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Möbius molecules and fragile Mott insulators

Lukas Muechler,1 Joseph Maciejko,2,3 Titus Neupert,3 and Roberto Car1

1Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
2Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E1, Canada

3Princeton Center for Theoretical Science, Princeton University, Princeton, New Jersey 08544, USA
(Received 29 September 2014; revised manuscript received 8 December 2014; published 23 December 2014)

Motivated by the concept of Möbius aromatics in organic chemistry, we extend the recently introduced
concept of fragile Mott insulators (FMI) to ring-shaped molecules with repulsive Hubbard interactions threaded
by a half-quantum of magnetic flux (hc/2e). In this context, an FMI is the insulating ground state of a finite-size
molecule that cannot be adiabatically connected to a single Slater determinant, i.e., to a band insulator, provided
that time-reversal and lattice translation symmetries are preserved. Based on exact numerical diagonalization for
finite Hubbard interaction strength U and existing Bethe-ansatz studies of the one-dimensional Hubbard model
in the large-U limit, we establish a duality between Hubbard molecules with 4n and 4n + 2 sites, with n integer.
A molecule with 4n sites is an FMI in the absence of flux but becomes a band insulator in the presence of a
half-quantum of flux, while a molecule with 4n + 2 sites is a band insulator in the absence of flux but becomes
an FMI in the presence of a half-quantum of flux. Including next-nearest-neighbor hoppings gives rise to new
FMI states that belong to multidimensional irreducible representations of the molecular point group, giving rise
to a rich phase diagram.
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I. INTRODUCTION

While the term strong correlations is commonly used to
describe a broad range of interacting systems, one typically
considers a fermionic system to be strongly correlated if the
quasiparticle picture breaks down, i.e., there is no continuous
evolution between the noninteracting system and its interacting
counterpart. However, strong correlations are not in one-to-one
correspondence with strong interactions. On the one hand, a
system can be strongly interacting (large Hubbard U or Hund’s
coupling J ) yet not be strongly correlated in the above sense,
as commonly encountered in transition metal oxides [1–6].
On the other hand, while in two and higher dimensions a
Fermi liquid is stable against weak repulsive interactions, one-
dimensional (1D) systems can exhibit a strongly correlated
phase already at small values of U and J , leading to a Luttinger
liquid [7]. Similar behavior has been discussed in certain spin
models as well [8]. In quantum chemistry, this distinction
corresponds to the difference between dynamical and static
correlation. Dynamically correlated systems interact strongly,
yet there are well defined quasiparticles and perturbative
methods can be applied. This description breaks down for
statically correlated systems, a classic example of which is the
dissociation of the H2 molecule beyond the Coulson-Fischer
point [9]. At this point, a single Slater determinant is not
sufficient to describe the correct physics even qualitatively.

The theoretical model most widely used to study corre-
lation effects in fermionic systems is the Hubbard model.
In particular, it is well known that the 1D Hubbard model
exhibits distinct behavior for systems with 4n and 4n + 2
sites, where n is an integer, when periodic boundary conditions
(PBC) are assumed. This difference in behavior is also well
studied in organic chemistry. Molecules of the form CN HN

are called aromatic if N = 4n + 2 and antiaromatic if N =
4n. Aromatic molecules, such as benzene (C6H6), have a
unique chemistry due to their chemical stability as well as
a complex response to magnetic fields due to the aromatic

ring current [10]. Antiaromatic compounds can be as stable as
aromatic compounds if the topology of the orbital arrangement
is that of a Möbius band [Fig. 1(b)] [11]. Remarkably, such
Möbius aromatics have been successfully synthesized [12].
The Möbius topology of the orbital arrangement is equivalent
to a ring with PBC but threaded by a half-quantum of magnetic
flux hc/2e (also known as a π flux), or equivalently to a
system with antiperiodic boundary conditions (aPBC) and zero
flux [13].

