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Resonant charge relaxation as a likely source of the enhanced thermopower in FeSi
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The enhanced thermopower of the correlated semiconductor FeSi is found to be robust against the sign of the
relevant charge carriers. At T ≈ 70 K, the position of both the high-temperature shoulder of the thermopower
peak and the nonmagnetic-enhanced paramagnetic crossover, the Nernst coefficient ν assumes a large maximum
and the Hall mobility μH diminishes to below 1 cm2/V s. These cause the dimensionless ratio ν/μH —a measure
of the energy dispersion of the charge scattering time τ (ε)—to exceed that of classical metals and semiconductors
by two orders of magnitude. Concomitantly, the resistivity exhibits a hump and the magnetoresistance changes
its sign. Our observations hint at a resonant scattering of the charge carriers at the magnetic crossover, imposing
strong constraints on the microscopic interpretation of the robust thermopower enhancement in FeSi.
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FeSi is a prototypical correlated semiconductor, with its
band gap captured, while overestimated, by density functional
theory, essentially different from a Mott insulator. So far, it
has been considered either a Kondo insulator [1] due to the
hybridization of a local state and conduction band, a nearly
magnetic semiconductor [2] based on spin fluctuation theory
of itinerant electrons, or a correlated band semiconductor [3]
emphasizing local correlation effects in a band semiconductor.
The electronic transport of FeSi is of particular interest, as
illustrated by its large positive thermopower peak amounting
to S � 500 μV/K at T ≈ 50 K [4,5], quick metallization
above room temperature [5,6], and unusual magnetoresistance
as well as Hall conductance induced by doping [7]. The
potential application of FeSi as a cryogenic thermoelectric
(TE) material [8] further propels the ongoing debate on this
compound.

In order to account for the large thermopower peak observed
for FeSi, the phonon-drag effect [4,5], an appropriate hole
doping in conjunction with the narrow-gap and narrow-band
features [9–12], and strong Hubbard correlations [13] had ever
been invoked. Using dynamical mean field theory (DMFT),
Tomczak et al. [14] have recently identified a correlation-
induced incoherence in FeSi, which is argued to be the
driving force of the metallization as well as a variety of
unusual physical properties, including the thermopower near
the metallization crossover. This is to be compared to recent
inelastic neutron scattering results [6], which suggested an
enhanced thermal disorder to account for the metallization.
It is fair to say that a consistent interpretation of the large
thermopower peak in FeSi, which is located at a temperature
well below the metallization crossover, is still far from being
reached.

A careful examination of experimental data in the literature
reveals that in contrast to the Hall coefficient (RH ), the
thermopower of FeSi is quite robust against variations of
composition and crystallinity. As shown in Fig. 1, while the
S(T ) peak persists to be large and positive for all investigated
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FeSi samples, RH (T ) shows a strong sample dependence,
pointing to competing bands with either a holelike [4,13,15]
or electronlike [4,5] character dominating in the temperature
range of interest, 10–100 K (cf. the inset of Fig. 1). These
observations strongly hint at an unconventional origin of the
enhanced thermopower in FeSi, contrasting the aforemen-
tioned phonon-drag and hole-doping scenarios, which predict
the same sign of S(T ) and RH (T ) in a substantial temperature
range.

Here, we report results of extensive magnetotransport
measurements including the Nernst effect, Hall effect, mag-
netoresistance (MR), and thermopower, performed on a high-
quality FeSi single crystal grown by the tri-arc Czochralski
technique. Upon decreasing temperature, a number of unusual
transport phenomena, e.g., a sign change of MR(T ), a dimin-
ishing Hall mobility μH (T ) (=RH/ρ), and an unexpectedly
large Nernst coefficient ν(T ), concur at T ≈ 70 K, i.e.,
at the high-temperature shoulder of the thermopower peak.
Surprisingly, the magnitude of the latter two quantities is
anticorrelated to each other, in direct contrast to the common
expectation of both being proportional to each other [16].
As we will discuss below, this signals a resonant charge
relaxation process, presumably inherent to the crossover from
both nonmagnetism to enhanced paramagnetism and coherent
to incoherent electronic excitations [14]. A similar charge
relaxation process in another correlated semiconductor with
enhanced thermopower, i.e., FeSb2, was already proposed by
two of the authors and collaborators [17]. There the conclusion
was based on the largely enhanced values of ν(T ) in FeSb2

(relative to those of its reference compound FeAs2), the
striking similarity between the temperature profiles of the ν(T )
and MR(T ) curves, and the mismatch between the electrical
and thermal Hall mobilities.

