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Real-time dynamics in the one-dimensional Hubbard model
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(Received 19 October 2014; revised manuscript received 27 November 2014; published 16 December 2014)

We consider single-particle properties in the one-dimensional repulsive Hubbard model at commensurate
fillings in the metallic phase. We determine the real-time evolution of the retarded Green’s function by matrix-
product state methods. We find that at sufficiently late times the numerical results are in good agreement with
predictions of nonlinear Luttinger liquid theory. We argue that combining the two methods provides a way of
determining the single-particle spectral function with very high frequency resolution.
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I. INTRODUCTION

The spectral and dynamical properties of one-dimensional
fermionic systems have attracted a significant amount of in-
terest in recent years due to advances in both low-dimensional
materials [1] and cold-atom systems [2]. The repulsive
Hubbard model constitutes a key paradigm for studying strong
correlation effects in these systems [3]. Its Hamiltonian is

H = − J
∑
j,σ

c
†
j,σ cj+1,σ + c

†
j+1,σ cj,σ + U

∑
j

nj,↑ nj,↓

− μ
∑

j

nj , (1)

where nj,σ = c
†
j,σ cj,σ and nj = nj,↑ + nj,↓. In one dimension,

it is exactly solvable via the Bethe ansatz [3], with many
results about the model available in the literature. However, the
computation of dynamical correlation functions analytically
and directly from the Bethe ansatz remains a difficult task.
An example of particular interest is the single-particle spectral
function:

A(ω,k) = − 1

π
Im Gret(ω,k),

Gret(ω,k)=−i

∫ ∞

0
dt eiωt

∑
l

e−ikla0〈ψ0|{cj+l,σ (t), c
†
j,σ }|ψ0〉,

(2)

where |ψ0〉 is the ground state. The spectral function is
accessible through angle-resolved photoemission experiments.
Such measurements on the quasi-1D organic conductor TTF-
TCNQ have been interpreted in terms of A(ω,k) of the 1D
Hubbard model [4,5].

One approach to calculating properties of the spectral
function is via Luttinger liquid theory [6,7]. Certain low-
energy aspects of the Hubbard model in zero magnetic field
are described by the bosonized Hamiltonian H = Hc + Hs :

H =
∑
α=c,s

vα

2π

∫
dx

[
1

Kα

(
∂�α

∂x

)2

+ Kα

(
∂	α

∂x

)2
]

+ . . . .

(3)

Here, the dots indicate the presence of irrelevant operators,
which means that their respective coupling constants approach

zero under the renormalization group flow. Neglecting the
effects of the irrelevant operators in (3) makes it possible to
calculate A(ω,k) at low energies [3,6–8]. The spectral function
is found to exhibit singularities following the dispersions of
the collective spin (“spinon”) and charge (“holon”) excitations.
A problem with this Luttinger liquid approach to dynamical
correlation functions is that the latter inherently involve a finite
energy scale [e.g., the frequency ω in (2)], while the coupling
constants of irrelevant perturbations (3) will, at best, be small
but finite at the scale ω.

In a number of works [9–25], it was demonstrated, for the
case of spinless fermions, that taking the irrelevant operators
perturbing the Luttinger liquid Hamiltonian into account
generally leads to significant changes in the singularities
characterizing the dominant features seen in response func-
tions. Exact expressions for these singular features in response
functions were obtained [9–17,20–22], using a mapping to a
Luttinger liquid coupled to a mobile impurity [26]. Crucially,
unlike in unperturbed Luttinger liquid theory, the exponents
characterizing these singularities are generally momentum
dependent. The generalization to spinful fermions, and the
Hubbard model in particular, was considered in several recent
works [27–31]. The case of the Mott-insulating phase beyond
the field theory regime [32] was treated in Ref. [28], and
a rather complete understanding of the dynamical structure
factor was obtained.