Perhaps surprisingly, the simplest member of the 4n

family—the Hubbard square with n = 1—forms an interesting
strongly correlated state at half-filling, the fragile Mott
insulator (FMI) [14]. In general, an FMI is an insulator that
cannot be adiabatically connected to a band insulator (BI)
under the condition that time-reversal symmetry and certain
point-group symmetries are preserved.1

The ground-state wave function of a BI is a single Slater
determinant that must transform as the identity (trivial)
representation of the point group, whereas the FMI is a
correlated state whose ground-state wave function transforms
as a nontrivial representation of the point group. For any
U > 0, the ground state of the Hubbard square is unique and
transforms as the dx2−y2 representation of the C4v point group
(i.e., the spatial symmetry group of the molecule as a whole)
with a C4 eigenvalue of −1.

In this paper, we use numerical and analytical methods
to explore the interplay between interaction and correlation
in more generic Hubbard molecules with time-reversal and
point group symmetries. After a brief review of the concept
of FMI (Sec. II), we extend this concept to Möbius molecules
(Sec. III) and find both weakly correlated BIs and strongly

1Although insulators and metals are strictly defined in the thermo-
dynamic limit only, we label finite-sized states that are nondegenerate
as insulators and states that are degenerate as metals, in the same way
as Ref. [14].
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FIG. 1. (Color online) Orbital topology of (a) an aromatic
molecule and (b) a Möbius aromatic.

correlated FMIs in two representative examples—molecules
with N = 4 and 6 sites (Sec. IV). Results in the general cases
of N = 4n and N = 4n + 2 are then inferred from existing
Bethe ansatz studies (Sec. V). Adding a next-nearest-neighbor
(NNN) hopping to the N = 4 and 6 molecules, we find
an even richer set of FMIs, some corresponding to higher-
dimensional irreducible representations of the molecular point
group (Sec. VI).

II. FRAGILE MOTT INSULATORS

In this section, we give a brief review of the concept
of FMIs [14]. We consider spinful fermions governed by
a noninteracting Hamiltonian H0 that commutes with the
antiunitary time-reversal symmetry operator T with T 2 = −1.
The single-particle eigenstates of H0 are Kramers doublets
|n〉 and T |n〉 ≡ |ñ〉 with 〈n|ñ〉 = 0. In a second-quantized
formulation where c

†
n creates a fermion in the single-particle

state |n〉, a BI is a state in which the members of a Kramers
doublet are either both occupied or both unoccupied,

|BI〉 =
∏

n,ñ∈occ

c†nc
†
ñ |0〉 , (1)

where |0〉 is the vacuum state with no fermions. We assume
that H0 also possesses a unitary symmetry represented by the
operatorR, i.e., [H0,R] = 0. The single-particle states |n〉 can
then be chosen to be eigenstates of the symmetry operator R
with eigenvalues λn,

R |n〉 = λn |n〉 . (2)

If the unitary symmetry R is such that RN = 1 for some
integer N � 1, the eigenvalues of R lie on the unit circle in
the complex plane,

λn = ei2π�n/N , �n = 1, . . . ,N. (3)

Furthermore, we assume that the symmetry operation R
commutes with time-reversal symmetry [R,T ] = 0. In this
case, the R eigenvalues of the Kramers partners are related by
complex conjugation λ∗

n = λñ, since

R |ñ〉 = RT |n〉 = T R |n〉 = T λn |n〉 = λ∗
nT |n〉 = λ∗

n |ñ〉 ,

(4)

which implies that the band-insulator ground state |BI〉
transforms trivially under the symmetry R,

R |BI〉 =
∏

n,ñ∈occ

λnλñ |BI〉 = |BI〉 . (5)

By contrast, a FMI is an insulator such that its ground state
|FMI〉 transforms nontrivially under R,

R |FMI〉 = λ |FMI〉 , (6)

with λ �= 1. By virtue of Eq. (5), an FMI must be a correlated
state that cannot be described by a single Slater determinant.
In the present context of spinful fermions hopping on a
translationally invariant ring-shaped molecule with N sites,
R is the operator for a translation by one lattice site (which
can also be considered as a CN rotation in the point group of
the molecule as a whole).

III. MÖBIUS MOLECULES

We consider the following second-quantized Hubbard
Hamiltonian to model a ring molecule threaded by a magnetic
flux �,

H(�) = −t
∑

σ

⎛⎝ N∑
j=1

eiφj c
†
jσ cj+1,σ + H.c.

