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We have studied the metal–insulator-like transition in pseudo-one-dimensional systems, i.e., lithium and
beryllium rings, through the ab initio density matrix renormalization group (DMRG) method. Performing accurate
calculations for different interatomic distances and using quantum information theory, we investigated the changes
occurring in the wave function between a metallic-like state and an insulating state built from free atoms. We
also discuss entanglement and relevant excitations among the molecular orbitals in the Li and Be rings and show
that the transition bond length can be detected using orbital entropy functions. Also, the effect of different orbital
bases on the effectiveness of the DMRG procedure is analyzed comparing the convergence behavior.
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I. INTRODUCTION

We present a metal-insulator transition (MIT) [1–5] in-
vestigation in pseudo-one-dimensional systems, i.e., lithium
and beryllium rings, through the ab initio density matrix
renormalization group (DMRG) [6,7]. Despite the apparent
simplicity of these model systems, a meaningful description
of the transition from the metallic to the insulating regime, i.e.,
till the dissociation in atomic species, reveals a high complexity
due to strong correlation effects which are hard to be
described using traditional multiconfigurational approaches.
This brought us to choose such a high accuracy wave function
method as DMRG. The interest toward these model systems
was due to their particular suitability to simulate the behavior
of many-level Hubbard models within a quantum chemical
(QC) framework through the use of local functions, offering, of
course, a bridge between QC and physical model Hamiltonian
results. The Hubbard model provides us a minimal model to
study MIT as a function of the on-site Coulomb interaction
U and the electron hopping amplitude t . The corresponding
Hamiltonian is written as

H = −t
∑
i,σ

(c†iσ ci+1σ + c
†
i+1σ ciσ ) + U

2

∑
i,σ,σ ′
σ �= σ ′

niσ niσ ′ , (1)

where i runs over the N sites in the chain. The operator c
†
iσ

(ciσ ) creates (annihilates) an electron at site i with spin σ ,
where the spin index is allowed to take on two different values
corresponding to the spin-up and spin-down states. Here niσ

denotes the particle-number operator, t the hopping integral
between nearest-neighbor sites, and U the strength of the
on-site Coulomb repulsion. Extension of the model includ-
ing long-range Coulomb interactions is also known [8–20].
In contrast to this, in our work we study the full ab initio
Hamiltonian in which the hopping and Coulomb matrix
elements are not restricted to nearest neighbors only; thus
the general form of the Hamiltonian is given as

H =
∑
i,j,σ

Tij c
†
iσ cjσ +

∑
i,j,k,l

σ,σ ′

Vijklc
†
iσ ′c

†
jσ ckσ ′clσ . (2)

The matrix elements Tij and Vijkl are expressed in a molecular
orbital (MO) basis obtained by the complete active space self-
consistent field (CAS-SCF) method [21] using the MOLPRO

quantum chemistry package [22]. The schematic plot of
the standard Hubbard model with short-range hopping and
on-site Coulomb interaction and the multilevel Hubbard-like
model with long-range hopping and delocalized Coulomb
interactions are shown in Fig. 1. Therefore, besides modeling
the Hubbard system with a Li ring using only s functions, we
can study the effect of the p orbital basis on the MIT. For
such a multiorbital Hubbard-like model, our work serves as an
entanglement-based analysis for an ab initio–like description
of MIT.

In such a transition, the character of the wave function
varies dramatically which is reflected by the change of the
electron correlation from predominantly dynamic correlation
in the metallic case to static correlation in the dissociation limit.
This can be analyzed using quantum information theory (QIT),
in particular studying the change in orbital entanglement.
Indeed, besides reaching energies comparable to the full
configuration interaction (CI), DMRG gives us the chance to
calculate important quantities such as the one-site entropy [23]
and the two-site mutual information [24–28], and the block
entropy [23,29,30]. In this work we show how these can be
employed to analyze the MIT and identify the position of the
transition. Moreover since DMRG allows us to study relatively
large systems with high accuracy, we will investigate the size
dependence of such properties in order to evaluate the behavior
at the thermodynamical limit.

Finally, in the present work we also investigate the effect
of the orbital basis on the DMRG results. Although several
DMRG works can be found in the literature where various
orbital bases were employed to study quantum chemical
systems [25–28,31–38], no rigorous analysis in terms of
resulting entanglement patterns has been carried out, yet. As
we will show, the use of a different basis as well as the starting
Hartree-Fock configuration can have a huge impact on the
effectiveness of the method. Indeed, despite that in all cases the
results converge toward the full-CI limit, we can observe how
the choice of a local orbital basis instead of a canonical orbital
basis might help to reach that level with less computational
effort.
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FIG. 1. (Color online) Schematic representation of the standard
Hubbard model with short-range hopping interaction and on-site
Coulomb interaction (top) and the multilevel Hubbard-like model
with long-range hopping and delocalized Coulomb interactions
(bottom). Letters s, px , py , and pz label the atomic orbital basis. Solid
lines indicate long-range interactions among the various orbitals, but
due to visibility reasons not all of them are included.