For the metallic phase of the Hubbard model (less than one
electron per site), a mobile impurity model was formulated to
describe the singular features in the single-particle spectral
function [29]. Combined with the Bethe ansatz solution,
this allowed the calculation of exact expressions for the
power-law singularities occurring at the “absolute threshold”
[30]. These results were found to be in accord with previous
analytic work based on completely different assumptions
and methods [33]. On the other hand, a comparison of the
analytic predictions [30] with available dynamical density
matrix renormalization group (dDMRG) [34,35] results on
the quarter-filled Hubbard model [5] was found to be rather
unconvincing. A serious complication is that the dDMRG
method used in Ref. [5] requires a finite imaginary part of the
frequency, while the window in frequency space over which
the calculated power law applies in general will be narrow. This
makes extracting power-law singularities from dDMRG results
in the momentum/frequency domain inherently difficult.
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In this work, we employ a numerical approach to check the
validity of the results for threshold singularities in response
functions obtained by mobile impurity models. Using the
time-evolving block decimation method (TEBD), formally
equivalent to time-dependent density matrix renormalization
group (tDMRG), cf. Refs. [36–38], we compute the retarded
Green’s function in the momentum/time domain for a variety
of fillings and interaction strengths. As we will see, these
results are well described by a fit to a power-law decay
expression whose frequencies and exponents are fixed by
combining Bethe ansatz results with an appropriate mobile
impurity model.

The paper is organized as follows. In Sec. II, we present the
single-particle spectrum through the spectral function A(ω,k)
calculated using TEBD. In Sec. III, we identify its main
features in terms of the exact excitation spectrum known from
Bethe ansatz, and present results for edge exponents obtained
from appropriate mobile impurity models. Implications of
these findings for real-time dynamics are summarized in
Sec. IV. Section V is devoted to a comparison of these
results to the numerically calculated Green’s function in the
momentum/time domain. We summarize our results in Sec. VI.

II. NUMERICAL STUDY OF THE SPECTRAL FUNCTION

We first use the DMRG algorithm to find the ground
state |ψ0〉 of the Hamiltonian (1) in an MPS representation.
The TEBD algorithm is then used to obtain its dynamical
properties (details of the numerical method used can be
found in Refs. [34,36,39–41]). In particular, we calculate the

retarded single-particle Green’s function Gret(ω,k) =
G−(ω,k) + G+(ω,k) from the Fourier transform for positive
times of the dynamical two-point correlation functions

G−(t,j ) = −i〈ψ0|c†j (t)cj0
(0)|ψ0〉, (4)

G+(t,j ) = −i〈ψ0|cj (t)c†j0
(0)|ψ0〉. (5)

Each Green’s function requires a separate simulation, per-
formed by time-evolving an excited MPS, where an operator
cj0 or c

†
j0

(the spin index is suppressed for clarity) has been
applied at t = 0 to to the ground-state MPS, at the central site
of a finite chain j0 = L/2, see, e.g., Refs. [22,28,37]. We use
open chains of length L = 300, and let the bond dimensions
grow with time such that the truncation error is at most 10−5

per step. A fourth-order Suzuki-Trotter decomposition with
time steps of ∼0.05 (in units of inverse hopping) is employed.
The maximum time is chosen such that the wave-front of
the “light-cone” of correlations does not reach the edges of
the system, which introduces a cutoff at small frequencies.
Before performing a Fourier transform of the data, the sampled
time is extended using linear prediction [37], improving
the energy resolution. In order to set the Fermi level at
εF = 0, the chemical potential μ in (1) is adjusted so that
E0(N − 1) = E0(N ), where E0(N ) is the ground-state energy
with N electrons.