⎞⎠
+ U

N∑
j=1

c
†
j↑cj↑c

†
j↓cj↓, (7)

where c
†
jσ (cjσ ) creates (annihilates) an electron of spin σ on

site j and we define cN+1,σ ≡ c1σ , which corresponds to PBC,
t > 0 is the hopping amplitude, and U > 0 is the strength of
the repulsive interaction. The total flux threading the ring is
� = ∑

j φj , and we fix the total electron number to be N ,
which is half-filling.

All physical observables such as the total flux � are
invariant under a local U(1) gauge transformation

c
†
jσ → eiαj c

†
jσ , σ =↑↓ . (8)

In contrast, the individual phases φj that appear in the hopping
matrix elements of H(�) are not invariant under this gauge
transformation. While our results will not depend on the choice
of gauge, we will work in the uniform gauge φj = �/N ≡ φ

from here on to make the derivation more transparent. We
denote by Huni(�) the Hamiltonian in this uniform gauge.

The Hamiltonian H(�) possesses a family of translational
symmetries labeled by ϕ ∈ [0,2π ) that are represented by Rϕ

in the uniform gauge Hamiltonian Huni(�) with

Rϕc
†
jσR−1

ϕ = e−iϕc
†
j+1,σ . (9)

For general �, the HamiltonianH(�) is not time-reversal sym-
metric. Only for the special values � = 0,π , corresponding to
the ring and the Möbius molecule, is it possible to define a
time-reversal symmetry. For � = 0, time-reversal symmetry
is represented by T = iσ2K, where K stands for complex
conjugation and σ2 is the second Pauli matrix acting on the
spin index σ . By contrast, for � = π , time-reversal symmetry
is represented by T̃ = UπT , where Uπ is a unitary operator
defined by

Uπc
†
jσ U−1

π = e−i2πj/Nc
†
jσ . (10)

Of the family of translational symmetries Rϕ , only Rφ

commutes with Uπ , while for instance [R0,T̃ ] = ei2π/N . For
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that reason, we will focus on the translational symmetry
Rφ from here on, because the proof of Eq. (5) relied on
the assumption that time-reversal and lattice symmetries
commute.

Consider now the Hamiltonian Huni(π ) in the noninteract-
ing limit U = 0. The Rφ eigenvalues λ̃nπ

of the single-particle
eigenstates |nπ 〉 lie on the unit circle with

λ̃nπ
= ei2π(�nπ +1/2)/N , �nπ

= 1, . . . ,N, (11)

because RN
φ = e−i� = −1. Furthermore, because [Rφ,T̃ ] =

0, the eigenvalues satisfy λ̃∗
nπ

= λ̃ñπ
,

Rφ |ñπ 〉 = Rφ T̃ |nπ 〉 = T̃ Rφ |nπ 〉 = T̃ λ̃nπ
|nπ 〉

= λ̃∗
nπ
T̃ |nπ 〉 = λ̃∗

nπ
|ñπ 〉 . (12)

Thus a band-insulator ground state at � = π ,

|BIπ 〉 =
∏

nπ ,ñπ ∈occ

c†nπ
c
†
ñπ

|0〉 , (13)

transforms trivially under the translation operator Rφ ,

Rφ |BIπ 〉 =
∏

nπ ,ñπ ∈occ

λ̃nπ
λ̃ñπ

|BIπ 〉 = |BIπ 〉 , (14)

which is the π -flux analog of Eq. (5). By analogy with
Eq. (6), this allows us to extend the concept of FMI to Möbius
molecules. We will say that a Möbius molecule has an FMI
ground state |FMIπ 〉 if it transforms nontrivially under Rφ ,

Rφ |FMIπ 〉 = λ̃ |FMIπ 〉 , (15)

with λ̃ �= 1.