II. NUMERICAL PROCEDURES

A. Basis states

As previously mentioned, we focused our interest on the
use of different orbital bases to expand the Hilbert space and
we investigated their effect on the effectiveness of the DMRG
calculations. Indeed, even though, in principle, the same result
will be obtained using different orbital bases constructed from
the same atomic basis set, the quantum entanglement, which is
crucial in the DMRG routine, strongly depends on this choice.
The orbital basis that we considered was the canonical orbitals,
used to describe the Hartree-Fock (HF) wave function, and
the localized orbitals (LOs) obtained from a possible unitary
transformation of this basis.

−0.05

−0.04

−0.03

−0.02

−0.01

0.00

2.0 2.5 3.0 3.5 4.0

C
oh

es
iv

e 
E

ne
rg

y 
(E

h)

Be−Be (Å)

A

A

FIG. 2. (Color online) Hartree-Fock ground state potential en-
ergy curves calculated for Be10 determined with the two leading
configurations. Additionally the valence and virtual localized orbitals
are shown for the two configurations, obtained by a unitary transfor-
mation of the corresponding canonical orbital basis.

As sketched in Fig. 2, in the case of beryllium rings
two main HF configurations are important, depending on the
distance regime, in order to describe the potential energy
surface (PES) till dissociation. Around the minimum, the
Hartree-Fock wave function presents a high-p character while
at larger distances, the HF configuration consists of doubly
occupied linear combinations of (almost) pure 2s orbitals. We
will refer to these as configurations 1 and 2, respectively. In
the two cases, the orbital localization will then yield different
LOs. In the first case σ -like orbitals with an sp character will
emerge, while from configuration 2, one will obtain atom-like
2s and 2p bases (see Fig. 2).

In order to describe lithium rings, we also used a local
orbital basis. In this case, the occupied LOs were obtained
using not only the n/2 doubly occupied valence orbitals, but
also the first n/2 virtual orbitals with a mainly s character. The
starting occupation for each LO was then set to 1.

Hartree-Fock calculations, the Foster-Boys localization
procedure [39], and generation of integral files for DMRG
calculations were all performed using the MOLPRO quantum
chemistry package [22]. The atomic basis sets employed
consisted of 1s, 2s, and 2p functions only, and 1s orbitals
were always kept frozen. In particular an STO-3G was used
for lithium [40] while for beryllium we employed a basis
set relying on cc-pVDZ [41] where only two contracted s

functions and one contracted radial p function were used.

B. Density matrix renormalization group method

In order to study the rings built from Li and Be atoms
we have employed the quantum chemical version [42] of the
density matrix renormalization group (DMRG) method [6,7].
In the past decade this method has been proved to be a rival to
the conventional multiconfiguration wave function approaches
and nowadays it allows us to study much larger CAS
configurations than conventional methods. In our numerical
procedure we also utilize various concepts inherited from
quantum information theory (QIT) [23,25,26,29,43] which
allows us to use DMRG as a black box method [26–28]. In
the QC-DMRG applications, the electron-electron correlation
is taken into account by an iterative procedure that minimizes
the Rayleigh quotient corresponding to the Hamiltonian of the
system. For more detailed derivations we refer to the original
papers and review articles [42,44–47].

The amount of contribution to the total correlation energy
of an orbital can be detected by the single-orbital von
Neumann entropy, s(1)i = −Trρi ln ρi , where ρi is the reduced
density matrix at orbital i. The two-orbital von Neumann
entropy is constructed similarly using the reduced density
matrix ρij of a subsystem built from orbitals i and j and
the mutual information Iij = s(2)ij − s(1)i − s(1)j describes
how orbitals are entangled with each other as they are
embedded in the whole system. The block von Neumann
entropy of segments of length l = 1, . . . ,N − 1 of the finite
chain can be used to study critical and gapped phases where
reduced density matrices ρl are generated automatically by
the DMRG procedure. For more detailed derivations we refer
to the original papers [23,25,26,28–30,43]. Therefore, these
quantities provide chemical information about the system,
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especially about bond formation and the nature of static and
dynamic correlation [27,28,37,48].

