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The magnetic properties and Mott transition of the half-filled Hubbard model on the 1
5 -depleted square lattice

with frustration are studied at zero temperature by the variational cluster approximation. The (π,π ) Néel ordering
is stable in a wide region of the phase diagram and almost completely veils the nonmagnetic Mott transition for
the nonfrustrated case. However, (π,π ) Néel ordering is severely suppressed by the frustration, and even with
moderate frustrations the nonmagnetic Mott transition takes place in the range where the intradimer hoppings
are larger than the intraplaquette hoppings.
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I. INTRODUCTION

When the kinetic and Coulomb repulsion energies are
competing, low-dimensional materials exhibit a variety of
phenomena. Spin liquid is a well-known example, which is
discovered in fact in the triangular-lattice organic materials κ-
(BEDT-TTF)2X [1–3] and Herbert-smithite ZnCu3(OH)6Cl2
with kagome lattice structure [4,5]. In addition to the phe-
nomena which are directly related to the nonmagnetic Mott
transition, strongly correlated systems sometimes take unusual
states like the superconductivity near the Mott insulator
or the magnetic states which veil the Mott physics. The
high-Tc superconductivity [6] is a spectacular example and
the superconductivity is also observed in the charge-transfer
salts [7–9]. These interesting phenomena are highly dependent
on the lattice structure and degree of the geometric frustrations
of the systems, and as a theoretical model incorporating the
Mott physics the half-filled Hubbard model is actively studied
using nonperturbative methods, e.g., on the square [10–18],
triangular [20–31], and kagome lattices [32–37], aiming to
reveal the phase structure of the system and inspire further
material designs. For example, d-wave superconductivity is
obtained on the square lattice [10–13], and the nonmagnetic
insulator, which is a candidate of the spin liquid, is realized on
the triangular [28–31] and kagome lattices [32–37].

One of the interesting lattice structures, not mentioned
above, is the 1

5 -depleted square lattice depicted in Fig. 1(a).
This lattice structure is realized by CaV4O9 [38] and iron se-
lenide families [39], and a similar lattice structure is discussed
relating to the iron-chalcogenide family [40]. The 1

5 -depleted
square lattice is a non-Brave lattice and its multiband structure
will provide greater flexibility in controlling the electronic
properties of materials of this lattice structure. In the limit
of the infinite Coulomb repulsion, the (π,π ) Néel ordering,
illustrated in Figs. 1(b) and 1(c), separates two spin gapped
states, one adiabatically connected to decoupled dimers, the
other connected to decoupled plaquettes, by the second-order
quantum transition [41–47]. As for the effect of the electron
correlations, the Mott transition was recently studied using
the Hubbard model by cluster dynamical mean-field theory
(CDMF) [48], but this analysis assumed the nonmagnetic
ground state, and if the Mott transition is veiled or not by
the (π,π ) Néel ordering is not clear. The magnetic properties
are investigated by the determinant quantum Monte Carlo [49],

which reports that the dominant magnetism is the (π,π ) Néel
ordering, but the Mott transition was not analyzed. Moreover,
the effect of the next-nearest hoppings, which is in general not
negligible [45,46] and expected to largely affect the magnetic
properties, was not considered in these analyses [48,49]. In
this paper we investigate the magnetic phase diagram and Mott
transition in the half-filled Hubbard model on the 1

5 -depleted
square lattice taking into account the effect of the frustration
at zero temperature by the variational cluster approximation
(VCA).

We found that the (π,π ) Néel ordering (AF) is stable for a
wide region of the phase diagram and almost completely veils
the nonmagnetic Mott transition for the nonfrustrated case.
However, AF is severely suppressed by the frustration, and
the nonmagnetic Mott transition is realized for the dimer side
t1 � t2 even when the frustration is moderate, 0.3 � t3,4/t1,2 �
0.5. In the plaquette side t2 � t1, AF still veils the nonmagnetic
Mott transition for moderate frustrations.