In Fig. 2 we show the complete set of measured transport
coefficients for FeSi. Four characteristic temperatures from
T1 to T4 are marked on top of the figure to facilitate our
discussion. The thermopower S and Nernst coefficient ν [cf.
Fig. 2(a)] were determined following the respective definitions
S = Ex/|�Tx | and ν = Ey/Bz|�Tx |, with �Tx being the
applied temperature gradient, Bz = 2 T the magnetic field,
and Ex (Ey) the induced electrical potential along the x (y)
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FIG. 1. (Color online) Thermopower S(T ) (main panel) and Hall
coefficient RH (T ) (inset) of FeSi in comparison with the literature
data [5,11,13,15]. Note that, while RH (T ) is extremely sample
dependent, showing either sign in the temperature range of interest
(10–100 K), S(T ) is rather robust against variations in the sign of the
relevant charge carriers: It always exhibits a positive peak between
30 and 50 K, albeit of varying height.

direction. As has already been pointed out, opposite to the
positive S(T ) values observed in the temperature range 2–120
K, our sample shows negative values of RH (T ) in the whole
temperature range investigated, except for T < T1 = 8 K [cf.
Fig. 2(b)].

Such a disparity in the signs of S(T ) and RH (T ) might be
ascribed to multiband effects, as discussed for AgSbTe2 [18].
However, this is unlikely to address the current FeSi sample:
As shown in Fig. 3, the significant nonlinearity in the Hall
resistivity ρH (B) is restricted only to T < 10 K, which
indicates that multiband competition in the temperature range
of interest is of minor importance. This is true at least for the
low field range (B � 2 T) where we have measured the Nernst
effect and have estimated the Hall coefficients. Furthermore,
a two-band competition, as in the case of AgSbTe2, would
induce a significant change of thermopower by applying
magnetic field [18]. This is actually not seen in FeSi, where
the S(T ) curves measured in zero and various magnetic fields
up to 8 T are practically on top of each other (not shown
here for clarity). Rather, given the correlated nature of FeSi,
electron-electron correlations appear to be relevant for the
robust thermopower enhancement, as has been discussed for
NaCo2O4 [19].

Corresponding to the notable thermopower peak at 50 K,
the value of −ν(T ) is enhanced below T4 ≈ 160 K, where it
undergoes a sign change, and gradually develops a maximum
at T3 = 70 K. T3 is at the vicinity of the nonmagnetism-
paramagnetism crossover [1] and is of particular importance
for FeSi: Here, the maximum of −ν(T ) concurs with the
minimum of μH (T ), the sign change of MR(T ), and the hump
in ρ(T ) [cf. Fig. 2(c)]. With further decreasing temperature,
−ν(T ) changes its sign again at T2 = 23 K, where μH develops
a maximum. Lowering the temperature further leads to a
negative peak of −ν(T ) at around T1 = 8 K, where MR
changes sign again. Interestingly enough, the two extrema of

FIG. 2. (Color online) Various transport coefficients for FeSi
as a function of temperature. (a) Thermopower S(T ) and Nernst
coefficient −ν(T ); (b) Hall coefficient RH (T ) and Hall mobility
μH (T ); (c) resistivity ρ(T ) and magnetoresistance MR(T ), the latter
being measured in 8 T. μH (T ) is shown only for T > 10 K, where the
one-band approximation is applicable. Vertical lines represent four
characteristic temperatures, as discussed in text.

−ν(T ) at T1 and T3 concur with the consecutive sign changes
of MR(T ) and as least one minimum in μH (T ) [20]; the two
sign changes of −ν(T ) (at T2 and T4) meet the maxima in
μH (T ). These observations provide strong evidence for the
Nernst effect being a sensitive probe, reflecting how the charge
carriers are relaxed in different temperature regions.

In the past decade, intensive investigations of the Nernst
effect have revealed important new insights into the physics
of high-Tc superconductors [21] and magnetic semiconduc-
tors [22]. In a nonmagnetic, nonsuperconducting compound,
ν(T ) is known to be very small, determined by the energy
asymmetry of the charge relaxation spectra, as was originally
described by Sondheimer [16,23]. Additional sources for the
Nernst response, beyond Sondheimer’s theorem, may arise
from a distorted electronic structure, i.e., multiband effects,
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FIG. 3. (Color online) Hall resistivity ρH as a function of mag-
netic field at selected temperatures for FeSi. The dashed lines indicate
the linear fits to the data below 2 T from which the Hall coefficients
were estimated according to ρH = RH B.

anisotropies, or low dimensionality [24]. However, in the
case of FeSi, its simple cubic B20 structure, the absence
of superconductivity and magnetic ordering, as well as the
fact that the electronic transport properties are well described
within the one-band approximation in a substantial tem-
perature range, exclude all the aforementioned possibilities,
leaving an anomalous charge relaxation spectrum as the most
likely cause producing the enhanced ν(T ) that is anticorrelated
to μH (T ). The excellent correspondence of the positions of the
extrema and sign changes in ν(T ) with those in MR(T ) and/or
μH (T ) curves lend strong support to this proposition.

