series for the Hubbard model in high dimensions. The ground-state energy
of the Mott-insulating phase is determined exactly up to the 15th order in 1/U . The perturbation expansion
is extrapolated to infinite order and the critical behavior is determined using the Domb-Sykes method. We
compare the perturbative results with two dynamical mean-field theory (DMFT) calculations using a quantum
Monte Carlo method and a density-matrix renormalization group method as impurity solvers. The comparison
demonstrates the excellent agreement and accuracy of both extrapolated strong-coupling perturbation theory
and quantum Monte Carlo based DMFT, even close to the critical coupling where the Mott insulator becomes
unstable.
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I. INTRODUCTION

The Kato-Takahashi strong-coupling perturbation theory
(SCPT) [1,2] and the dynamical mean-field theory (DMFT)
[3,4] are two powerful methods for studying strongly corre-
lated quantum many-body systems such as the Mott-insulating
phase [5,6] found in the Hubbard model [7–9] with onsite
interaction U . In high dimensions, the Kato-Takahashi SCPT
can be calculated exactly up to high orders in 1/U using
a combinatorial-diagrammatic approach [10,11] while the
DMFT scheme becomes exact in principle. Early comparisons
of both methods [10,12] showed a very good agreement deep
in the Mott-insulating phase. However, they let some open
questions about the relative accuracy of different impurity
solvers for DMFT and the properties of the Mott-insulating
phase close to the critical coupling Uc where it becomes
unstable. Here, we report on a large-scale computer-algebra
calculation of higher orders in the SCPT series expansion and
the resolution of this issue.

A. Mott insulator and Hubbard model

The nature of Mott insulators without long-range magnetic
order is a long-standing open problem in the theory of strongly
correlated quantum systems. Theoretically, Mott-insulating
phases can be found in strongly interacting fermion [5,6] or
boson [13] systems as well as in fermion-boson mixtures [14].
Experimentally, nonmagnetic Mott insulators have been found
in a layered organic insulator [15]. In this triangular-lattice
material, the frustration of the antiferromagnetic spin exchange
coupling prevents the formation of a long-range magnetic
order. A Mott-insulator phase can also be realized in an atomic
gas trapped in an optical lattice [16,17]. Despite decades of
extensive research, the properties of Mott insulators and, more
generally, the transition from a Mott insulator to a metallic
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(fermion system) or superfluid (boson system) phase are only
partially understood and thus actively investigated.

The Hubbard model with repulsive onsite interaction
U � 0 and nearest-neighbor hopping term t � 0 is a basic
lattice model for studying the physics of strongly interacting
electrons, in particular the Mott metal-insulator transition [6].
At half-filling (one electron per lattice site), the ground state
is a Mott insulator for strong interaction U/t , while it is a
Fermi gas in the noninteracting limit U = 0. Thus, the system
must undergo a metal-insulator transition at some coupling
UMIT

c � 0. If the lattice geometry (defined by hopping integrals
between lattice sites) causes a strong frustration of the effective
antiferromagnetic exchange coupling between electron spins,
the ground state is paramagnetic. Thus, this model can
describe the transition from a paramagnetic Mott insulator
to a metallic state. The Bose-Hubbard model is an extension
of the Hubbard model to boson systems, which can be
used to describe the transition from a Mott insulator to a
superfluid [17].

Here, we consider the Hamiltonian for interacting electrons

H = T + UD,

T = −
∑
〈i,j〉

∑
σ=↑,↓

tσ√
Z

(c†i,σ cj,σ + c
†
j,σ ci,σ ), (1)

D =
∑

i

ni,↑ni,↓,

where c
†
i,σ and ci,σ are the standard fermion creation and

annihilation operators for an electron with spin σ on the site
with index i and ni,σ = c

†
i,σ ci,σ are the local density operators.

To reach the limit of infinite dimensions, we choose a Bethe
lattice with connectivity Z in the limit Z → ∞. Thus, the last
sum in (1) runs over the L lattice sites while the first sum
runs over the LZ/2 pairs of nearest-neighbor sites. We restrict
this study to a half-filled system (i.e., one electron per site on
average). The Hubbard model corresponds to equal hopping
terms for both spins t↑ = t↑ = t while the Falicov-Kimball
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model [18] corresponds to a single mobile electron species
t↑ = t > 0 and t↓ = 0. We will set the unit of energy by t ≡ 1.

B. Dynamical mean-field theory

DMFT and its generalizations have become a leading ap-
proach for studying correlated electronic systems [3,4]. They
have been combined with the density functional theory [4,19]
to perform first-principles calculations. This DFT+DMFT
approach is increasingly used to investigate materials with
strong electronic correlations such as transition metals and
their oxides. More recently, the application of DMFT to
quantum chemistry problems has been explored [20].

The Mott metal-insulator transition in the Hubbard model
has been extensively investigated with DMFT [3,12,21–24].
On a Bethe lattice with infinite coordination number, DMFT
studies have revealed a first-order quantum phase transition
from a Fermi liquid to a Mott insulator as U increases. The
ground state is metallic up to a critical coupling UMIT

c (which
is close to 5.8 according to QMC-DMFT calculations [22])
and becomes insulating above this value. However, the Mott-
insulating state remains metastable down to a critical coupling
Uc < UMIT

c where the Mott-Hubbard gap closes. Thus, it still
influences the system properties for Uc < U < UMIT

c and in
real systems, it should be observable in experiments such as
time-resolved spectroscopy.