II. 1
5 -DEPLETED SQUARE LATTICE HUBBARD MODEL
AND VARIATIONAL CLUSTER APPROXIMATION

The Hamiltonian of the Hubbard model on the 1
5 -depleted

square lattice is given by

H = −∑
i,j,σ tij c

†
iσ cjσ + U

∑
i ni↑ni↓ − μ

∑
i,σ niσ ,

where ciσ (c†iσ ) annihilates (creates) an electron with spin σ on
the site i, niσ = c

†
iσ ciσ is the electron density, U is the on-site

Coulomb repulsion, and μ is the chemical potential. The hop-
ping integrals ti,j = t1 on plaquette bonds, ti,j = t2 on dimer
bonds, ti,j = t3 for the next-nearest-neighbor sites within the
plaquettes, and ti,j = t4 for the next-nearest-neighbor sites
between the plaquettes, as are depicted in Fig. 1(a). We set
the energy unit as t2 = 1 for the dimer side t1 � t2, and as
t1 = 1 for the plaquette side t2 � t1. As for the effect of
the frustration t3,4, we introduce the frustration parameter
f = t3/t1 = t4/t2 and consider the three cases f = 0, 0.3, and
0.5. When nonfrustrated f = 0, the system has a particle-hole
symmetry at half filling. For unfrustrated and noninteracting
case f = 0 and U = 0, the ground state is a band insulator for
t1/t2 < 0.5, and it is a metal for 0.5 < t1/t2 [48,50].

We use VCA [51] in our analysis. In this approach, we
write the thermodynamic potential of the system �t[�] in the
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FIG. 1. (Color online) (a) Schematic view of the hopping terms
t1 ∼ t4 in the 1

5 -depleted square lattice. (b),(c) The 12-site clusters
(the dashed red lines) and 8-site clusters (dash-dotted blue lines) used
in VCA. The filled and unfilled circles correspond to up and down
spins in the (π,π ) Néel ordering, respectively. The 12-site clusters are
mirrored to recover the lattice geometry in the analysis of the (π,π )
Néel ordering in VCA.

form of a functional of the self-energy �, where t stands for
the explicit dependence of �t on all the one-body operators
in the Hamiltonian. This functional �t[�] is stationary
δ�t[�]/δ� = 0 at the physical self-energy, and this condition
is equivalent to the Dyson’s equation for the Green’s function.
We can evaluate �t[�] for the exact self-energy of a simpler
Hamiltonian H ′ which shares the same interaction part with
H . As for H ′, which is referred to as the reference system
hereafter, we use the same model defined on the disconnected
identical clusters which tile the original infinite clusters. The
effect of the symmetry breaking is studied by including various
Weiss fields into H ′. When the space of the self-energy � is
restricted to the exact self-energy of H ′, the functional �t[�]
is reduced to the function of the one body operators t′ of H ′,
expressed as

�t(t′) = �′−
∫

C

dω

2π
eδω

∑
K

ln det
[
1 + (

G−1
0 − G′

0
−1

)
G′],

(1)
where �′ and G′ are the thermodynamic potential and exact
Green’s function of H ′, and G0 and G′

0 are the noninteracting
Green’s function of H and H ′, respectively. The frequency
integral is carried along the imaginary axis δ → +0 and the
sum is over the superlattice wave vectors. The stationary
solution of �t(t′) and the exact self-energy of H ′ at the
stationary point, denoted as �∗, are the approximate grand
potential and self-energy of H in VCA. Within this framework,
we can compute expectation values of one-body operators
using the approximate Green’s function G−1 = G0

−1 − �∗. In
VCA, the short-range correlations within the reference cluster
are exactly taken into account and the restriction of the space of
the self-energies � into that of H ′ is the only approximation.