Starting from Sondheimer’s description [23], ν of a sin-
gle, degenerate electronic band is expressed as the energy
derivative of the Hall angle tan θH (=σxy/σxx) at the Fermi
energy εF . In the low field limit (μHB � 1), tan θH can be
simply represented by μH and the relaxation time τ : tan θH =
μH B = eBτ/m∗, with m∗ being the effective mass of the
charge carriers. Assuming a typical power-law dependence of
τ ≈ τ0ε

r [25], ν is straightforwardly related to μH [16] (note
that, in Ref. [16], r was assumed to be 1),

ν = −π2

3

kBT

εF

kB

e
μH r. (1)

For a nondegenerate system, Eq. (1) otherwise reduces to [25]

ν = −kB

e
μHr. (2)

Note that Eqs. (1) and (2) are equivalent at the boundary
of the degenerate and nondegenerate statistics, where εF =
(π2/3)kBT . Typical charge scattering processes include the
ones by acoustic phonons with r = −1/2, by polar optical
phonons with 0 < r < 1/2, and by ionized impurities with
r = 3/2 [25]. All of them are of the order of unity, implying a
weak energy dependence of τ (ε).

Equations (1) and (2) state that in a single-band solid,
ν(T ) is expected to be proportional to μH (T ) given that r =
const. Such a correlation has indeed been verified for various
compounds, including heavy-fermion (HF) systems [16] in

FIG. 4. (Color online) Dimensionless ratio of r = ξ (ν/μH ) as
a function of temperature for FeSi, compared with those of bis-
muth [16], gold [26], GaAs (sample 9n) [27], BiSb [28], and
Bi2Te3 (sample R8) [29]. The prefactor ξ is employed to keep the
ratio dimensionless: It equals −( π2

3
kBT

εF

kB

e
)−1 and −( kB

e
)−1 in the

degenerate (bismuth and gold) and nondegenerate (GaAs, BiSb, and
Bi2Te3) approximations, respectively [cf. Eqs. (1) and (2)]. Note that
the ratio for FeSi was obtained within both approximations [30], and
is plotted here divided by a factor of 10.

the zero-temperature limit, where the enhancement of ν(T ) is
due to the greatly reduced εF [cf. Eq. (1)], or, equivalently,
the largely enhanced m∗. As already mentioned, in FeSi, we
observe that the absolute values of ν(T ) [Fig. 2(a)] and μH (T )
[Fig. 2(b)] are anticorrelated to each other: For example, the
maxima of |ν(T )| concur with the minima of μH (T ), whereas
at the temperatures where ν(T ) crosses zero, μH (T ) assumes
a maximum.