In order to use QC-DMRG as a black box method one has
to carry out a few optimization steps. First, the arrangement of
orbitals along a one-dimensional topology has to be optimized
(ordering) in order to reduce the set of Schmidt ranks when
the system is systematically partitioned into a left and right
parts during the DMRG sweeping procedure [23]. This allows
us to carry out calculations with a much smaller number
of block states using the dynamical block state selection
(DBSS) approach [43,49]. This is achieved by minimizing
the entanglement distance, expressed as a cost function,
Îdist = ∑

i,j Iij |i − j |η, where the entanglement between pairs
of orbitals is weighted by the distance in the chain between the
orbitals. Using η = 2 has the advantage that this optimization
task can be carried out using concepts of spectral graph
theory [50]. It follows that the so called Fiedler vector x =
(x1, . . . ,xN ) is the solution that minimizes F (x) = x†Lx =∑

i,j Iij (xi − xj )2 subject to the following constraints that∑
i xi = 0 and

∑
i x

2
i = 1, where the graph Laplacian is

Lij = Dij − Iij with Dii = ∑
j Iij . The second eigenvector

of the Laplacian is the Fiedler vector [51,52] which defines
a (1-dimensional) embedding of the graph on a line that tries
to respect the highest entries of Iij and the edge length of
the graph. Ordering the entries of the Fiedler vector by a
nondecreasing or nonincreasing way provides us a possible
ordering. Usually the best ordering does not strongly depend
on the number of block states employed; thus this optimization
task can be performed efficiently with a preliminary prompt
calculation.

Another optimization task is performed in order to speed
up the warm-up sweep of the DMRG procedure. Therefore,
in order to achieve fast and stable convergence we also utilize
the configuration interaction based on a dynamically extended
active space (CI-DEAS) procedure [23,26,53]. In this method
the active space is expanded iteratively using orbitals with
the largest one-orbital entropy values. The sequence by which
orbitals are taken into account is determined by the so called
CAS vector which is simply a rendered sequence of orbital
indices with decreasing one-orbital value.

Therefore, our black-box QC-DMRG is composed of two
phases: the preprocessing phase in which the ordering and
CAS vector are optimized using fixed small number of
block states and the production phase in which an accurate
calculation is performed using the DBSS procedure in order to
reach an a priori set error margin. In the preprocessing phase,
we first use the ordering for which the integral files were
generated and a random CAS vector using M = 64 block
states. We calculate the one-orbital entropy from which we
obtain the CAS vector and we also determine the two-orbital
mutual information and the optimal ordering by calculating
the Fiedler vector. Next a DMRG calculation is carried out
with the optimized ordering and CAS vector and the whole
cycle is repeated until we obtain lower total energy. In the next
step this procedure is repeated, but with M = 256 states. In
the present study, we have performed the accurate calculations
in the production phase using the the DBSS procedure with
an a priori set value of quantum information loss χ = 10−4

in each DMRG renormalization and truncation step and
using a minimum number of block states Mmin = 512. The
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FIG. 3. (Color online) Ground state energy of Be6 as a function
of Be-Be distance for various fixed number of block states, M , and
for χ = 10−4 using configuration 1 (left) and configuration 2 (right)
and localized orbital basis.

preprocessing phase takes only a small fraction of the total
computational time.

In Fig. 3 we show results for Be6 using configuration 1
and configuration 2. It is clear that the accuracy of DMRG
fluctuates strongly as a function of Be-Be distance when the
number of block states is kept fixed while the error can be
controlled very efficiently using the DBSS approach.

Finally, we want to underline that, since the mutual infor-
mation is orbital basis dependent, besides orbital ordering, the
entanglement distance Idist can be manipulated by changing
the orbital basis. Therefore, performance of QC-DMRG can
be optimized by using proper choice of the orbital basis; i.e.,
the same state can be obtained with a much smaller number
of block states [54]. Our entanglement analysis can be used in
this respect as well, as will be shown below.

C. Dependence of entanglement on orbital basis and ordering

In this section we report data obtained for Be6 using
M = 512 block states. Both configurations were employed
and a comparison between local and canonical orbital basis
is shown. As expected, regardless of the chosen orbital basis,
DMRG reaches the same state, but some choices can bring
better results. This depends of course on the entanglement of
the orbitals in the different situations.

Let us consider the dissociation limit first. Both in canonical
and local description we have different sets of many degenerate
orbitals, but while the degenerate canonical orbitals, which
are delocalized over the whole system, are highly entangled,
the localized functions sitting on different centers present a
low correlation between each other. Moreover, as could be
expected, the LOs derived by configuration 2 converge more
effectively in this range.

As an example, the two-orbital mutual information and the
one-orbital entropy using the Fiedler vector based ordering
optimization are shown in Fig. 4 (left panels) for the ground
state of Be6 in the insulating regime, d = 3.30 Å, with
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FIG. 4. (Color online) Orbital ordering optimization using the
Fiedler vector for the ground state for Be6 for a stretched structure,
dBe−Be = 3.30 Å, using the DMRG method with canonical (left)
and local (right) orbitals using configuration 2. Color-scaled plot
of two-orbital mutual information (upper) and single-orbital entropy
profile (lower). Itot = 7.81,Idist = 332.38 with the canonical basis
and Itot = 5.83,Idist = 58.1 with the local basis.