In the DMFT approach, a bulk system is mapped onto
an effective self-consistent quantum impurity system. In the
case of the Hubbard model, this is the well-known single-
impurity Anderson model (SIAM). This mapping becomes
exact in the limit of infinite dimensions or coordination
number. However, solving the quantum impurity problem is
a very hard task in most cases. Various “impurity solvers”
can be used to compute the SIAM properties numerically.
For instance, numerical renormalization group (NRG) [21],
density matrix renormalization group (DMRG) [12,23–25],
and quantum Monte Carlo (QMC) [10,22] methods have been
used successfully for this purpose. Thus, in practice, one
has to solve the self-consistent impurity problem numerically
and recursively. This introduces errors which are difficult to
estimate within the DMFT scheme. Therefore, reliable results
obtained with other methods are highly desirable to validate
the DMFT approach and evaluate its accuracy, even in the limit
of infinite dimensions. So far, besides DMFT computations,
most reliable results for the Hubbard model in the limit of
high dimensions have been obtained using weak- [25,26] and
strong-coupling perturbation theory [10–12]. Additionally,
the Kato-Takahashi SCPT can be used to solve the DMFT
self-consistency equation [27].

C. Strong-coupling perturbation theory

Series expansion methods, especially perturbative ap-
proaches, constitute basic theoretical tools of physics [28–34].
They are often used to investigate strongly correlated lattice
models such as the Hubbard model. An attractive feature
of these methods is that they are often well suited for
the use of high-performance computer algebra. Thus, one
can take advantage of the computational power of modern
supercomputers without losing the rigor of analytical calcula-

tions. This can be a decisive advantage over most numerical
approaches, which usually have to deal with various issues
brought by finite-precision algorithms and floating-point
arithmetic.

In principle, the Kato-Takahashi perturbation expansion
provides us with a systematic method for calculating the
properties of the Mott insulator in powers of 1/U . In practice,
the number of diagrams contributing to nth order increases
exponentially with n and thus calculations become rapidly
too complex. Several years ago, a direct manual calculation
yielded the ground-state energy of (1) up to the fourth
order and the local Green’s function up to second order in
1/U [35–37]. These results agree well with DMRG-based
DMFT simulations for U � 6 [12]. Later, a combinatorial-
diagrammatic algorithm was developed to calculate a given
order exactly using computer algebra. This method allowed
one of us to compute the ground-state energy exactly up to the
11th order in 1/U using moderate computational resources
[10,11]. The results agree very well down to U = 4.8 with
DMFT data obtained using a QMC method [10] or a DMRG
method [12] as impurity solver. However, these studies reached
different conclusions regarding the critical coupling Uc where
the Mott insulator becomes unstable, and the related critical
exponent τ . Combining QMC-DMFT and SCPT results, the
first study [10] claimed that Uc ≈ 4.78 (in agreement with
other DMFT calculations [21–23]) and τ ≈ 7

2 while the
DMRG-DMFT–based study [12] concluded that Uc ≈ 4.45
and τ ≈ 5

2 . In addition, a critical coupling Uc ≈ 4.406 was
deduced from a perturbative calculation of the Mott-Hubbard
gap within the DMFT approach [27].

Unfortunately, even the most recent SCPT study (up to
11th order in 1/U ) [11] was not sufficient to discriminate
between the QMC and DMRG data close to Uc. It is well
known that a series expansion truncated at any finite order
becomes increasingly unreliable as one approaches a critical
point (i.e., an analytical singularity) and that taking higher
order into account improves the reliability. Thus, in this
paper we present a large-scale computer-algebra calculation
which allows us to obtain the ground-state energy up to
the 15th order in 1/U using the combinatorial-diagrammatic
approach. The comparison of SCPT and DMFT results reveals
that QMC-DMFT agrees much better than DMRG-DMFT
with the 15th-order perturbation theory close to the critical
regime (down to U = 4.8). In addition, extrapolating the
perturbation expansion to infinite order using the Domb-Sykes
method [38,39] allows us to determine critical coupling
Uc ≈ 4.76 and critical exponent τ ≈ 3.45 very precisely. This
critical coupling also agrees with previous DMFT calculations
[10,21–23]. Moreover, we find that the ground-state energies
calculated with the extrapolated SCPT and the QMC-DMFT
agree perfectly (within 10−7 of the bandwidth) even extremely
close to the critical coupling, e.g., for U − Uc ≈ 0.04.

The rest of this paper is structured as follows. The
high-performance computer-algebra SCPT is described in
the next section. Section III presents the comparison of
the SCPT results with the DMRG-DMFT and QMC-DMFT
data as well as the extrapolated perturbation theory. Finally,
the perspective for further development and applications
of the combinatorial-diagrammatic SCPT are discussed in
Sec. IV.
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II. COMPUTER-ALGEBRA SCPT

A. Kato-Takahashi series expansion

The ground-state energy per lattice site E of the Hamil-
tonian (1) can be written as a series in power of 1/U using
the Kato-Takahashi strong-coupling perturbation theory [1,2].
At U = ∞ (or equivalently t = 0), the ground-state energy
is E0 = 0 and the corresponding eigenstates have exactly one
electron localized on each lattice site. As the spin orientation
does not change the energy, the ground state is degenerate. We
denote by H0 the corresponding eigenspace. Its dimension is
2L for an L-site lattice. Let P be the projection operator onto
the lowest-energy eigenspace of the Hamiltonian (1) at finite
U . (Obviously, P is the projector onto H0 for U = ∞.) Using
the generic Kato perturbation theory, Takahashi showed for the
Hubbard model in the strong-coupling limit that this operator
can be written as a power series in 1/U :

P = −
∞∑

n=0

1

Un

∑
{kr }

Sk1T Sk2T . . . T Skn+1 (2)

with integers kr � 0 such that k1 + k2 + · · · + kn+1 = n. At
half-filling, this power series has a finite convergence radius
U−1

R > 0 and that depends on the lattice properties. The
operators Sk are defined by

Sk =
{−P0 for k = 0,∑L

d=1
1

(−d)k Pd for k > 0,
(3)

where Pd is the projector on the subspace of states with exactly
d doubly occupied sites.