Throughout this paper we concentrate on the hole part of the
Green’s function (4), and consequently the presented spectral
function only has support for negative frequencies ω < 0. This
spectral function is the quantity experimentally relevant to
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FIG. 1. (Color online) Spectral function A(ω,k) of the Hubbard model calculated with TEBD at filling ρ = 1/4 for (a) U = 5 and (b)
U = 10 and at filling ρ = 1/6 for (a) U = 5 and (b) U = 10. The black dashed lines are the singularity thresholds obtained from the Bethe
ansatz solution. In all cases, the spectral function is nonzero everywhere below the absolute threshold indicated by the thin blue lines, although
the intensity is mostly very small.
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photoemission spectra. The spectral function for filling factors
ρ = 1/4 and ρ = 1/6 with interaction strengths U = 5 and 10
is shown in Fig. 1.

The main characteristics for |k| < kF can be clearly
observed, as previously reported in, e.g., Ref. [5]. An
injected fermion separates into (at least) one “spinon,” a
gapless spin-1/2 collective excitation with no charge, and one
“(anti-)holon,” a gapped, charged ±e collective excitation with
no spin. The sharp line of the several A(ω,k) in Fig. 1 near
ω = 0 is the dispersion of the spinon excitation, while the
lines below correspond to the holon excitations. Along these
lines, A(ω,k) behaves as a power-law singularity. For a given
total momentum, there exist holon-spinon states in a range of
frequencies. These excitations are thoroughly described in the
next section from the point of view of Bethe ansatz (dashed
lines in Fig. 1). In the remainder of this paper, we will focus
in analyzing the threshold singularities at the sharp edges for
|k| < kF . For |k| > kF , there is a strong decay in the spectral
weight and further features in the spectral function are difficult
to observe for these parameters.

III. EXCITATIONS IN THE HUBBARD MODEL AND
DOMINANT FEATURES IN THE SPECTRAL FUNCTION

A detailed discussion of the excitation spectrum of the
Hubbard model is given in Ref. [3] (see also Refs. [42]).
The particular excitations relevant to the description of the
single-particle Green’s function have been constructed in detail
in Ref. [30], and we now summarize the relevant results given
there. We consider the case of zero magnetic field and N

electrons on an L-site periodic chain. The Fermi momentum
is then

kF = πN

2L
. (6)

The dominant features in the (hole) spectral function at
momentum |q| < kF arise from the holon-spinon excitation
carrying charge +e and spin 1/2. Its energy and momentum
are

Ehs(k
h,�h) = −εc(kh) − εs(�

h),

Phs(k
h,�h) = −pc(kh) − ps(�

h) ± 2kF , (7)

where |kh| < Q and −∞ < �h < ∞ parametrize the exci-
tation. The functions εc,s and pc,s are obtained from the
solutions of coupled linear integral equations and are given
in (19) and (28) of Ref. [30], respectively. The origin of the
±2kF contribution is discussed in Chapter 7.7.1. of Ref. [3].
Because of parity invariance the Green’s function is symmetric
in momentum and we therefore restrict ourselves to the
momentum range

0 � Phs � kF . (8)

A. Absolute threshold: spinon edge

The absolute threshold for 0 < Phs < kF was analyzed in
detail in Ref. [30]. It is obtained by choosing the plus sign
in (7), fixing kh = Q, and then varying �h in the range

−∞ < �h � 0. (9)

At energies just above this threshold, the spectral function
exhibits a power-law singularity [29,30] (as a function of
frequency for fixed momentum)

A(ω,Phs(Q,�h)) ∝ (ω − Ehs(Q,�h))−μs
0,− , (10)

where the exponent μs
0,− is given in (129) of Ref. [30].

B. Holon edge

The other dominant features in the spectral function arise in
the vicinity of the holon edge, obtained by choosing the minus
sign in (7), setting �h = −∞ and varying kh in the range

−Q � kh < 0. (11)

The range of the corresponding momentum is −kF � Phs <

kF . We note that by virtue of parity invariance this particular
branch is sufficient for describing both high-energy features in
the spectral function A(ω,0 < q < kF ). We now assume that,
as a consequence of the integrability of the Hubbard model,
a threshold singularity occurs just above the holon edge (as a
function of frequency for fixed momentum)

A(ω,Phs(k
h, − ∞)) ∝ (ω − Ehs(k

h, − ∞))−μc
0,− . (12)

The assumption that in integrable models threshold singular-
ities occur even at thresholds of excitations that sit on top
of continua, into which they are kinematically allowed to
decay, appears reasonable; for massive integrable quantum
field theories, this has been seen to be the case [43]. In
nonintegrable models one does not expect singular behavior
[29].