In our analysis, the 8- and 12-site clusters in Figs. 1(b)
and 1(c) are used. We refer to these clusters as 8D and 12D
[Fig. 1(b)] and 8P and 12P [Fig. 1(c)] hereafter. To investigate

the symmetry breaking, we include the Weiss field

HAF = hAF

∑
i

sign(i)(ni↑ − ni↓) (2)

into the cluster Hamiltonian, where sign(i) = −1 for the up-
spin sites and sign(i) = 1 for the down-spin site in Figs. 1(b)
and 1(c). To study the AF ordering on 12D and 12P, we
combined these clusters with their mirror images as depicted
in Figs. 1(b) and 1(c) to consistently cover the infinite lattice
in the presence of the AF ordering. In this case the cluster
Green’s function G′ which appears, e.g., in Eq. (1) is given by

G′−1 =
∑

i

G′−1
i + t̃ ,

where G′
i is the exact Green’s function on 12D or 12P, t̃ is the

hopping matrix linking the two 12D or 12P clusters, and the site
and spin indices are suppressed. We treat hAF and the cluster
chemical potential μ′ as variational parameters, where μ′ has
to be included for the thermodynamic consistency [52]. With
this setup the variational principle δ�t[�]/δ� = 0 is reduced
to the stationary point search of the grand potential per site
�(μ′,hAF) with respect to μ′ and hAF. During the search, the
chemical potential of the system μ is also adjusted so that
the electron density n is equal to 1 within 0.1%. In general,
a stationary solution with hAF �= 0 corresponding to the AF
state and that with hAF = 0 corresponding to the nonmagnetic
state are obtained, and the energies per site E = � + μn are
compared between these states to determine the ground state.

On 8D and 12D every site can form a dimer with other sites
in the same reference cluster. Similarly, every site can form
a plaquette with other sites in the same reference cluster on
8P and 12P. In VCA, the AF ordering is studied by including
the Weiss field Eq. (2) in the reference Hamiltonian, and since
the formation of the dimers or plaquettes is one of the leading
competitors for the AF ordering, for example, the sites in 8P
and 12P which cannot form a dimer within the same reference
cluster tend to magnetically order easily in the dimer side
t1 � t2 due to the AF Weiss field, which does not correspond
to physical situations. Similar phenomena take place in the
plaquette side t2 � t1 on 8D and 12D for the sites which cannot
form a plaquette within the same reference cluster. In order to
circumvent these unphysical situations, we combine the results
of the dimer-type cluster 12D and plaquette-type cluster 12P,
and identify the AF phase as the region where AF is stable
both on 12D and 12P.

For the AF solutions, we compute the magnetic order
parameter per site:

M = 1

nc

nc∑
a=1

sign(a)(〈na↑〉 − 〈na↓〉),

where 〈naσ 〉 is the expectation values of naσ and nc is the
number of the sites in the unit cell in the sense of the sublattice
formalism, which is 8 for the AF ordering on the 1

5 -depleted
square lattice. For the nonmagnetic solutions, we compute the
density of state per site

D(ω) = lim
η→0

∫
d2k

(2π )2

1

nc

nc∑
σ,a=1

{
− 1

π
ImGaσ (k,ω + iη)

}
(3)
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FIG. 2. (Color online) The difference of the grand potentials per
site 
� = �(μ′,hAF) − �(μ′,hAF ≡ 0) as the function of the Weiss
parameter hAF computed on 12D at t1/t2 = 0.85, U = 10, and μ =
μ′ = 5. The triangles, circles, and squares correspond to the cases
f = 0, 0.3, and 0.5, respectively.

to examine the insulating gap, where G−1 = G0
−1 − �∗

is the approximate Green’s function in VCA, nc = 4 for
the nonmagnetic states, and the k integration is over the
corresponding Brillouin zone. In Eq. (3), we evaluate the η →
0 limit using the standard extrapolation method by calculating
D(ω) for η = 0.01, 0.005, and 0.0025. The numerical error
after this extrapolation is estimated to be of order 10−3, so the
gap is identified as the region of ω around ω � 0 where the
extrapolated D(ω) is less than 10−2. The critical interaction
strength UMI of the nonmagnetic Mott transition is determined
as the point where the insulating gap closes.