Let us assume that |φ0〉 is a state in H0 with the property
P |φ0〉 �= 0. (There must be at least one such state if the series
expansion for P has a finite convergence radius.) Then, the
ground-state energy for finite 1/U is given by

E = 1

L

〈φ0|PHP |φ0〉
〈φ0|P |φ0〉 . (4)

Using (2), we can expand this energy in power of 1/U ,

E =
∞∑

n=1

an

Un
, (5)

for UR < U < ∞. Although one cannot write closed formula
for the coefficients an in general, they are completely defined
by Eqs. (2)–(4) for a given lattice and a given hopping
operator T .

B. Combinatorial-diagrammatic approach

A combinatorial-diagrammatic approach was developed by
one of us to evaluate the coefficients an for the Hubbard
and Falicov-Kimball models on a Bethe lattice with an
infinite coordination number [10,11]. Here, we summarize
the key ideas which are necessary to understand our new
implementation of this approach and we refer the reader to the
original publications for more details. Expanding the projector
(2) in the energy (4), we see that the coefficients an are given
by sums of expectation values of the form

〈φ0|T Pd1T Pd2T Pd3 . . . T |φ0〉, (6)

which are called processes. Different sets {kr} and {dr} in
Eqs. (2), (3), and (6) correspond to different processes. The
number of different sets {kr} in the projector (2) is (2n

n )

for the nth order and thus increases exponentially as 4n√
πn

for high orders n. The number of different sets {dr} scales
as Ln−1. Thus, the number of possible processes increases
exponentially fast with the order n.

The state |φ0〉 is an eigenstate of the double occupation
operator D and thus has a precise number of doubly occupied
sites (zero at half-filling) while the hopping operator T can
change the number of doubly occupied sites by at most
one. Consequently, only some particular sets {dr} can yield
a nonzero expectation value (6). Then, using the definition
of the hopping operator T in Eq. (1), each process can be
evaluated as the sum of simple expectation values

〈φ0|c†i1,σ1
ci2,σ2

c
†
i3,σ3

ci4,σ4
. . . ci2l ,σ2l

|φ0〉 (7)

(called sequences) over lattice sites and spin indices. The
sequence length is 1 � l � n + 1. The number of different
sequences in a process increases exponentially fast with the
order n, roughly as (2ZL)l for a process containing l hopping
operators T .

Therefore, the evaluation of the coefficients an in the
series (5) is a hard computational problem. However, the
computational cost can be greatly reduced if one identifies
without explicit calculation the many processes and sequences
which vanish or are equivalent. For instance, processes can
be gathered into a small number of classes defined by the
positions r of the indices kr = 0 in the list {kr}. Then, the
processes in a given class are only compatible with particular
sets {kr} and {dr} as well as a reduced number of sequences
because an intermediate state

c
†
i2r+1,σ2r+1

ci2r+2,σ2r+2
c
†
i2r+3,σ2r+3

. . . ci2l ,σ2l
|φ0〉 (8)

without any doubly occupied site must be reached every time
that kr = 0 ⇔ dr = 0 in Eq. (6). The actual number Np of
inequivalent nonzero processes in our implementation is given
in the second column of Table I for several orders n.

The above discussion is valid for any lattice. On a Bethe
lattice with an infinite coordination number Z, however, the
evaluation of sequences and processes can be considerably
simplified. First, it was shown [36] that the degeneracy of
the singlet ground state for U = ∞ is not lifted up to the
third order in 1/U (if one excludes long-range spin orders
such as antiferromagnetism). Assuming that this holds for all
orders, we can use any singlet state |φ0〉 ∈ H0 or, equivalently,
an average over an orthonormal basis of the singlet subspace
in H0. (This averaging greatly simplifies the evaluation of
sequences as we will see in the following.) Moreover, an
expectation value (7) vanishes unless each creation operator
c
†
i,σ in the sequence is matched by a corresponding annihilation

operator ci,±σ . Thus, the site set {ir} in a sequence (7) describes
one or more closed paths on the lattice. As the operator T

contains hoppings between nearest-neighbor sites only, each
segment of the path connects two nearest-neighbor sites.
Moreover, as loops are not possible on a Bethe lattice, the
path is self-retracing and any nearest-neighbor bond can only
appear an even number of times in a closed path. Finally,
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TABLE I. Number of different nonzero processes Np , number of sequences Ns in (10), series coefficients an, number of processors used,
wall time of calculation, and the total amount of required memory for the nontrivial orders n from 1 to 15 using the preprocessing technique
as well as estimates for the next nontrivial order n = 17 without preprocessing.

Memory
n Np Ns an Proc. Time (Gb)

1 1 2 − 1
2

3 2 20 − 1
2

5 4 648 − 19
8

7 14 45 472 − 593
32

9 48 564 488 0 − 23 877
128 1 6 s <1

11 193 109 905 600 0 − 449 624 5
2048 1 18 min <1

13 795 310 007 943 616 − 158 852 861 3
55 296 128 12 min 36

15 3412 119 777 421 416 192 − 129 271 258 152 11
318 504 96 128 77 h 528

17 14 803 <804658 × 1011 262 144 13 days 131

segments occurring more than twice yield contributions of the
order of 1/Z or smaller and thus are negligible in the limit of
an infinite coordination number.