The exponent μc
0,− can then be calculated in the framework

of a mobile impurity model using input from the Bethe
ansatz solution. Some details of this calculation are given in
Appendix. The result for the threshold exponent is

μc
0,− = 1

2
− Kc

(
1

2
− 2Dimp

c

)2

−
(
N

imp
c

)2

4Kc

, (13)

where Kc is the Luttinger liquid parameter (cf. (119) and (103)
of Ref. [30]),

N imp
c =

∫ Q

−Q

dk ρc,1(k),

2Dimp
c = �(kh) +

∫ π

Q

dk [ρc,1(−k) − ρc,1(k)]

−
∫ Q

−Q

dk ρc,1(k) �(k),

�(k) = i

π
ln

[
�

(
1
2 + i sin k

4u

)
�

(
1 − i sin k

4u

)
�

(
1
2 − i sin k

4u

)
�

(
1 + i sin k

4u

)]
, (14)

and the function ρc,1 is the solution of the integral equation

ρc,1(k) = − cos k R(sin k − sin kh)

+ cos k

∫ Q

−Q

dk′R(sin k − sin k′)ρc,1(k′). (15)

Here, u = U/4 and

R(x) =
∫ ∞

−∞

dω

2π

eiωx

1 + exp(2u|ω|) . (16)
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FIG. 2. (Color online) Exponent μc
0,− for ρ = 1/4 as a function

of momentum as derived from the mobile impurity model approach
for various fillings and values of U .

In Figs. 2 and 3, we plot the value of the exponent μc
0,−

as a function of momentum for several values of interaction
strength U and band fillings 1/4 and 1/6, respectively. We note
that our results are again in accord with those of Ref. [33].

IV. MOBILE IMPURITY MODEL AND
REAL-TIME DYNAMICS

We have seen above that for a given momentum 0 < |k| <

kF the single-particle spectral function exhibits threshold
singularities at frequencies

ω1 = Ehs(Q,�h), Phs(Q,�h) = k,

ω2 = Ehs(k
h, − ∞), Phs(k

h, − ∞) = k,

ω3 = Ehs(k
h, − ∞), Phs(k

h, − ∞) = −k. (17)

Assuming that the singular features in the spectral function
give the dominant behavior of the retarded Green’s func-
tion at late times, we conclude that the latter should be

FIG. 3. (Color online) Exponent μc
0,− for ρ = 1/6 as a function

of momentum as derived from the mobile impurity model approach
for various fillings and values of U .

TABLE I. Values for the parameters of the power-law decay
function (18), calculated from the Bethe ansatz and mobility impurity
model.

ρ U k −ω1 −ω2 −ω3 μc
0,− μs

0,−

1/4 5 0 0.387 1.15 1.15 0.373 0.855
1/4 5 π/8 0.277 0.661 1.46 0.392 0.782
1/4 10 0 0.245 0.245 1.27 0.378 0.732
1/4 10 π/8 0.178 0.713 1.62 0.388 0.660
1/6 5 0 0.165 0.564 0.564 0.325 0.851
1/6 5 π/8 0.0631 0.173 0.745 0.237 0.632
1/6 10 0 0.101 0.644 0.644 0.353 0.710
1/6 10 π/8 0.0384 0.195 0.856 0.354 0.545

(approximately) of the form

G(t,k) ∼
∑

α

Aαeiωαt+φα t−γα , (18)

where the threshold exponents γα are related γα = μ
c/s

0,− + 1
to the exponents calculated with the mobile impurity method.
All parameters are a function of momentum k. Here, Aα are
complex amplitudes and φα are real phases. It is currently
not known how to determine them a priori, see however

G
(t,
k)

G
(t,
k)

k=0
k=π/8

t

U=10

U=5

(a)

(b)

k=0
k=π/8
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1.0

0.5

0.0
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1.0

0 10 20 30 40 50 60
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0.5

0.0

0.5

1.0

FIG. 4. (Color online) Time decay of the imaginary part of the
Green’s function G(t,k) for filling ρ = 1/4. Symbols are numerical
TEBD data and red lines are fits to the power-law decay of the form
of (18).