III. MAGNETIC PROPERTIES

Figure 2 shows the difference of the grand potentials per site

� = �(μ′,hAF) − �(μ′,hAF ≡ 0) computed on 12D as the
function of the Weiss parameter hAF at t1 = 0.85, U = 10, and
μ = μ′ = 5. The triangles, circles, and squares correspond to
the cases f = 0, 0.3, and 0.5, respectively. When f = 0 or
0.3 a minimum with hAF �= 0 corresponding to a magnetic
solution exists. In fact after the stationary point search with
respect to μ′ and hAF the magnetic solution gives the energy
lower than the nonmagnetic solution with hAF = 0, and thus
AF is realized at t1 = 0.85 and U = 10 for f = 0 and 0.3. The
potential becomes shallower as the frustration increases and
at f = 0.5 only the nonmagnetic ground state is obtained. So
the nonmagnetic state is realized at t1 = 0.85 and U = 10 for
f = 0.5.

Figure 3 shows the phase diagram with (a) f = 0 and (b)
f = 0.5 computed by VCA. The filled circles correspond
to the magnetic transition points Uc computed on 12D and
up triangles correspond to the nonmagnetic Mott transition
points UMI computed imposing hAF = 0 on 12D. The filled
squares and down triangles correspond to Uc and UMI on 12P,
respectively. The unfilled marks correspond to the results on
8D and 8P. On 12P and 8P the Mott transition points UMI are
only slightly larger than the magnetic transition points Uc for
f = 0, and thus the down triangles overlap with squares or
circles in Fig. 3(a). For t1/t2 � 0.9, the AF phase on 12P and
8P always extends from rather low U to infinity and is wider
than that of 12D and 8D, so the results on 12P and 8P in this
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FIG. 3. (Color online) Phase diagram of the Hubbard model on
the 1

5 -depleted square lattice with (a) f = 0 and (b) f = 0.5.
The filled circles correspond to the magnetic transition points Uc

computed on 12D, and up triangles correspond to the nonmagnetic
Mott transition points UMI computed imposing hAF = 0 on 12D. The
filled squares and down triangles correspond to Uc and UMI on 12P,
respectively. The unfilled marks correspond to the results on 8D and
8P. Lines are guides to the eye.

region are not shown in Figs. 3(a) and 3(b) for simplicity. In
Fig. 3(a) the asterisks denote the points where the magnetic
order parameter M takes its maximum value as the function of
t1/t2 for fixed U . In Fig. 3(b) the region between the dashed
lines corresponds to the AF phase at f = 0.3 determined by
VCA combining the 12D and 12P results, where the asterisks
correspond to Uc computed on 12D and the pluses correspond
to Uc computed on 12P. In Fig. 3(b) the crosses denote the
points below which the paramagnetic ground state on 12P
becomes a spin triplet, and the magnetic properties below
these points are not analyzed. On 12P the AF phase persists
down to these points for 0.9 � t1/t2 except at t2/t1 = 0.6. In
Figs. 3(a) and 3(b), there are no energetically disfavored AF,
insulator, and metallic solutions around the transition points,
which indicates that both the magnetic transition at Uc and
nonmagnetic Mott transition at UMI are of the second order.

Comparing Figs. 3(a) and 3(b), AF is stable in a wide
region and almost completely veils the nonmagnetic Mott
transition for f = 0. However, AF is highly suppressed by the
frustration, especially in the dimer side, and the nonmagnetic
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FIG. 4. (Color online) Magnetic order parameter M with f = 0
at U = 60, 2, and 1 computed by VCA. Lines are guides to the eye,
where the lower values of M among 12D and 12P are connected, to
circumvent the overestimation.

Mott transition is realized without being veiled by AF in
the dimer side. In the plaquette side, the nonmagnetic Mott
transition is still veiled by AF even for the frustrated case
on all the four clusters. In Fig. 3 we connected the data UMI

and Uc of 12D in the region U � 3 even in the plaquette side
1.0 � t2/t1. We discuss this point later with the analysis of
〈Si · Sj 〉 on 12D and 12P; however, our overall conclusions
are not affected by this preference since AF veils the Mott
transition on all the four clusters in the plaquette side.