Some other generic properties can be used to further
simplify the problem. As the total energy must be extensive,
disconnected paths resulting from the expansion of numerator
and denominator in the ratio (4) must compensate each other
and thus only sequences corresponding to a single connected
path of length l = n + 1 yield nonzero contributions in the
nth order. This property is sometimes called a linked-cluster
theorem but in the present context it is more a physical
argument than a mathematical theorem. It was only proven
exactly up to the fifth order in 1/U in Ref. [36]. A detailed anal-
ysis of the linked-cluster theorem within the Kato-Takahashi
perturbation theory also indicates that it should be valid for
the Mott-insulating phase of the half-filled Hubbard model
[34,40]. Finally, all lattice sites are equivalent as we assume
that the lattice is infinitely large (L → ∞).

In summary, the only nonzero contributions to processes
(6) come from sequences (7) corresponding to a single, closed,
and self-retracing path of even length l = n + 1 through l/2
different bonds and l/2 + 1 different sites. This has three
important consequences. First, only processes corresponding
to an even power of the hopping operator T or, equivalently,
an odd power of 1/U , contribute to the ground-state energy at
half-filling.

Second, after reordering the fermion operators, any con-
tributing sequences can be written as a correlation function

〈φ0|
l∏

r=1

c
†
ir ,σr

cir ,σ ′
r
|φ0〉 (9)

between all sites in a path of length l. Computing the average of
the energy (4) over an orthonormal basis of the singlet subspace
in H0 reduces to averaging these correlation functions. In the
thermodynamic limit L → ∞, all spin configurations of a
finite cluster are equiprobable if one averages over all singlet
states of the full system. Thus, we can simply compute the
mean value of the correlation function over both spin states
σ =↑,↓ at each site in the path. We find then that the average

value of a correlation function depends only on the path length
l (and so on the order n) and is simply a rational number
2−(n+3)/2.

Third, the distinct linked clusters occurring in contribut-
ing sequences can be represented one to one by diagrams
called Butcher trees [11,41]. Generating all these clusters
corresponds to generating all Butcher trees with l/2 + 1 =
(n + 3)/2 nodes. We have to use colored Butcher trees with
four distinct colors corresponding to the four possible states
(unoccupied, spin-↑, spin-↓, and doubly occupied) of an
electronic site to represent the initial spin configurations in
|φ0〉 and the intermediate states (8) of a sequence. After
constructing all nth-order Butcher trees, all possible sequences
on them can be generated starting from the graph root using a
recursive electron hopping procedure, which takes into account
the physical restrictions such as the Pauli principle. Therefore,
the evaluation of the coefficients an in the series (5) is reduced
to a (hard) combinatorial-diagrammatic problem.

C. High-performance computer-algebra implementation

A combinatorial-diagrammatic approach was used to cal-
culate the coefficients an exactly up to n = 11 for both
the Hubbard model and the Falicov-Kimball model using a
proof-of-concept computer program and moderate computer
resources [10,11]. Based on the original program, one of us
(M.P.) has implemented a high-performance computer-algebra
program that calculates the coefficients an exactly for a given
odd n (as an = 0 for all even n at half-filling). The coefficients
are written as

an = r
2−(n+3)/2

n + 1

∑
g

∑
s

Ss

⎛
⎝∑

p

Cp

n∏
j=1

d
−kj

j

⎞
⎠ , (10)

where r = 1 for the Falicov-Kimball model and r = 2 for the
Hubbard model. The first sum runs over all 2(n−1)/2 process
classes g. The sum over the index s represents the sum over
all sequences (7) which are compatible with the process class
g. The sequences for the Falicov-Kimball model are a subset
of those for the Hubbard model. A set of double-occupancy
number {dr} is associated with each sequence s and Ss = ±1 is
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the overall sign of this sequence from the fermion commutation
relations. The total number Ns of all sequences in all classes
is given in the third column of Table I up to the order n = 15.
The sum over the index p in (10) represents the sum over all
inequivalent elementary processes (6) in the class g. These
processes are the same for the Falicov-Kimball model and the
Hubbard model. A set of exponents {kr} is associated with each
elementary process p and Cp gives the number of equivalent
elementary processes. The total number Np of all processes in
all classes is given in the second column of Table I up to the
order n = 17.

We see that Ns increases faster than n!. This apparently
disagrees with the above analysis which predicts at most an
exponential increase of the number of processes and sequences
with n. However, the exponential behavior is obtained for a
finite lattice L and a finite coordination number Z and thus
does not preclude a factorial behavior in the limits L,Z → ∞.
For orders up to n = 11, the computation of (10) can be easily
carried out on a workstation. Our optimized and parallelized
implementation of this combinatorial-diagrammatic algorithm
has allowed us to carry out the calculation up to the order
n = 15 using high-performance supercomputers.

This implementation represents about 3800 lines of ANSI-
C code (comments excluded). The program uses only integer
numerics with a “global” denominator instead of slower
rational numbers. Thus, the coefficients an are obtained as
exact rational numbers. We have found that standard 64-bit
integers are enough up to the 13th order but 128-bit ones
are required for the 15th order. For the 17th order, integers
with 256 bits or more would be necessary. In practice, we use
the GNU Multiple Precision Arithmetic Library (GMP) [42],
which provides integers of arbitrary length.