245127-4



REAL-TIME DYNAMICS IN THE ONE-DIMENSIONAL . . . PHYSICAL REVIEW B 90, 245127 (2014)

Ref. [44]. Table I gives explicit values for the frequencies
ωα and exponents μα , to be compared with TEBD results.

V. COMPARISON WITH NUMERICAL RESULTS

The formula (18) for G(t,k) has too many free parameters
to reliably fit the numerical data from TEBD simulations,
obtained through a Fourier transform of the (hole) Green’s
function (4). Therefore we fix the threshold frequencies
ωα and the exponents γα to the values calculated with the
mobile impurity approach, leaving the momentum-dependent
amplitudes and phases as the only free parameters. We fit the
imaginary part of G(t,k) to the ansatz but the procedure holds
equally well with the real part. The data used for the fitting
procedure are not extended in time with linear prediction.
The time evolution of the Green’s function is illustrated for
ρ = 1/4 in Fig. 4 for U = 5 and 10, both at k = 0 and π/8. The
initial time of the fit is adjusted in each case in order to avoid
nonuniversal behavior at short times. For later times, the decay
of G(t,k) is very well reproduced by the fitting ansatz (18). The
good quality of the fits to the numerical data is the main result
of our paper, which validates the mobile impurity approach.
As the momenta approaches kF , the quality of the fit worsens
slightly. One can understand this, since the frequency at which
the first singularity develops approaches ω → 0, which is more

G
(t,
k)

k=0
k=π/8

t

U=10

U=5

(a)

(b)

G
(t,
k)

k=0
k=π/8

0 10 20 30 40 50 60
1.0

0.5

0.0

0.5

1.0

0 10 20 30 40 50 60
1.0

0.5

0.0

0.5

1.0

FIG. 5. (Color online) Time decay of the imaginary part of the
Green’s function G(t,k) for filling ρ = 1/6. Symbols are numerical
TEBD data and red lines are fits to the power-law decay of the form
of (18).

TABLE II. Fiting parameters of the power-law decay function
(18) to the time decay of the Green’s function calculated numerically
with TEBD.

ρ U k A1 A2 A3 φ1 φ2 φ3

1/4 5 0 0.54 0.50 0.57 4.16 4.13 4.6
1/4 5 π/8 0.57 0.71 0.34 1.03 5.1 3.74
1/4 10 0 0.39 0.94 1.02 3.83 0.25 3.62
1/4 10 π/8 0.45 0.54 0.36 0.85 2.01 1.09
1/6 5 0 0.68 4.48 1.83 6.02 3.64 4.25
1/6 5 π/8 0.76 2.00 0.47 1.42 2.41 6.06
1/6 10 0 0.46 2.38 3.29 4.62 3.14 0.38
1/6 10 π/8 1.55 0.64 0.31 1.66 2.69 1.34

difficult to capture with a TEBD approach, inherently limited
to a given finite time.

The same behavior is essentially observed for ρ = 1/6 in
Fig. 5. The relaxation to a universal behavior is slower for
ρ = 1/6, which agrees with the poorer resolution in frequency
space observed in Fig. 1. Table II gives explicit values for
the obtained fitting paramaters Aα and φα for the range of
parameters studied here.