canonical orbitals and configuration 2. The same are plotted
for the case where localized orbitals are used in the right
panels. It is evident from the figure that the two-orbital mutual
information is more diagonally dominant when localized
orbitals were used, and Idist dropped from 332 (canonical
orbitals) to 58 (localized orbitals). This of course has a
tremendous effect on the performance of DMRG since for
canonical orbitals the number of required block states to reach
the a priori set error margin χ = 10−3 has reached M = 3000
while for localized orbitals it did not grow above M = 512.
It is also remarkable to note that the ordering provided by
the Fiedler vector satisfies all intrinsic demands for DMRG
with open boundary condition (OBC). Although the Be6 ring
is a rotationally invariant system, the orbitals of Be atoms
are arranged along the 1D chainlike order in a way that
the one-orbital entropy profile has a left-right symmetry (see
lower-right panel in Fig. 4) and there is no coupling between
its two ends. Such configuration is the best choice for DMRG
with OBC.

On the other side, in the metallic state, the situation
is inverted since the canonical orbitals are distributed in
larger energy range and only some of them present a high
orbital entropy and are important for the construction of
configurations with higher weight. This does not happen if
local functions are used, since all of them have important
weight. Nevertheless with a proper choice of ordering and
block states the local orbitals offer a valid choice of orbital
basis for any structure. As an example, we report results
using configuration 1 for the equilibrium structure in Fig. 5
for the canonical (left panels) and localized orbitals (right
panels), respectively. In this case, Idist is again reduced when
localized orbitals were used but with a much smaller rate. The
optimal ordering provided by the Fiedler vector again gives a
symmetric one-orbital entropy distribution and the couplings
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FIG. 5. (Color online) Orbital ordering optimization using the
Fiedler vector for the ground state for Be6 close to the equilibrium
structure, dBe−Be = 2.15 Å, using the DMRG method with canonical
(left) and local (right) orbitals using configuration 1. Color-scaled plot
of two-orbital mutual information (upper) and single-orbital entropy
profile (lower). Itot = 4.35,Idist = 149.70 with the canonical basis
and Itot = 3.88,Idist = 100.38 with the local basis.

between the two ends of the chain are minimized. Using the
DBSS approach a slightly larger number of block states was
needed to reach the same accuracy threshold using canonical
orbitals but the difference was much less significant than for
the insulating case.

After showing a comparison between canonical and local
orbital basis within the DMRG approach, we want to analyze
the behavior of the same localized orbitals for different inter-
atomic distances. In Fig. 6 we report mutual information and
one-orbital entropy for Be6 close to the ground state minimum
and using configuration 2. It is important to remember that
this starting HF configuration is not an ideal starting point for
this structure, but DMRG yields the same state whatever basis
is employed. Nevertheless this choice has a tremendous effect
on the entanglement and then on the efficiency of the method.
In this case, functions on different orbitals are more correlated
than orbitals on the same orbitals while, as stated above, using
the same configuration for the insulating state only orbitals
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FIG. 6. (Color online) Orbital ordering optimization using the
Fiedler vector for the ground state for Be6 close to the equilibrium
structure, dBe−Be = 2.15 Å, using the DMRG method with local
orbitals using configuration 2. Color-scaled plot of two-orbital
mutual information (left) and single-orbital entropy profile (right).
Itot = 13.9,Idist = 365.58.
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sitting on the same Be atom are highly entangled. As one
can see, comparing Figs. 4 and 6, the mutual information has
a block diagonal form for the optimized ordering for both
structure, but these represent a totally different situation. At
interatomic distance d = 2.15 Å we find three blocks: in the
first block 2pz orbitals of all Be atoms are grouped; the second
block is formed from the 2px and 2py orbitals of the Be
atoms, while the third block is composed from the 2s orbitals
of the Be atoms. In contrast to this, for d = 3.30 Å we find six
blocks, each formed by the 2s, 2px , 2py , and 2pz of a given
Be atom. This is very similar to what is observed for lithium,
since it shows how close to the minimum the wave function
is highly delocalized, while the more the structure is stretched
the more it can be described as a state product of orbitals of
the individual atoms.

If we now consider configuration 1 once again, we observe
in Fig. 5 (upper right) three groups of orbitals with the same
orbital entropy which one can easily identify as the valence
σ -like orbitals, the 2pz functions, and the remaining virtual
orbitals. The first group present the highest orbital entropy
since they are the doubly occupied orbitals of the starting
Hartree-Fock configuration.

III. ENTANGLEMENT ANALYSIS

The energy is not the only interesting result that can be
achieved from DMRG calculations. The entanglement pictures
used to optimize the DMRG procedure can also be used to
extract information about the system. In this section we show
entanglement analysis using localized orbitals for the Li and
Be rings. This information can be exploited to learn something
about the evolution of the wave function along the PES.