IV. MOLECULES WITH FOUR AND SIX SITES

As an illustration of the concepts presented above, and
before discussing the general case with N sites, we perform
exact numerical diagonalization (ED) studies of the Hamilto-
nian (7) for N = 4 and N = 6, and with � = 0 and � = π .
The low-energy spectrum (Fig. 3) allows us to determine
whether the system is a metal or an insulator, and an explicit
computation of the ground-state eigenvalue of the appropriate
translation operator allows us to determine whether the system
is a BI or an FMI. As mentioned previously, the ground state
of the four-site Hubbard model with zero flux and U > 0 is
an FMI with an Rφ (=R0) eigenvalue of −1 [14]. At � = π ,
however, the Rφ (=Rπ/N ) eigenvalue is +1 for all U � 0
and thus the ground state is a BI. Although strictly speaking
the theorem (5) assumed noninteracting electrons, we find no
level crossing as a function of U between the ground and first
excited state, and the Rφ eigenvalue of the ground state does
not change. Therefore, to be more precise, one should say that
the ground state at U > 0 is adiabatically connected to the BI
at U = 0. On the other hand, we find that a ring with six sites
at zero flux is a BI with a Rφ eigenvalue of +1 for all U � 0.
With a π flux the situation reverses and the Rφ eigenvalue is
−1 for U > 0, so the ground state is a FMI.

This behavior can be understood qualitatively from the
U = 0 electronic structure. For four sites and 0 flux, there
are two degenerate single-particle states at the Fermi level,
so the ground state cannot be a BI at half-filling [Fig. 2(a)].
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E/
t

U/t

M = 6 Φ = π
M = 6 Φ = 0
M = 4 Φ = 0
M = 4 Φ = π

6 - fold degenerate at U= 0
FMI for U > 0

FIG. 2. (Color online) Ground-state energy of the four-site (red
diamonds) and six-site (blue circles) half-filled Hubbard model with
zero flux (open markers) and π flux (filled markers), obtained by ED.
The BIs are lower in energy than the FMIs.

This is the molecular analog of a metallic state that turns into a
Mott insulating state for U > 0. For six sites, all single-particle
states can be completely filled [Fig. 3(b)]. This is the molecular
analog of a BI. In this case, interactions effects at small
U > 0 can be treated perturbatively and do not destabilize
the state because of the single-particle gap. For a π flux, the
single-particle states for four sites can all be filled to give a
band insulating state [Fig. 2(c)]. However, the six-site system
has degenerate single-particle states at the Fermi level and
the situation is reversed with respect to the case of zero flux
[Fig. 2(d)]. At U = 0, the ground states of the BIs are unique,
while the metallic states are sixfold degenerate. For both four
and six sites, the ground states for U > 0 are unique for both
fluxes (Fig. 3) [15,16]. At large U , the gap between ground and
first excited state becomes very small. This can be understood
from the fact that the large-U limit of the Hubbard model is
a Heisenberg model with exchange constant J = 4t2/U that
defines the energy scale.

(a) (b)

(c) (d)

0-flux

π -flux =1λ
~ =-1λ

~

=1λ=-1λ

FIG. 3. (Color online) Single-particle energy levels for the four-
and six-site rings at U = 0. The insets give the U > 0 ground-state
eigenvalues λ and λ̃ of the translation operators R0 and Rφ ,
respectively.
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In the next section, we generalize these results to molecules
with any even number of sites N � 4. In analogy to Möbius
aromatics, we now prove that rings with 4n sites at zero flux
and rings with 4n + 2 sites at π flux are FMIs, since there will
always be degenerate states at the Fermi level for U = 0 in
analogy to the four- and six-site rings discussed above.

V. BETHE ANSATZ AND 4n VERSUS 4n + 2

The translations Rφ are generated by the total gauge-
invariant momentum,

P =
∑
kσ

(
k − �

N

)
c
†
kσ ckσ , (16)

through Rφ = eiP , where the sum over k is over all momenta
in the first Brillouin zone −π < k � π . At half-filling,∑

kσ c
†
kσ ckσ = N and we have

P =
∑
kσ

kc
†
kσ ckσ − �, (17)

i.e., the total gauge-invariant momentum is obtained by simply
shifting the total canonical (non-gauge-invariant) momentum
by the total flux �. In the π -flux case, Rφ corresponds
to a translation generated by P = ∑