To optimize the program, we have implemented the nec-
essary algorithms as fast operations on our bit-coded data
structures. These include standard combinatorial algorithms,
e.g., for sorting and permuting [43], as well as more specialized
ones, e.g., for computing the overall sign from all fermion oper-
ator commutations in a sequence. Thus, our implementation is
self-contained and does not require any special software library
except GMP. A further optimization of several algorithms was
achieved thanks to an independent graph-theoretical analysis
of the representation of sequences by colored Butcher trees
[44,45]. This analysis was carried out using the functional
programming language HASKELL, which provides a concise
high-level mathematical environment for this purpose, e.g.,
native support for graph structures. In addition, we have used
the On-Line Encyclopedia of Integer Sequences (OEIS) [46]
to analyze the various integer sequences which occur in in-
termediate steps of the combinatorial-diagrammatic algorithm
and thus verify some intermediate results. This analysis has
also helped us to improve the overall program efficiency.

In contrast to the proof-of-concept implementation in
Ref. [11], our implementation consists of a single program.
To generate all contributing sequences s in (10), it iterates
in parallel over all initial states (i.e., spin configurations
in |φ0〉) in an outer loop while an inner loop runs over
all combinations of nearest-neighbor pairs using a recursive
electron hopping procedure. A tradeoff between CPU time and
memory usage can be achieved if one initially calculates once
and stores the possible sequence weights [i.e., the sum over the

elementary processes p in Eq. (10)] for all double-occupancy
sets {dr}. Then, during the summation over the sequences
s, one uses the stored weight for the set {dr} corresponding
to each sequence. This preprocessing of sequence weights
yields a significant speedup at the cost of a higher memory
requirement. For instance, preprocessing reduces the CPU
time by a factor 3.3 for the 15th order, which offsets the
higher computational cost of the GMP library compared
to fixed-length integers. Theoretically, the required memory
for the sequence-generating subroutine increases from ∝n2

without preprocessing to ∝4n with preprocessing, while the
main program needs a constant amount ∝2n. In addition, this
method results in an unfavorable memory scaling in a parallel
computation as the total memory now increases linearly with
the number of processors while it remains almost constant
without preprocessing. As an example, for the order n = 15,
4 Gb for each processor plus 16 Gb of shared memory are
used with preprocessing against only 16 Gb overall without
preprocessing.

Our code has been designed for running efficiently on
parallel supercomputers. For an efficient handling of shared
data by the specialized combinatorial functions, we have lim-
ited ourselves to symmetric multiprocessor (SMP) computer
architectures so far. Due to the ideal data parallelism in our
implementation as well as to a fine-tuned load balancing, the
scaling behavior of the computing time is excellent on all tested
machines, at least up to 510 processor cores on a SGI Altix
4700 and up to 256 processor cores on the much more powerful
HP Integrity Superdome 2-32s. A simple analysis on the
basis of Amdahl’s law gives 99.93% code parallelism [47].

Nevertheless, calculating the sum (10) for n > 11 re-
mains computationally demanding and we have to carry out
large-scale calculations on SMP machines with hundreds of
processors to obtain the 13th and 15th orders in 1/U . The
wall time used and the required memory are shown in Table I
for calculations performed using the preprocessing method
on a HP 9000 J6750 workstation (orders n = 9 and 11) and
an HP Integrity Superdome 2-16s server (orders n = 13
and 15). In Table I, we also show our estimates for the
order n = 17 using a massively parallel processing (MPP)
supercomputer such as the IBM BlueGene/Q with 262 144
processors. Note that the preprocessing method could not be
used on this computer system without modification because
the available memory per processor would be too low.

The validity and performance of our program were also
tested on the Falicov-Kimball model [18] using a state-of-the-
art SMP supercomputer (HP Integrity Superdome X). As
a result, we can confirm that there is no contribution to the
ground-state energy (beyond the first-order term) up to the
17th order in 1/U , i.e., 6 orders higher than in a previous work
[11]. This test also allows us to estimate the computational
cost for the 17th order in the Hubbard model. It shows that
7.7 Tb of memory would be required with preprocessing on
the 240 processor cores of the HP Integrity Superdome X
and that the calculation would last more than one year (while
the test for the Falicov-Kimball model only took 54 hours).
Therefore, the calculation of the next order in the Hubbard
model series expansion does not seem to be possible with
current SMP machines. Nevertheless, it appears to be tech-
nically possible with current MPP supercomputers such as
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the IBM BlueGene/Q, although we could not use the current
implementation of the preprocessing and the computational
cost, about 13 days, would still be very high in practice.

III. RESULTS

A. Comparison of SCPT and DMFT

In Table I, we present the coefficients an of the power series
for the ground-state energy (5) in the half-filled Hubbard model
up to the order n = 15. (Only coefficients for odd n are listed
as they vanish for all even n.) They agree with those obtained in
previous works [10,11] up to the 11th order in 1/U . Thus, our
high-performance program allows us to improve the accuracy
of the truncated series by four orders in 1/U . In addition, the
average double occupancy per site can be calculated up to the
16th order in 1/U using the relation

D(U ) = d

dU
E(U ). (11)

Using the coefficients an, we can define the partial sums

Em(U ) =
m∑

n=0

an

Un
(12)

which give the ground-state energy for a given Hubbard
interaction U and a given order of the SCPT up to m = 15.
Figure 1 shows the absolute differences

�Em(U ) = |EDMFT(U ) − Em(U )| (13)

between the SCPT and DMFT ground-state energies for
several U and three different orders m. We see that �Em(U )
decreases for stronger interaction U and higher order m,
as expected. The energy differences are also systematically
smaller for QMC-DMFT than for DMRG-DMFT, especially
for larger U . However, this is easily explained by the different
precision goal of these two distinct DMFT computations:
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10-6

10-5

10-4

10-3

4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6
U

0

2×10-4

4×10-4

6×10-4

8×10-4

1×10-3

ΔE
m
(U
)

FIG. 1. (Color online) Absolute differences (13) between the
SCPT and DMFT ground-state energies as functions of U for the
orders m = 9 (circle), m = 11 (square), and m = 15 (diamond). Open
and solid symbols correspond to DMRG-DMFT and QMC-DMFT,
respectively. Vertical lines mark the critical coupling Uc deduced
from DMRG-DMFT (dotted-dashed line) and QMC-DMFT (dashed
line) studies. Other lines are guides for the eye. The inset shows the
same data on a logarithmic scale.