The validity of the single-band approximation enables one
to estimate the scattering exponent r simply by computing
the dimensionless ratio of ν to μH [cf. Eqs. (1) and (2)].
This procedure ignores the fact that τ (ε) might be complex
due to a combination of different scattering mechanisms
in, e.g., the vicinity of the sign changes and maxima of
ν(T ). Straightforwardly, we assume one prevailing dispersion
relation of the charge relaxation at all temperatures. As shown
in Fig. 4, referring to the literature values of ν and μH for
various classical semiconducting or metallic materials, the
dimensionless ratio r = ξ (ν/μH ) are all estimated to be in the
vicinity of unity, reflecting the “classical” scattering processes
of, e.g., acoustic phonons (ξ is a prefactor eliminating the
dimension of the ratio—see the caption of Fig. 4). By contrast,
the ratio r for FeSi, estimated within both degenerate and
nondegenerate approximation [30], exhibits enormous values
at around T3, exceeding the ones in ordinary solids by two
orders of magnitude. Note that the ratio for bismuth is not huge,
as opposed to the giant value of ν ≈ 7 mV/K T at T ≈ 4 K [16].
Indeed, this enhanced low-T Nernst coefficient of bismuth had
been attributed to a huge μH and a tiny εF , in accord with the
prediction made for simple degenerate systems by Eq. (1).
The somewhat larger ratios, relative to unity, for bismuth can
be ascribed to the ambipolar effect, as is anticipated for a
compensated semimetal.
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The huge dimensionless ratio of ν to μH evidences a failure
of the anticipated power-law dependence of τ (ε), hinting at a
resonant charge relaxation in the vicinity of the thermopower
peak in FeSi. Notably, this feature is concomitant to the
crossover from nonmagnetism to enhanced paramagnetism
of FeSi [1]. This suggests an involvement of the “unlocked”
magnetic moment, which is likely caused by strongly enhanced
magnetic fluctuations in FeSi [14], mimicking the case of a
Kondo-resonance scattering. Further support for this proposi-
tion is lent from the magnetoresistance MR(T ), which exhibits
a sign change exactly at the temperature of the magnetic
crossover T3 [cf. Fig. 2(c)]. The negative MR above T3 can be
reasonably ascribed to the spin-related scattering mechanism
of charge carriers. By contrast, the second sign change of
MR(T ) concurring with another extremum of |ν(T )| at T1 has
already been reported [31], and the negative MR below it is
presumably due to quantum interference effects [15].

The striking experimental evidence for a critically disper-
sive τ (ε) at around T3 will help us to argue below that it is
intimately related to the robust thermopower enhancement
in FeSi. This is obvious in a degenerate electron system,
where the Mott expression for the thermopower states that
S measures the energy-dependent electrical conductivity,
which is determined by the dispersive electronic density of
states (DOS) N (ε) and the dispersive scattering time τ (ε)
at εF [8,32]. The first term of dispersive N (ε) dominates
the thermopower in the majority of conducting degenerate
materials, explaining the frequently observed equality of the
signs of S(T ) and RH (T ). In contrast, two of the authors
have shown that in a prototypical Kondo-lattice system, the
dispersive τ (ε) of the conduction electrons, derived from the
Kondo scattering, dominates the enhanced thermopower over
a surprisingly wide temperature range [32]. Similarly, for a
nondegenerate semiconductor, the dispersive τ (ε) turns out to
be an important ingredient entering into the thermopower, in
addition to the thermally activated charge carriers across the
band gap Eg [17].

Different to the thermopower originating from a dispersive
N (ε), the sign of S(T ) due to a dispersive τ (ε) is not bound
to that of the relevant charge carriers [16,32]: ∂τ (ε)/∂ε can
be of either sign for a certain type of charge carrier, opposite
to the case of ∂N (ε)/∂ε, whose sign is predetermined by the
type of charge carrier. Such considerations open a way to
capture the positive thermopower peak being robust against

the sign of RH (T ). A substantial contribution to thermopower
due to a resonant τ (ε) in FeSi is expected at about T3.
While the Nernst coefficient is still significant at T < 20 K
and assumes an extremum at T1 = 8 K, the corresponding
dimensionless ratio ν/μH in this lower-temperature range is
obviously not large. Here, different charge relaxation processes
(e.g., the one involved in quantum interference effects) with
differing dispersion relations or the ambipolar effect [note
that ρH (B) exhibits significant nonlinearity and RH changes
sign at around T1] may be entangled and invalidate our
discussion based on a single band and a single relaxation
process.

With a proper theoretical description lacking, the resonant
charge-carrier relaxation inferred for FeSi near T3 (=70 K) is
tentatively attributed to some significant many-body process
that concurs with the nonmagnetic-paramagnetic crossover.
The involvement of a local magnetic moment in this pro-
cess is reminiscent of the Kondo scattering of conduction
electrons from localized magnetic moments, suggesting that
T3 may play the role of the Kondo temperature TK. Further
support for this resonant relaxation scenario comes from the
recent results of DMFT calculations, revealing a crossover
from low-temperature coherent electronic excitations to high-
temperature incoherent ones to take place at around T3 [14].
Indeed, such a crossover is reminiscent of the one between
an incoherent, local moment and a coherent, HF regime in
a Kondo lattice, where a thermopower maximum genetically
occurs [33]. Moreover, it is interesting to note that the opposite
signs of S(T ) and RH (T ) as observed for FeSi are also found
in various doped Mott insulators [19,34]. Despite all the
indications of the involvement of electron-electron correlations
described in this paper, a microscopic interpretation of the
observed relaxation process appropriate for a d-electron
system, implying the concurrence of electronic and magnetic
crossovers, remains challenging.
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