In addition, as has been shown in Ref. [55], one can
also analyze the sources of entanglement encoded in Iij by
studying the behavior of the matrix elements ρij . These are
expressed as the expectation values of generalized correlation
functions 〈�|T (m)

i T (n)
j |�〉 where the transition operator T (m)

i

with m = 1, . . . ,16 describes a possible transition between the
four initial, |α〉, and four final states, |α′〉, of orbital i. There-
fore, T (m) transforms the state |α〉 with α = (m − 1)(mod 4)
into state |α′〉 with α′ = �(m − 1)/4� + 1, T (m)|α〉 = |α′〉,
where �x� denotes the floor function, the integral part of
x. A given generalized correlation function measures the
expectation value of the resonance amplitude between the
initial and final states within a particular environment and
can be expressed as 〈T (m)

i T (n)
j 〉 = ∑

β C∗
l(m),l(n),βCr(m),r(n),β ,

where r(m) = (m − 1)(mod q) and l(m) = �(m − 1)/q� + 1.
Here the wave function of the tripartite system is written
as |�〉 = ∑

αi ,αj ,β
Cαi,αj ,β |αi,αj ,β〉, where αi and αj label

the bases of the orbitals i and j , and β labels the basis
of the environment, which is composed of the remaining
orbitals. In general, 〈T (m)

i T (n)
j 〉 contains both connected and

disconnected contributions between subsystems i and j .
In order to circumvent this behavior, we generally study
the connected part of the generalized correlation functions,
〈T (m)

i T (n)
j 〉C = 〈T (m)

i T (n)
j 〉 − 〈T (m)

i 〉〈T (n)
j 〉, where the discon-

nected part, given by the product of the expectation values
of the local transition operators, is subtracted out. Note that
the mutual information is formulated in such a way that the

l = |i − j|

T
1,

l
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FIG. 7. (Color online) Decay of the hopping matrix elements as
a function of lth-neighbor distance for a ring cluster built from 18
and 26 Li atoms calculated using only 2s functions for bond length
dLi−Li = 3.05 Å and for dLi−Li = 6.00 Å (left). Length dependence of
the von Neumann entropy of segments of length l = 1, . . . ,N − 1 of
the finite chain (right). The solid lines are our fit using Eq. (3).

disconnected parts of the generalized correlation functions
do not contribute. As we will see below, these can be used
to identify the relevant physical processes that lead to the
generation of the entanglement.

A. Li rings with only 2s functions

Despite that p functions are fundamental for a fair de-
scription of the chemistry of lithium, we can learn important
information about the physics of correlated electrons in
metallic systems using only 2s atomic orbitals for Li rings.
Using a localized orbital basis to describe such a system
through any ab initio method is analogous to a Hubbard model
with long-range interactions and with one function per site.
In this sense stretching the bond length in the lithium rings is
equivalent to change t and so the U/t of a half-filled Hubbard
model. As an example, in the left panel of Fig. 7 we show
the hopping matrix elements as a function of lth-neighbor
distance for the metallic regime at dLi−Li = 3.05 Å and for the
insulating regime at dLi−Li = 6.00 Å for Li rings consisting of
18 and 26 atoms. It is clearly seen that in the metallic regime
the hopping falls off significantly slower than in the insulating
regime.

As expected and independently on the size of the system,
all localized orbitals have the same site entropy respecting
the rotational invariance of the system. The way these values
change with the structure resembles what one can observe in a
Hubbard model. In the metallic case the delocalization of the
n electrons in n equivalent orbitals leads to the conclusion
that the four possibilities (empty, up-spin, down-spin, and
doubly occupied) have the same weight for each orbital (1/4),
from which s(1) = ln 4 = 1.386. The calculated eigenvalues
of the one-orbital reduced density matrix for a finite ring
with N = 26 are ω0 = 0.13,ω↓ = 0.37,ω↑ = 0.37, and ω↓↑ =
0.13 corresponding to the empty, down-spin, up-spin, and
doubly filled basis states. It follows that the orbital entropy
is s(1) = 1.266 which indicates that all four basis states
gain finite weight, being a clear sign of a metallic behavior
analogous to the Hubbard model at small Hubbard U . Note
that in the half-filled Hubbard model a finite gap opens in
the charge sector for arbitrary small U > 0 value [3]. The
corresponding block entropy profile is shown in the right panel
of Fig. 7. The central charge c can be derived [30] from the
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initial slope of the length dependence of sN (l)

sN (l) = c

3
ln

[
N

π
sin

(
πl

N

)]
+ c′

1, (3)

where c′
1 is a nonuniversal constant. On the other hand for

noncritical, gapped models, sN (l) saturates to a finite value
when l is far from the boundaries. Our fits using Eq. (3)
yielding central charge values c = 1.23 and c = 1.10 for
N = 18 and N = 26, respectively, are indicated by solid lines.
In order to gain more insight about the metallic phase, we have
also calculated the spin gap, �s, and charge gap, �c, defined as

�s(N ) = E(N/2 + 1,N/2 − 1) − E(N/2,N/2), (4)