DMRG energies [12] were calculated with an accuracy of
10−4 to 10−5t while the QMC data [10] were recorded with
an accuracy of 10−8t . Moreover, we see in Fig. 1 that the
DMRG energy differences become significantly larger close
to the critical value Uc ≈ 4.45 determined in a DMRG-DMFT
calculation [12]. This behavior is expected because the SCPT
energies should become rapidly inaccurate as U approaches
the convergence radius of the perturbation series. Surprisingly,
the QMC energy differences do not show any sign of a
singularity close to the critical coupling Uc ≈ 4.78 deduced
from QMC-DMFT computations [22]. Therefore, the simple
analysis of the energy differences �Em(U ) between SCPT
and DMFT does not allow us to discriminate between both
impurity solvers.

In principle, one can examine the convergence of the
sequence of partial sums {Em(U ); m = 1,3,5, . . . } to deter-
mine the exact ground-state energy for any given U > Uc.
In practice, the extrapolation of a finite number of available
terms Em(U ) to the limit m → ∞ is often ambiguous. The case
U = 4.8 is particularly interesting. In Ref. [10], it was shown
that the SCPT ground-state energies Em(U ) up to m = 9 could
be well fitted with a quadratic function

Em = E∞ + c1x + c2x
2 (14)

with

x = 2

m + 1
(15)

and the three fit parameters E∞,c1,c2. The extrapolated value
for m → ∞ was found to be E∞ = −0.110 259 for U = 4.8 in
excellent agreement with the QMC-DMFT result EDMFT(U =
4.8) = −0.110 269 19. However, the choice of the scaling (15)
is rather arbitrary. Indeed, in Ref. [12] it was shown that the
same SCPT ground-state energies could be equally well fitted
by a quadratic function (14) with

x = 2

m − 1
. (16)

The extrapolated value for m → ∞ was then found to be
E∞ = −0.110 487 in good agreement with the DMRG-DMFT
result EDMFT(U = 4.8) ≈ −0.110 48. [It is not surprising that
we cannot discriminate between the two possibilities (15) and
(16) because we actually fit four data points {Em; m = 3,5,7,9}
using four parameters if we also allow for the adjustment of
the scaling of x with m.] The same analysis was carried out
using the 11th-order contribution calculated two years ago
[11], but this additional term alone did not change the results
significantly enough to discriminate between both fits.

Using the two additional contributions calculated in this
work (m = 13 and 15) we find that the fit based on the first
scaling (15) remains virtually unchanged from the result for
m � 11 (see Fig. 2). In particular, the extrapolated energy
E∞ = −0.110 252 for U = 4.8 is still in excellent agreement
with the QMC-DMFT result. By contrast, Fig. 2 shows
that the fitted parabola based on the second scaling (16)
changes significantly if one uses all known data points Em

(m � 15) or only the previously available ones (m � 11). The
extrapolated energy E∞ = −0.110 350 now differs visibly
from the DMRG-DMFT result and shifts closer to the QMC-
DMFT result.
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FIG. 2. (Color online) SCPT ground-state energy Em(U = 4.8)
as a function of x = 2

m+1 (open circles) and x = 2
m−1 (open squares).

Lines represent least-square quadratic fits (14) of these data using all
points (m � 15, black or red dashed lines) and all but the leftmost
two points (m � 11, blue or green solid lines). The solid circle and
square correspond to the QMC-DMFT and DMRG-DMFT results for
U = 4.8, respectively. The inset shows an expanded view of the box
in the lower left corner.

We have analyzed the SCPT convergence for various values
of U using a more general scaling x = 2/(m + w). All results
confirm that the choice w = 1 yields the most stable extrap-
olations (14) and that the extrapolated SCPT energies E∞
agree very well with the QMC-DMFT energies for U � 4.8.
Moreover, they confirm that the agreement between SCPT
and DMRG-DMFT energies deteriorates for U � 5 when the
orders n = 13 and 15 are taken into account even if one chooses
another parameter w. Therefore, we conclude that (15) is the
best scaling for extrapolating ground-state energies and that
the QMC-DMFT calculations [10] are more accurate than
the DMRG-DMFT computations [12] in the critical region
above Uc.

B. Extrapolated perturbation theory

Rather than extrapolating the ground-state energy for a
given coupling U , we can use the Domb-Sykes method [38,39]
to conjecture the asymptotic behavior of the coefficients an.
Thus, we can obtain the critical behavior of the ground-state
energy and also extrapolate the partial sums (12) to very high
orders m. This approach was named extended perturbation
theory (ePT) in previous works [10,11].

For odd n � 3 we define the number sequence

Rn =
√

an

an−2
. (17)

Assuming that the convergence radius UR of the series (10) is
identical with the critical coupling Uc where the Mott phase
becomes unstable, the ratio criterion implies that

lim
n→∞ Rn = Uc. (18)

To extrapolate the sequence for n → ∞, one can again use a
least-square quadratic fit

Rn = Uc + g1x + g2x
2 (19)

0 0.2 0.4 0.6 0.8 1
x
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5

R
n

FIG. 3. (Color online) Domb-Sykes plot of the ratio Rn as a
function of x = 2

m+1 (open circles) and x = 2
m−1 (open squares).