As the fitting approach nicely reproduces the long-time
behavior, we can use it instead of linear prediction to extend the
raw TEBD data to longer times. In the combined TEBD+BA

(a)

k=0

TEBD 
TEBD+BA

(b)

TEBD 
TEBD+BA

k=π/5

FIG. 6. (Color online) Comparison between the spectral function
A(ω,k) at fixed momentum k calculated with raw TEBD data (red)
and TEBD extended in time with ansatz (18) with BA and mobile
impurity model parameters (blue). Results for quarter filling and
U = 10.
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approach, we extrapolate the real-time data by orders of
magnitude using the ansatz (18) with parameters taken from
the analytical approach and the fitting procedure outlined
above. Such a combined method dramatically increases the
frequency resolution of the resulting spectral function with
clearly defined singularity peaks, as show in Fig. 6, for the
case of ρ = 1/4 and U = 10. The spectral functions from
both approaches have been normalized to obey the momentum-
distribution function sum rule

∫ 0
−∞ A(ω,k) = n(k).

VI. CONCLUSIONS

In this work, we have studied the single particle Green’s
function G(t,k) of the one-dimensional repulsive Hubbard
model in the metallic regime. Using matrix product state
techniques, we computed G(t,k) for a variety of band
fillings and interaction strengths for large systems (L = 300)
and times 0 < t � 60 (in units of inverse hopping). We
then employed mobile impurity models in tandem with the
Bethe ansatz solution to obtain an expression for the late
time asymptotic behavior of the Green’s function. Using
the unknown coefficients in the resulting expression as fit
parameters, we obtained an excellent agreement with the
numerical results at late times. This strongly suggests that
the mobile impurity results are not only correct, but are of
practical value. Moreover, it removes concerns based on the
poor agreement between threshold singularity exponents (in
the frequency domain) obtained by mobile impurity models
[30] and earlier dynamical DMRG computations [5]. Finally,
we have shown that, combining the numerical results at short
and intermediate times with the asymptotic form dictated by
the mobile impurity model, it is possible to obtain results
for the single particle spectral function with unprecedented
frequency resolution. We expect this observation to be of
practical use also in further cases.
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APPENDIX: CALCULATION OF THE HOLON
EDGE EXPONENT

In this Appendix, we summarize the technical details
underlying our calculation of edge exponents in the framework
of mobile impurity models. In order to simplify the notation,
we introduce the convolution ∗:

K ∗ f |k =
∫ Q

−Q

dq K(k,q) f (q),

(A1)
K(k,q) = cos(k) R[sin(k) − sin(q)],

where the function R(x) is given in (16). The action of the
transposed integral operator KT is defined by replacing K(k,q)
by K(q,k) on the right-hand side of (A1).

1. Finite-size energy levels

A key input in determining edge exponents is the finite-size
excitation spectrum in presence of a high-energy holon. The
latter can be obtained in a complete analogy to the calculation
of the excitation spectrum in the vicinity of the spinon edge in
Ref. [30]. The result of this calculation is

E(�Nc,�Ns,Dc,Ds)

= LeGS − εc(kh) − π

6L
(vs + vc) − 1

L
ε′
c(kh)δkh

+ 2πvc

L

[(
�Nc − N

imp
c

)2

4ξ 2

+ ξ 2

(
Dc − Dimp

c + Ds

2
− D

imp
s

2

)2
]

+ 2πvs

L

[
1

2

(
�Ns − �Nc

2
− N imp

s + N
imp
c

2

)2

+
(
Ds − D

imp
s

)2

2

]
. (A2)

The various quantities entering (A2) are as follows. (1) The
dressed energy for holons εc(k) is a solution to the integral
equation

εc(k) = −2 cos(k) − μ − 2u + KT ∗ εc|k. (A3)

The integration boundary Q is fixed by the requirement
εc(±Q) = 0.

(2) ε′
c(k) is the derivative of εc(k) with respect to k.