�c(N ) = E(N/2 + 1,N/2) + E(N/2 − 1,N/2)

− 2E(N/2,N/2), (5)

where E(N↑,N↓) stands for the ground state energy obtained
for the finite system with N↑ electrons with up-spin and N↓
with down-spins. Although for finite systems finite gaps are
expected in all excitation modes we have found that the gaps
are very small. The spin gap was found to be 10−4 and 10−8

Eh for N = 18 and 26, respectively, which leads to c = 1.
On the other hand, the charge gap shows a stronger finite-size
dependence. By carrying out finite-size scaling of the charge
gap for systems up to 26 sites we have estimated the charge gap
to be 0.09Eh in the thermodynamic limit using a second-order
polynomial fit. For an even more compressed geometry, i.e.,
for d = 2.50 Å, we obtained �c(N → ∞) = 0.045Eh. Since
these small values are comparable with the uncertainty arising
in the extrapolation procedure from the use of limited-size
systems, we will consider them zero. We could not study much
longer chains since the generation of the integrals took sig-
nificantly more time with increasing system size. As a further
check by setting all Vijkl elements to zero we obtained c = 2.04
and c = 2.02 for N = 18 and 26, respectively, in agreement
with the expected result for a Hubbard model with U = 0.

On the other hand, at the dissociation limit the wave
function can be described as a state product of 2s orbitals of Li
atoms in 2S states which means that the only possibilities are
up-spin and down-spin electrons per each site. This is clearly
reflected by the eigenvalues of the one-orbital reduced density
matrix obtained for an insulating situation (dLi−Li = 6.00 Å)
which are almost zero for the empty and doubly occupied
orbital [0.002(1)] and 0.500(4) for up- and down-spin. The
orbital entropy s(1) = 0.720(2) being close to ln 2 = 0.693
indicates again that only two basis states gain finite weight so
the empty and doubly filled basis states are excluded from the
wave function. The corresponding block entropy is shown in
the right panel of Fig. 7 and our fit yields c = 1.03 and c = 1.01
for N = 18 and N = 26, respectively. The spin gap was again
found to be very small, i.e., 10−7 and 10−10 Eh for N = 18
and N = 26, respectively. In contrast to the metallic case, the
charge gap basically showed no finite-size dependence in the
insulating phase and for all system sizes from N = 6 to 26 we
obtained a finite value of �c = 0.18Eh and �c = 0.26Eh, for
dLi−Li = 4.00 Å and dLi−Li = 6.00 Å, respectively. Increasing
the interatomic distance even further we obtained �c =
0.28Eh for dLi−Li = 12.00 Å. Therefore, the finite charge gap
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FIG. 8. (Color online) Schematic plot of the two-orbital mutual
information for a ring cluster built from 18 Li atoms but using only
2s functions of the Li atoms for bond length dLi−Li = 3.05 Å (left)
and for dLi−Li = 6.00 Å (right).

and the obtained value of c = 1 for the central charge together
resemble the characteristics of an insulating phase.

Let us now consider the two-orbital mutual information.
In Fig. 8 we report its schematic representation for Li18 in a
metallic and insulating regime. In the first case, at interatomic
distance 3.05 Å, all orbitals are highly entangled among each
other, because of the high delocalization of the wavefunction in
this regime. Of course, the value of Iij reduces if more distant
neighbors are considered. We show this decay for both regimes
and for Li18 and Li26 in Fig. 9 in a log-log plot. As one can see,
in the insulating state the linear trend is not affected by the size
of the system, while at shorter interatomic distance, the slope
of the linear decay increases if going from Li18 and Li26.

It has to be underlined that in the insulating regime, other
orbitals are also highly entangled, but the nature of this
correlation is totally different than in the previous case. In
order to see this, one has to observe the different elements
of the two-orbital density matrix shown in Fig. 14 in the
Appendix. While in a metallic situation different hopping and
spin-flipping terms have a large contribution (left panels), only
the spin flipping plays a role in a stretched structure (right
panels). This is because even at dissociation the separated
atoms present a strong quantum entanglement in the singlet
state we are considering. Confirming this is the fact that at
the same structure, the almost degenerate state with highest
spin multiplicity (ferromagnet state) presents no entanglement
among the 2s orbitals, since the wave function can be described
as a pure state product.

l

I N
/2

,N
/2

+
l

d = 3.05Å, N = 18
d = 6.00Å, N = 18
d = 3.05Å, N = 26
d = 6.00Å, N = 26

l

S
N

(l
)

Li , d = 3.05Å
Li , d = 6.00Å
Be , d = 2.15Å
Be , d = 3.30Å

FIG. 9. (Color online) Decay of the nth-neighbor entanglement
bond strength measured as a function of the interatomic distance
for the Li ring represented with only 2s orbitals for a metallic state
(dLi−Li = 3.05 Å) and for insulating situation at dLi−Li = 6.00 Å (left).
Block entropy profiles obtained for the Li6 and Be6 rings for various
interatomic distances (right).
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B. Li ring with 2s and 2 p functions

The next step in the study of lithium systems is the analysis
of the effect of p atomic functions. Because of the obvious
increase of the active space we focused our attention on the
smaller ring Li6, but the reduced size does not have drastic
effects on the nature of the system.