Lines represent quadratic least-square fits (19) of these data using all
points (m � 15, black or red dashed lines) and all but the leftmost
two points (m � 11, blue or green solid lines).

with x = 2/(n + w), and the three fit parameters Uc,g1,g2.
The corresponding Domb-Sykes plots are shown in Fig. 3. If
we assume that the singular part of the ground-state energy (4)
for U � Uc is a power law

Ec(U ) ∝ (U − Uc)τ−1 (20)

with a critical exponent τ �= 1,2,3, . . . , the coefficients of the
series (5) must satisfy the asymptotic relation

Rn ≈ Uc

(
1 − τ

n

)
(21)

for n � 1 [38,39,48]. Therefore, we can estimate the critical
exponent from the fit parameters with

τ = −2g1

Uc

. (22)

On the basis of the SCPT coefficients an up to n = 9, it
was shown that Uc ≈ 4.75 and τ ≈ 3.44 using w = 1 [10]
but Uc ≈ 4.43 and τ ≈ 2.61 using w = −1 [12]. On the one
hand, the former critical parameters agreed well with several
DMFT calculations for Uc [10,21–24] but none of these studies
proposed a value for τ . On the other hand, the latter critical
parameters were in excellent agreement with the DMRG-
DMFT results Uc ≈ 4.45 and τ = 5

2 [12]. Moreover, the
value Uc ≈ 4.406 was obtained from a perturbative solution
of the DMFT self-consistency problem [27]. Including the
11th-order coefficient did not change the critical parameters
significantly and hence did not solve the controversy [11].

Using the two additional orders computed in this work,
we find that the critical parameters are only insignificantly
modified, Uc ≈ 4.76 and τ ≈ 3.45, for the choice w = 1. For
w = −1, however, the fit parabola becomes visibly different
for x → 0 (see Fig. 3), and the resulting critical parameters
are now Uc ≈ 4.55 and τ ≈ 2.55. While the change of τ is
negligible (and the new value agrees rather better with the
DMRG-DMFT τ = 5

2 than previously), the critical coupling
Uc shifts significantly away form the DMRG-DMFT result
[12] toward the value obtained in other DMFT calculations.
We have also probed other values of w but clearly the choice
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w = 1 yields the most stable extrapolation with respect to
variations of the numbers of exact coefficients an. Therefore,
we conclude that the critical parameters are Uc ≈ 4.76 and
τ ≈ 3.45 based on the 15-th order SCPT and the Domb-Sykes
method.

Assuming that the relation (19) holds for all coefficients Rn

with n > 15 we can compute the coefficients an for n > 15
recursively and thus extend the partial sum (12) to very high
orders m. Additionally, as we know the asymptotic behavior
of the coefficients

an = −Un
c

C

nτ
(23)

with a constant C ≈ 0.349, we can easily estimate the cutoff
m for a given U and accuracy goal. In Ref. [10], it was
shown using this extrapolated perturbation series (and the
exact coefficients up to n = 9) that the resulting ground-state
energies agree with the QMC-DMFT data within 10−5t .
Using the additional exact coefficients an up to n = 15 and
extrapolated ones up to m = 1001, we find that the differences
between the extrapolated perturbation series and the QMC-
DMFT ground-state energies are now of the order of 10−7t or
smaller for all U − Uc � 0.04. Therefore, we have not only
confirmed that the QMC-DMFT data are numerically exact
(i.e., within their stated precision of 10−8t) but also that the
extrapolated perturbation series can reach the same level of
accuracy even very close to the critical coupling.

IV. CONCLUSION AND OUTLOOK

We have investigated the ground-state energy in the Mott-
insulating phase of the Hubbard model on a Bethe lattice
with infinite coordination number using a combinatorial-
diagrammatic approach based on the Kato-Takahashi strong-
coupling perturbation theory. First, we have carried out
large-scale computer-algebra calculations to obtain the exact
coefficients an of the series expansion (5) up to the 15th order
in 1/U . Then, a Domb-Sykes analysis of the series asymptotic
behavior has allowed us to determine its singular behavior
close to the critical coupling Uc below which the Mott phase
becomes unstable. We have thus established highly accurate
benchmarks for DMFT methods.

The DMFT method [3,4] is a complex numerical technique
and the result quality depends not only on the impurity solver
used (e.g., DMRG, QMC, or NRG) but also on the chosen
discretization scheme for the continuous self-consistency
equation. As DMRG is a very reliable method for quantum
impurity problems and other DMRG-DMFT investigations
[23,24] agree with QMC-DMFT results, the failure of the
DMRG-DMFT computation close to the critical coupling in
Ref. [12] is probably due to the discretization scheme used in
that work. Indeed, an essential step of this particular scheme is
the deconvolution of the impurity density of states calculated
with DMRG. In a recent work [49], two of us have shown
that the deconvolution procedure used in Ref. [12] slightly
distorts the shape of the density of states in a one-dimensional
paramagnetic Mott-Hubbard insulator. We think that a similar
deconvolution inaccuracy could be responsible for the failure
of the DMRG-DMFT scheme in Ref. [12].

The computer-algebra SCPT method presented in Sec. II
can be extended to various generalizations of the Hubbard
model (1). For instance, one could vary t↓ continuously
to interpolate between the Hubbard model (t↓/t↑ = 1) and
the Falicov-Kimball model (t↓/t↑ = 0) or one could study
Hubbard models with several bands [50,51] or internal SU(n)
symmetries with large n [52,53]. Kato perturbation theory
has already been applied to the Mott-insulating phase in
the strong-coupling limit of the Bose-Hubbard model with
spinless bosons [54–56]. In that case, the unperturbated ground
state is not degenerate and thus the perturbation series can
easily be computed up to high orders. For bosons with
spin S > 0, however, the degeneracy of the unperturbated
ground state duplicates the situation encountered in the
Hubbard model for electrons. Thus, the approach that we
have used for the fermionic Hubbard model can also be
applied to a spin-disordered Mott phase in the Bose-Hubbard
model with spin S > 0 as well as to Mott phases of other
fermion systems and of boson-fermion mixtures in optical
lattices [13,14,17].