The cluster size dependence of the results among the same
type of clusters, i.e., between 8D and 12D, or 8P and 12P, is
rather small. In general, in VCA, the ordered phase shrinks as
the cluster size increases since the spatial fluctuations, which
destroy the ordered state, are simulated finer and taken into
account more on the larger clusters. As for the nonmagnetic
Mott transition points UMI, since electrons can move a wider
space on larger clusters, average kinetic energy of the electrons
becomes lower on the larger clusters, which stabilizes the
metallic state and gives rise to the larger UMI.

Figure 4 shows the magnetic order parameter M with
f = 0 at U = 60 computed by VCA. Lines are guides to
the eye, where the lower values of M among 12D and 12P
are connected to circumvent the overestimation due to the
unphysical situations discussed previously. After combining
the 12D and 12P data, the position of the maximum of M

shifts from the dimer side t1/t2 � 0.9 to the plaquette side
1 > t2/t1 as U decreases.

Here we briefly compare our results for the nonfrustrated
case f = 0 with other analyses. First we compare our results
for large U with the results of the Heisenberg models. In VCA,
the critical hopping t1c separating the AF and nonmagnetic
phases in the dimer side t1/t2 � 1.0 is t1c = 0.73 both for U =
30 and 60, and the critical hopping t2c separating the AF and
nonmagnetic phases in the plaquette side 1.0 � t2/t1 is t2c =
0.89 for U = 60 and t2c = 0.88 for U = 30. The results [43]
of the Heisenberg model are 0.74 < t1c < 0.81 and 0.96 <

t2c < 0.98. The magnetic transition is of the second order and
order parameter M takes its maximum at t1/t2 � 0.9 both in

the Heisenberg model [43] and VCA for large U . Therefore
the results of the Heisenberg model and VCA with large U

agree very well except the value of t2c.
Comparing with the CDMFT [48], our UMI is smaller

than that of CDMFT. This tendency is observed also, e.g.,
on the kagome lattice [36,37], which is another example of
the non-Brave lattice. As was stated, in general UMI increases
as the cluster size increases in VCA, and since the reference
cluster is exactly solved UMI approaches the exact value of
the infinite system from below as the cluster size increases in
VCA. In this sense UMI in VCA is underestimated compared
to the exact result. The Mott transition is of the second order
both in VCA and CDMFT for f = 0 where the particle-hole
symmetry holds at half filling. In general, on other lattices,
VCA predicts the second-order Mott transition [19,31,37]
while the CDMFT with bath degrees of freedom predicts the
first-order phase transition [53]. In the CDMFT, the metallic
and insulating states in the coexisting region differ by the
value of the hybridization parameter between the cluster and
bath degrees of freedom. In VCA, there are no such parameters
because there are no bath degrees of freedom.

Comparing with the DQMC [49], our Uc is very similar to
that of DQMC, though only the three values of U are analyzed
in DQMC. In DQMC the high-symmetry point, defined in [49],
shifts from the dimer side to the plaquette side as U decreases.

As for the frustrated case f �= 0, AF is realized with
f = 0.3 and non-magnetic insulator is realized with f = 0.5
at t1/t2 = 1 for U = 15 in Fig. 3(b), and this is quantitatively
consistent with the results of the Heisenberg model analy-
sis [47].

To further study the properties of the nonmagnetic state,
we analyze, by the exact diagonalization of the reference
cluster at the nonmagnetic stationary point of VCA, the
correlation 〈Si · Sj 〉 for different links: along the side of
the plaquette P1 = 〈S1 · S2〉, along the diagonal of the pla-
quette P3 = 〈S1 · S3〉, along the dimer D2 = 〈S1 · S5〉, and
along the t4 direction IP4 = 〈S1 · S6〉, together with the total
spin squared of the dimer SD = 〈(S1 + S5)2〉 and that of
the plaquette SP = 〈(�4

i=1Si)2〉, where the positions of sites
1–7 on these clusters are depicted in Figs. 1(b) and 1(c).
Figures 5(a)–5(b) show the correlation 〈Si · Sj 〉 computed
at t1/t2 = 0.7 on 12D and at t2/t1 = 0.7 on 12P. The filled
marks correspond to f = 0.5 and unfilled marks correspond
to f = 0. The values of P1, P3, D2, IP4, SD, and SP are zero,
zero, −0.75, zero, zero, and 3 in the pure dimer state, and they
are −0.5, 0.25, zero, zero, 1.5, and zero in the pure plaquette
state.