In Fig. 10 the two-orbital mutual information and the
one-orbital entropy are reported for both the metallic and
the insulating state. The presence of the three 2p atomic
functions per site increases, of course, the complexity of the
entanglement picture, but the main information is analogous
to what is observed for larger Li rings with 2s orbitals only.
First, once again, independently of the structure, the rotational
symmetry is respected in the degeneracy of the one-site entropy
values. Moreover, the highest entanglement still occurs among
the 2s orbitals especially at long interatomic distances because
of the spin-flipping (see Fig. 13) and the s(1) are just slightly
effected by the presence of 2p orbitals.

The entanglement between 2s and 2p or between 2p

orbitals is an order of magnitude smaller then between 2s

atomic functions and decreases sensibly going from a metallic
to an insulating state. This reflects the fact that intraband
transitions within the half-filled 2s band are more important
than interband transitions. Moreover we observe that the 2pz

orbitals are only entangled with 2s orbitals, while the 2p

atomic functions lying in the plane of the ring would seem
to be correlated between each other only if centered on the
same Li atom. Moreover, comparing the correlation functions
reported in Figs. 14 and 13 of the Appendix, one can see that
because of the presence of the 2p orbitals, the hopping terms
gain importance also at large interatomic distance.

As expected, toward dissociation the correlation between s

and p orbitals on the same site drops even more. Indeed, one
has to remember that in free Li atoms (if core electrons are
kept frozen as we did) the correlation energy is zero and the
HF wave function with one electron in the 2s orbital represents

Orbital index

s(
1)

Orbital index

s(
1)

FIG. 10. (Color online) Schematic plot of the two-orbital mutual
information (upper panels) and one-orbital entropy (lower panels) for
Li6 ring calculated using 2s and 2p atomic functions for bond lengths
dLi−Li = 3.05 Å (left) and for dLi−Li = 6.00 Å (right).

the correct solution within the limit of the atomic basis set. So
it is clear that the s-p entanglement has to get to zero with
increasing distance. In order to gain more insight, we have to
consider the block entropy profiles as well. However, since the
site entropy in not constant, the block entropy profile depends
on the ordering of orbitals along the one-dimensional chain
used in the DMRG treatment [23]. In Fig. 9 (right) the block
entropy profile is shown for the ordering used in Fig. 10 for
the metallic region at dLi−Li = 3.05 Å and for the insulating
regime at dLi−Li = 6.00 Å. It is clearly seen that the block
entropy drops significantly for the latter case and the saturation
is a clear sign of the finite charge gap.

C. Be ring

In this last section we will analyze the results obtained
for beryllium rings. For this system, the use of both 2s and
2p atomic bases is mandatory to have a minimal meaningful
description.

As one can see, observing Figs. 10 and 11, the main
differences between Be6 and Li6, besides the strong correlation
between 2s and 2p orbitals, occurs at dissociation. As 2s

orbitals are doubly occupied in the HF solution, hopping and
flipping between them are less important that in the case
of lithium and the quantum entanglement between isolated
Be atoms can be considered zero. On the other hand, the
quasidegeneracy of 2s and 2p orbitals causes that the static
correlation constitutes about 93% of the total correlation
energy. This can be deduced by the strong entanglement shown
in the pictorial representation of the mutual information. The
block entropy profile shown in Fig. 9 (right) drops again
significantly by going from the metallic to the insulating
regime. In the latter case, besides the saturation of the block
entropy, there is an oscillation with a period of 4 and the block
entropy drops to almost zero for every fourth data point. This
means that the wave function can be constructed from slightly
entangled units built from the four highly entangled orbitals

Orbital index

s(
1)

Orbital index

s(
1)

FIG. 11. (Color online) Schematic plot of the two-orbital mutual
information (upper panels) and one-orbital entropy (lower panels)
for Be6 ring calculated using 2s and 2p atomic functions for bond
lengths dBe−Be = 2.15 Å (left) and for dBe−Be = 3.30 Å (right) using
configuration 2.
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of each atom in agreement as was found by studying the one-
and two-orbital entropy functions.

Analyzing the correlation functions reported in Fig. 13
of the Appendix, it is evident that in comparison to lithium
the hoppings between neighboring 2p atomic functions play
a more important role for short interatomic distances. This
can be interpreted as an index of a metallic character, since
it highlights the delocalized character of the wave function.
Despite that from a band structure (i.e., one-electronic) picture,
one could conclude that Be rings are insulating, when static
correlation is rightfully described, one can observe a metallic-
like behavior analyzing indicators other than the band gap.