(3) eGS is the ground-state energy per site:

eGS =
∫ Q

−Q

dk

2π
εc(k) + u. (A4)

(4) The spin and charge velocities vs,c are obtained as

vs = ε′
s(∞)

2πρs(∞)
, vc = ε′

c(Q)

2πρc(Q)
,

εs(�) =
∫ Q

−Q

dk cos(k) s(� − sin(k)) εc(k),

(A5)

ρc(k) = 1

2π
+ K ∗ ρc

∣∣∣
k
,

ρs(�) =
∫ Q

−Q

dk s(� − sin(k)) ρc(k),

where s(x) = [4u cosh(πx
2u

)]−1.
(5) The dressed charge ξ = ξ (Q) is obtained from the

solution of the integral equation

ξ (k) = 1 + KT ∗ ξ

∣∣∣
k
. (A6)

(6) �Nc,s and Dc,s are quantum numbers describing the
excitation under consideration. If we only have a high-energy
holon with rapidity kh and a low-energy spinon sitting at its
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Fermi point �h = −∞, then

�Nc = 0 , �Ns = −1 , Ds = −Dc = 1
2 . (A7)

The identification (A7) follows from the definition of �Nc,s

and Dc,s in terms of the (half-odd) integers characterizing a
given solution of the Bethe ansatz equation, cf Ref. [30].

(7) The quantities N
imp
c,s and D

imp
c,s are given by

N imp
c =

∫ Q

−Q

dk ρc,1(k),

N imp
s =

∫ ∞

−∞
d� ρs,1(�) = 1

2

(
N imp

c − 1
)
, (A8)

2Dimp
c =

∫ π

Q

dk [ρc,1(−k) − ρc,1(k)]

+ i

π
ln

[
�

(
1
2 + i sin kh

4u

)
�

(
1 − i sin kh

4u

)
�

(
1
2 − i sin kh

4u

)
�

(
1 + i sin kh

4u

)]

− i

π

∫ Q

−Q

dk ρc,1(k)

× ln

[
�

(
1
2 + i sin k

4u

)
�

(
1 − i sin k

4u

)
�

(
1
2 − i sin k

4u

)
�

(
1 + i sin k

4u

)]
,

Dimp
s = 0. (A9)

(8) The “order 1” part kh of the holon rapidity is determined
by the requirement

zc(kh) = kh +
∫ ∞

−∞
d� ρs(�) θ

(
sin kh − �

u

)
= 2πIh

L
, (A10)

where Ih is a (half-odd) integer number characterizing the
momentum of the holon.

(9) The parameter δkh describes the “order 1/L” part of
holon rapidity in the finite volume, and for zero magnetic field
is given by

ρc,0(kh)δkh = −
∫ ∞

−∞

d�

2π
ρs,1(�) θ

(
sin kh − �

u

)
−

∫ ∞

−∞

d�

2π

∑
σ=±

r (σ )
sc (�) θ

(
sin kh − �

u

)

× (Qσ − σQ) + 1

2
√

2
, (A11)

where the quantities r (σ )
αc (z) satisfy

r (σ )
cc (k) = K ∗ r (σ )

cc

∣∣∣
k
+ σK(k,σQ),

r (σ )
sc (�) =

∫ Q

−Q

dk s(� − sin k) r (σ )
cc (k)

+ σs(� − σ sin Q). (A12)

2. Impurity model and field theory

The appropriate mobile impurity model for describing the
holon edge is [29] Hc + Hs + Hint + Hd , where

Hα = vα

2π

∫
dx

[
1

Kα

(
∂�α

∂x

)2

+ Kα

(
∂	α

∂x

)2
]

, (A13)

Hint =
∫

dx

[
VR − VL

2π
∂x	c − VR + VL

2π
∂x�c

]
dd†,

Hd =
∫

dx d†(x)[εc(P ) − iu∂x]d(x). (A14)

Here, the Bose fields �α and the dual fields 	α fulfill the
commutation relations [�α(x), ∂	β (y)

∂y
] = iπδαβδ(x − y), d(x)

and d†(x) are annihilation and creation operators of the mobile
impurity, which carries momentum P and travels at velocity
u. The parameters VR,L characterize the interaction of the
impurity with the low-energy charge degrees of freedom. The
parameters of Hc,s and Hd in (A14) are readily identified with
quantities obtained from the Bethe ansatz. The spin and charge
velocities vs,c are given by (A5) and the Luttinger parameters
are