In Figs. 5(a) and 5(b), the values of 〈Si · Sj 〉 are close to
those of the pure dimer state both for f = 0 and 0.5, so the
dimer insulator is realized above the magnetic transition or
Mott transition points in the dimer side. Similarly, in Figs. 5(b)
and 5(c), the values of 〈Si · Sj 〉 are close to those of the
pure plaquette state both for f = 0 and 0.5, so the plaquette
insulator is realized above the magnetic transition points in
the plaquette side. For U � 2 ∼ 3, 〈Si · Sj 〉 rapidly decreases
and the frustration enhances this decrease, probably because
of the enhancement of the mobility of the electrons due to the
frustration, which is observed by the increase of UMI by the
frustration in Fig. 3. For U � 2 ∼ 3, SP becomes larger than
SD even in the plaquette side on 12P and we confirmed that
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FIG. 5. (Color online) The correlation 〈Si · Sj 〉 on different links
of the reference clusters computed imposing hAF = 0 (a) at t1 = 0.7
on the 12D cluster and (b) at t2 = 0.7 on the 12P cluster. The filled
marks correspond to f = 0.5 and unfilled marks correspond to f = 0.

this behavior is observed also on 12D in the plaquette side.
This reverse will be because the maximum value of the total
spin squared realized on the four-site plaquette is 2 × (2 + 1)
and is larger than that of the two-site dimer 1 × (1 + 1), and
SP becomes larger than SD when the spins begin to fluctuate
rather freely. This tendency will be too exaggerated on 8P
and 12P, which are filled with plaquettes, and this feature
leads to the lower Uc and the spin triplet nonmagnetic ground
states for small U on 12P. Therefore in the region U � UMI,

the results of 12D will be better approximations of the infinite
system even in the plaquette side 1.0 � t2/t1 compared to those
of 12P.

IV. SUMMARY AND CONCLUSIONS

In summary, we have studied the magnetic phase diagram
and Mott transition in the half-filled Hubbard model on the
1
5 -depleted square lattice by VCA, taking into account the
effect of the frustrations. We found that the (π,π ) Néel
ordering is stable in a wide region of the phase diagram and
almost completely veils the nonmagnetic Mott transition for
the nonfrustrated case. However, the (π,π ) Néel ordering is
severely suppressed by the frustration and even with moderate
frustrations f � 0.3–0.5 nonmagnetic Mott transition takes
place in the range t1/t2 � 0.8 ∼ 1.0. The nature of the
nonmagnetic insulator phase above the magnetic or Mott
transition points is very close to the dimer insulator in the
dimer side t1/t2 � 1.0, and it is very close to the plaquette
insulator in the plaquette side 0.8 � t2/t1.
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[20] P. Sahebsara and D. Sénéchal, Phys. Rev. Lett. 97, 257004

(2006).
[21] B. Kyung and A. M. S. Tremblay, Phys. Rev. Lett. 97, 046402

(2006).
[22] T. Ohashi, T. Momoi, H. Tsunetsugu, and N. Kawakami, Phys.

Rev. Lett. 100, 076402 (2008).
[23] A. Liebsch, H. Ishida, and J. Merino, Phys. Rev. B 79, 195108

(2009).
[24] L. F. Tocchio, A. Parola, C. Gros, and F. Becca, Phys. Rev. B

80, 064419 (2009).
[25] T. Watanabe, H. Yokoyama, Y. Tanaka, and J. Inoue, Phys. Rev.

B 77, 214505 (2008).
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