As already discussed in Ref. [56], the one-orbital entropy
function can also be used to locate an avoided crossing. Since
a metal–insulator-like transition can be identified as a state
transition in finite systems, we can use strong change in Itot to
identify it. This is a more advanced approach than calculating
the low-lying energy spectrum since it requires calculating
ground state properties only [24]. Therefore, the behavior
of Itot as a function of interatomic distance can be used to
detect and locate transition points where the wave function
changes dramatically. In first panel of Fig. 12 energies of
the two lowest-lying 1Ag singlet states of Be6 as a function
of dBe−Be are shown around the avoided crossing. In the
second panel the total quantum information calculated using
configuration 1 and 2 is reported. Despite that Itot strongly
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FIG. 12. (Color online) Energies of the two lowest lying 1Ag

singlet states and total quantum information Itot for Be6 and Be10

(in this case only Itot is considered) as a function of dBe−Be, calculated
using localized orbitals for configuration 1 and configuration 2. The
sudden change in Itot indicating the position of the avoided crossing
occurs at dBe−Be 
 2.55 Å for Be6 and 2.72 Å for Be10.

depends on the orbital basis employed, it always show strong
fluctuations around a state transition, like the one proposed.
In our case, we observe how if one configuration or the other
is used, a jump or a drop of its value occurs. In both cases this
dramatic change occurs at dBe−Be 
 2.55 Å which indicates
the position of the avoided crossing. The same observation
is true also for the larger cluster Be10. As can be seen in the
lower panel of Fig. 12, in this case, the avoided crossing can
be localized at dBe−Be 
 2.70 Å by studying Itot.

IV. CONCLUSION

An ab initio density matrix renormalization group study
has been performed on pseudo-one-dimensional systems
in order to investigate the metal–insulator-like transition.
Through DMRG we overcame the active space size problem
encountered for beryllium rings and we were able to perform
very accurate calculations reaching the full-CI level which is
generally prohibitive for these systems even with a minimal
basis set.

Unlike the Hubbard model which provides us a minimal
model to study the MIT as a function of the on-site Coulomb
interaction U and the electron hopping amplitude t in the
full ab initio Hamiltonian the hopping and Coulomb matrix
elements are not restricted to nearest-neighbors only. The
analysis of generalized correlation functions was used to study
the change occurring in the wave function as a function of
the interatomic distance. Underlying the differences in the
entanglement between different orbitals, we showed how the
systems evolve from a metallic state to an insulating one. Also
through the analysis of the block entropy and energy gaps for
lithium rings with s-like localized basis only, we recovered the
Hubbard-like behavior in the two limiting cases. Furthermore
we discussed that, despite that the total quantum information
strongly depends on the orbital basis, it can be employed to
locate the position of the MIT in these systems.

Finally, we focused on the effect of the orbital basis on
the DMRG procedure. Comparing the results obtained using
canonical and localized orbital bases, we observed that using
the latter less computational effort was necessary to reach
the same level of accuracy because of the different orbital
entanglement which, as discussed, is crucial in quantum
chemical DMRG.
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APPENDIX

In this appendix we report the pictorial representation of
the generalized correlation functions used to construct the off-
diagonal elements of the two-orbital reduced density matrix
for the different systems analyzed above (see Figs. 13 and 14).
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Metallic regime
dL i−L i = 3.05Å

Insulating regime
dL i−L i = 6.00Å

Metallic regime
dBe−Be = 2.15Å

Insulating regime
dBe−Be = 3.30Å

Hoppings

Flipping

FIG. 13. (Color online) Pictorial representation of the absolute value of the generalized correlation functions used to construct the lower-
triangular elements of the two-orbital reduced density matrix for Li6 and Be6 using 2s and 2p atomic functions at dLi−Li = 3.05 Å, dLi−Li =
6.00 Å, dBe−Be = 2.15 Å, and dBe−Be = 3.30 Å (from left to right). Strength of transition amplitudes between initial (|αi〉|βj 〉) and final states
(|α′

i〉|β ′
j 〉) on orbital i and j are indicated with different line colors. Note the different scales used for color bars in the cases of the various

figures.
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Metallic regime
dL i−L i = 3.05Å

Insulating regime
dL i−L i = 6.00Å

Hoppings

Flipping

FIG. 14. (Color online) Pictorial representation of the absolute value of the generalized correlation functions used to construct the lower-
triangular elements of the two-orbital reduced density matrix for Li18 using only 2s atomic functions at dLi−Li = 3.05 Å and at dLi−Li = 6.00 Å.
Strength of transition amplitudes between initial (|αi〉|βj 〉) and final states (|α′

i〉|β ′
j 〉) on orbital i and j are indicated with different line colors.

Note the different scales used for color bars in the cases of the various figures.
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