kσ kc
†
kσ ckσ − π (see

Appendix for details). Based on the U → ∞ Bethe ansatz
solution of the 1D Hubbard model [17] and due to the fact
that the ground states are unique for all U without any level
crossing, we can prove that rings with 4n + 2 sites and a π

flux are FMIs characterized by a nontrivial eigenvalue of eiP ,
which corresponds to a finite total momentum. Rings with 4n

sites are FMIs that become BIs upon inserting a π flux.
For U → ∞ at half-filling and PBC, the momenta obtained

from the Bethe ansatz are given by kj = 2πIj/N , where the Ij

are half-odd integers (j − N+1
2 ) for N = 4n + 2 and integers

(j − N
2 ) for N = 4n [18]. The total momentum

∑
j 2πIj/N

is thus zero for N = 4n + 2 and π for N = 4n. For aPBC in
the Bethe ansatz, which corresponds to a π flux, the Ij are
integers for N = 4n + 2 and half-odd integers for N = 4n,
thus the total momentum is shifted by π .

VI. NEXT-NEAREST-NEIGHBOR HOPPING

Since we have considered a Hamiltonian with only nearest-
neighbor hoppings so far, the stability of the FMIs at π flux
with respect to NNN hoppings t2 is an important question, as
such terms are present in all realistic materials. We consider
an nnn hopping term of the form

Hnnn = −t2
∑

σ

⎛⎝ N∑
j=1

ei2φj c
†
jσ cj+2,σ + H.c.

⎞⎠ (18)

that preserves all the symmetries of the systems considered
before if φj equals 0 or π/N . Varying t2 allows us to explore
the relationship between the geometry of the molecule and its
electronic structure. For example, in the four-site model at zero
flux, there is a transition at a critical value of the NNN hopping
t2 = t1 where the system acquires an enhanced tetrahedral
symmetry [14]. Choosing the N = 6 case as an example, we

10
t2/ t1

U
/t

1 1A1

1B2

3A2

1E2

C6v

t1
t2

Oh

= =

C3v

0-flux

insulator metal

5

10

15

20

2

FIG. 4. (Color online) Phase diagram for N = 6 at 0 flux with
nearest-neighbor hopping t1 and NNN hopping t2, obtained by ED.
Ground states are labeled by a symbol 2S+1
, where 
 denotes the
irreducible representation of the molecular point group C6v according
to which the ground state transforms and S is the total spin in the
ground state.

focus on the evolution of the single-particle levels at U = 0,
from which the behavior at U > 0 can be understood.

The single-particle energies are given by

ε(k) = −2t1 cos(kj ) − 2t2 cos(2kj ), (19)

where kj = 2πj/N for 0 flux and kj = 2π (j + 1/2)/N for
π flux where j = −3, − 2, . . . ,2. For 0 flux and t2 = 0,
there are six single-particle levels (including spin) that can
be completely filled and the system is a BI [Fig. 2(b)]. To
introduce electronic frustration at 0 flux, the levels at k = π

and k = ±π/3 must cross, which happens at t2 = t1 where the
system acquires an enhanced octahedral symmetry.

Figure 4 shows the phase diagram of the 6-site molecule
at zero flux and U > 0 calculated by ED, with nnn hopping.
Ground states are labeled by a symbol 2S+1
, where 
 denotes
the irreducible representation of the molecular point group
C6v according to which the ground state transforms and S

is the total spin in the ground state. The BI state 1A1 is the
ground state until t2 = t1 and for a large range of values of
U . When the symmetry of the problem is close to octahedral,
three nontrivial correlated states emerge. The 1B2 state is a
unique FMI ground state that occurs at large values of U ,
whereas the 3A2 state is a spin-triplet FMI state that occurs for
t2 > t1. In the limit t2/t1 → ∞, the problem reduces to two
decoupled staggered triangles. The intermediate 1E2 state is
a doubly degenerate FMI with total momentum P = ±2π/3.
For U = 0, the ground state is unique for t1 > t2. At t1 = t2,
the ground state is 15-fold degenerate and sixfold degenerate
for t2 > t1.