However, an essential condition for the computer-algebra
SCPT used in this work is the conservation of the singlet
ground-state degeneracy at all orders in the series expansion,
which allows one to evaluate the correlation functions (9)
easily. If this property is not fulfilled, an exact calculation
of the relevant correlation functions could become much
more difficult or even impossible. Then, one would have
to be content with (possibly numerical) approximations for
the coefficients an of the perturbation series. Obviously, this
degeneracy at finite coupling is a model property and thus the
applicability of our method has to be checked on a case-to-case
basis. The loss of degeneracy seems also to be the most
serious difficulty in extending the combinatorial-diagrammatic
approach to the Hubbard model away from half-filling and,
more generally, to metallic phases in the strong-coupling limit.
Indeed, away from half-filling the degeneracy of the U = ∞
ground state is already partially lifted in first order in the
hopping term T . Again, this seems to imply that one could
only obtain approximate series coefficients an away from
half-filling. Similarly, we could employ the computer-algebra
SCPT as an approximation method for the Hubbard model on
other lattice geometries than the Bethe lattice and for finite
dimensions or coordination numbers. (The DMFT method
is already used as an approximative method for treating
strong electronic correlations in finite-dimensional systems,
for instance, in first-principles studies of three-dimensional
systems [4,19,20].)

One of the open problems in the theory of Mott insulators
is the shape of the Hubbard bands in the single-particle density
of states (DOS). In particular, DMFT calculations reveal some
unexplained sharp structures at the low-energy edges of the
Hubbard bands in both the Mott-insulating phase [12] and
the metallic phase [24,57] in the critical region. The DOS of
the Mott-insulating phase has been calculated perturbatively
up to the second order in 1/U directly from the Hubbard
model [35] and up to the third order by solving the DMFT
self-consistency equation [27]. However, these results do not
fully explain the observed structures. Moreover, the DMFT
results for the DOS depend sensitively on the scheme used to
solve the self-consistent impurity problem [24]. In that case,

245147-8



COMPARISON OF COMPUTER-ALGEBRA STRONG- . . . PHYSICAL REVIEW B 90, 245147 (2014)

we are clearly in need of more accurate results, such as higher-
order terms in the perturbation expansion.

In principle, the combinatorial-diagrammatic approach can
be extended to the calculation of the local single-particle
Green’s function, which determines the DOS and the Mott-
Hubbard gap. The series expansion can be formulated as a
self-consistent integral equation for the Green’s function at
finite U . The equation contains polynomials of the Green’s
function at U → ∞ with increasing orders. The coefficients
of these polynomials can be calculated using a similar
combinatorial-diagrammatic approach as the coefficients for
the series expansion of the ground-state energy (5). However,
the computational cost appears to be significantly higher for
the Green’s function than for the ground-state series expansion.
Moreover, it is not clear whether we can obtain an exact
solution with combinatorial-diagrammatic techniques only
because methods from numerical analysis could be required
to solve the self-consistent integral equation. Nevertheless, it
would be worthwhile to calculate even only a few higher-
order contributions to the Green’s function. Knowing higher-
order contributions to DOS and gap would allow us to
determine the critical coupling Uc and the critical exponent
τ more accurately and thus to gain a better understanding of
the paramagnetic Mott metal-insulator transition. Moreover,
this would provide us with a more direct and thorough
benchmarking of numerical DMFT methods because they are
actually based on self-consistent computations of the Green’s
function.

The development of the combinatorial-diagrammatic ap-
proach to the Kato-Takahashi SCPT has greatly benefited
from a formal mathematical study of its algorithms [44,45].
Discrete mathematics rather than differential calculus provides
the mathematical background for this approach. Further de-
velopment of similar computer-algebra perturbation methods
will require a close cooperation between physics and discrete
mathematics which will benefit both fields. Indeed, we have
not only used the On-Line Encyclopedia of Integer Sequences

(OEIS) [46] to obtain information on known integer sequences
but also contributed additional ones. For instance, the number
of sequences Ns in Table I is the integer sequence A198761 in
OEIS.

The computer-algebra techniques developed in this work
for large-scale computations of the Kato-Takahashi SCPT
could also be applied to other series expansions [28–31]. For
instance, the method of continuous unitary transformations
can be used to map the Hubbard model at strong coupling
onto an effective model with conservation of the number
of double occupancies [58–60]. Using appropriate truncation
schemes one can close, and thus solve, the flow equations
[61] of the effective Hamiltonians. This results in a systematic
expansion of the effective Hamiltonian and other observables
in powers of 1/U , which is very similar to Kato perturbation
expansion. One possible approach is a truncation of the
equations in a perturbative manner to obtain a series expansion
[32]. Recently, a nonperturbative approach has been proposed
based on graph-theoretical methods [33]. Therefore, we think
that larger-scale computer-algebra calculations will also prove
useful for these approaches in the future.
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[20] N. Lin, C. A. Marianetti, A. J. Millis, and D. R. Reichman,
Phys. Rev. Lett. 106, 096402 (2011).

[21] R. Bulla, T. A. Costi, and D. Vollhardt, Phys. Rev. B 64, 045103
(2001).
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