Figure 5 shows the phase diagram for the same system
but with a π flux. At t2 = 0, the many-body ground state is
sixfold degenerate at U = 0. There is a crossing of the doubly
degenerate single-particle levels at kj = ±5π/6 and kj =
±π/2 for t2/t1 = 1/

√
3. As in the absence of nnn hopping,

the π flux interchanges the FMI (1B̃2) and BI (1Ã1) states with
respect to the zero flux case. Around the level crossing, the
two other states 1Ẽ2 and 3Ã2 emerge, similarly to the zero flux
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FIG. 5. (Color online) Phase diagram for N = 6 at π -flux with
nearest-neighbor hopping t1 and NNN hopping t2, obtained by ED.
Ground states are labeled by a symbol 2S+1
̃ where 
̃ denotes the
irreducible representation of the molecular point group C6v according
to which the ground state transforms and S is the total spin in the
ground state. 
̃ differs from 
 in the definition of the translation
operator (Rπ/N for π flux and R0 for zero flux, see Sec. III).

case. We use 
̃ instead of 
 to denote the irreducible point
group representations in the π flux case simply to indicate that
the translation operator or, alternatively, CN rotation operator
should be taken asRπ/N for a π flux, while it isR0 for zero flux
(see Sec. III). The ground state at U = 0 is sixfold degenerate
for t2/t1 < 1/

√
3 and t2/t1 > 1/

√
3. At the level crossing, the

ground-state degeneracy is 28.

VII. CONCLUSION

We have shown that there is a duality between Hubbard
rings with N = 4n and N = 4n + 2 sites, which can be tuned
by threading a magnetic flux through the ring. For zero flux,
4n-membered rings are FMIs that cannot be adiabatically
transformed into BIs if time-reversal symmetry and the
molecular point-group symmetry are preserved. Rings with
4n + 2 sites and a π flux are also FMIs. All these FMI states do
not break any symmetries and are characterized by a nonlocal
order parameter, the total gauge-invariant momentum (16).
This order parameter is nonlocal because the lattice Fourier
transform of k, as opposed to that of the periodic function
sin k, has a slow power-law decay ∼1/x in real space. The FMI
is an example of nonfractionalized featureless Mott insulator
protected by lattice symmetries [19,20]. In the N → ∞
limit, the BI and the FMI become degenerate, since their
distinction is due to boundary conditions (and the half-filled 1D
Hubbard model has a gapless spin sector in the thermodynamic
limit [21]).

From an organic chemistry point of view, the FMIs
considered here are antiaromatic molecules, whereas BIs are
aromatic molecules. Antiaromatic molecules typically appear
as transition states, since BIs are lower in energy. A BI state is
usually obtained by breaking the symmetry of the molecule
through a spontaneous structural distortion. For example,
the anti-aromatic molecule cyclooctatetraene (C8H8) cannot
be isolated in a D8h symmetric structure since it adopts a tub
configuration with lower D2d symmetry [22,23]. Therefore

our findings appear to be related to the Woodward-Hoffmann
rules [24]. These rules only allow pericyclic reactions where
the transition states are BI states, whereas reactions with an
FMI as transition state are forbidden.

More broadly, our work illustrates the complexity of the
relationship between interaction and correlation in fermionic
systems. This is made most apparent by considering nnn
hopping as a tuning parameter in our models, which mimics the
effects of the geometric structure of the molecule on electronic
properties. Weakly correlated BIs do occur at small U (e.g.,
the 1A1 state in Fig. 4) as one would expect, but they also
occur at strong U (e.g., the 1Ã1 state in Fig. 5). Conversely,
strongly correlated FMIs do occur at large U (e.g., the 1B2

state in Fig. 4) as one would expect, but they can also occur
at small U (e.g., the 3A2 state in Fig. 4 and the 1B̃2 and 3Ã2

states in Fig. 5). For small t2, U is not the deciding parameter
in the phase diagram because it is the geometry that gives
rise to electronic frustration. For large enough t2, however, the
precise value of U plays an important role in determining the
phase diagram.

Experimentally, it is very challenging to discriminate
FMIs and BIs directly, for their order parameters are hard
to access and the measurement itself may not break the
rotational symmetry explicitly. However, indirect evidence for
the transitions between FMI and BI could be obtained from
spectroscopic measurements. For example, one could envision
scanning tunneling microscopy experiments on molecules that
are deposited on a solid substrate [25,26]. If that substrate
is a type-II superconductor, it is even conceivable that a
π flux can be trapped at the center of an arrangement of
molecules in order to explore the phase diagrams presented
in this work. Another method to distinguish between FMIs
and BI could be the pair binding energy defined as � =
E0(M − 2) + E0(M) − 2E0(M − 1) that has been discussed
as an indicator for superconducting correlations, where E0(M)
is the ground-state energy for M electrons [27,28].
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APPENDIX: TOTAL MOMENTUM AS GENERATOR
OF TRANSLATIONS

To find the explicit form of the momentum operator, i.e.,
the generator of translations, we first consider the ansatz

R = eiP = exp

(∑
nm

Anmc†ncm

)
, (A1)

for the translation operator at zero flux R ≡ R0 [see Eq. (9)],
where n,m = 1, . . . ,N are lattice site indices. Using the
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Baker-Campbell-Hausdorff formula

eXYe−X = Y + [X,Y ] + 1

2!
[X,[X,Y ]]

+ 1

3!
[X,[X,[X,Y ]]] + . . . , (A2)

where X = ∑
nm Anmc

†
ncm and Y = c

†
l , as well as the commu-

tator

[c†ncm,c
†
l ] = δmlc

†
n, (A3)

we find

eXc
†
l e

−X = c
†
l +

∑
n

Anlc
†
n + 1

2!

∑
n

A2
nlc

†
n + 1

3!

∑
n

A3
nlc

†
n

+ . . .

= [exp(AT )c†]l , (A4)

where A is the N × N matrix with elements Anm and c†

is a N × 1 column vector with elements c
†
l . The action of

the translation should be [exp(AT )c†]l = c
†
l+1, which can be

represented as [T c†]l = c
†
l+1 where T is a translation matrix.

This implies that AT = ln T . PBC imply that TN = 1, hence
the eigenvalues of T are of the form λn = ei2π�n/N with
�n = 1, . . . ,N . Furthermore, T is a diagonalizable matrix
and its matrix logarithm is given by ln T = V (ln T diag)V −1.
Because T is a circulant matrix, the matrix of eigenvectors V
is given by the kernel of the discrete Fourier transformation,

(ln T diag)kl = 2πi

(
�k

N
+

[
1

2
− �k

N

])
δkl, (A5)

Vkl = 1√
N

e2πikl/N , (A6)

where [· · · ] denotes the floor function which ensures that the
eigenvalues, which can be identified with the single-particle
momenta kj , are contained inside the first Brillouin zone
(−π,π ]. Thus it follows that∑

nm

AT
mnc

†
ncm = i

∑
kσ

kc
†
kσ ckσ = iP . (A7)

To compare the Bethe ansatz results of Ref. [17] with our
model, we need to choose a gauge in which all hoppings are
real. A π flux in this gauge corresponds to a Hamiltonian H−
where all the hoppings are equal to t except for the hopping
between site N and site 1, which is equal to −t . Under the
gauge transformation G : H(φ) → H−, the electron creation
operator transforms as G−1c

†
nG = eiφnc

†
n. The translation

operator Rφ is also transformed R− = G−1RφG, and acts
on the electron creation operator as

R−c†nR−1
− =

{
c
†
n if n = 1, . . . ,N − 1,

−c
†
n if n = N.

(A8)

The order parameter remains the same in first quantization for
PBC and aPBC, where a system with PBC and a π flux is
equivalent to a system with zero flux and aPBC by a large
gauge transformation of the basis functions. The sum of the
momenta k obtained by the Bethe ansatz for periodic boundary
conditions is thus related to the total momentum calculated by
R whereas that same sum for aPBC can be identified with the
total momentum calculated by Rφ .

[1] K. Terakura, A. Williams, T. Oguchi, and J. Kübler, Phys. Rev.
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