Ks = 1, Kc = ξ 2

2
, (A15)

where ξ is given by (A6). The velocity of the impurity is
expressed in terms of the solutions to the integral equations
(A3) and (A5) as

u = ε′
c(kh)

2πρc(kh)
. (A16)

The position kh of the hole is fixed by the requirement

Phs(k
h) = P. (A17)

The parameters VR,L entering the expression for Hint are
determined as follows. Following Ref. [29], we remove
the interaction term Hint through the unitary transformation
U †HU

U † = exp

{
−i

∫
dx

[√
Kc

�δ+,c − �δ−,c

2π
	c(x)

− �δ+,c + �δ−,c

2π
√

Kc

�c(x)

]
d(x)d†(x)

}
, (A18)

where

(VL ∓ VR)K
∓ 1

2
c = (vc + u)�δ−,c ± (vc − u)�δ+,c. (A19)

In the resulting Hamiltonian, the impurity no longer interacts
explicitly with the charge part of Luttinger liquid, which in the
transformed basis takes the form

U †HcU = vc

2π

∫
dx

[
1

Kc

(
∂�̂c

∂x

)2

+ Kc

(
∂	̂c

∂x

)2
]

.

(A20)

The main effect of the unitary transformation is to change the
boundary conditions of the charge boson. In particular, one
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has

∂x�̂c = U †∂x�cU = ∂x�c +
√

Kc

2
(�δ+,c − �δ−,c)dd†,

∂x	̂c = U †∂x	cU = ∂x	c − 1

2
√

Kc

(�δ+,c + �δ−,c)dd†.

(A21)

Equations (A21) imply that the finite-size spectrum of (A20)
in presence of a high-energy holon impurity can be cast in the
form

�E = 2πvc

L

[(
mc + m̄c + √

2Kc
�δc,+−�δc,−

2π

)2

8Kc

+ Kc

8

(
mc − m̄c −

√
2

Kc

�δc,+ + �δc,−
2π

)2

+
∑
n>0

n(M+
n,c + M−

n,c)

]

+ 2πvs

L

[(
ms

2

)2

+
(

m̄s

2

)2

+
∑
n>0

n(M+
n,s + M−

n,s)

]
,

(A22)

see, e.g., Ref. [45], where

mα + m̄α = −
√

2

π

∫
dx 〈∂x�α〉,

mα − m̄α =
√

2

π

∫
dx 〈∂x	α〉, α = c,s. (A23)

For the holon edge threshold, we have

mc = m̄c = 0, ms = −1, m̄s = 0. (A24)

Comparing the resulting energies to the Bethe Ansatz form
(A2), we conclude that

N imp
c = −

√
2Kc

�δc,+ − �δc,−
2π

,

(A25)

2Dimp
c = −1

2
+ 1√

2Kc

�δc,+ + �δc,−
2π

.

3. Holon edge exponent

Given the phase shifts �δc,± the holon edge exponent can
be obtained following Ref. [29]. The result is

μc
0,− = 1

2
− Kc

(
1

2
− 2Dimp

c

)2

−
(
N

imp
c

)2

4Kc

. (A26)

It is useful to consider particular limiting cases.
(1) Infinite interaction limit u → ∞

lim
u→∞ μc

0,− = 1

2
− Kc

4
= 3

8
. (A27)

As expected, this agrees with Ref. [29].
(2) k → kF limit: here the result is

lim
k→kF

μc
0,− = 1

2
− Kc

(
1

2
− 1√

2Kc

)2

−
(
1 − √

2Kc

)2

4Kc

.

(A28)

This again agrees with Ref. [29] and is different from the
Luttinger liquid result

μc
− = 1

2
− 1

8

(
Kc + 1

Kc

− 2

)
. (A29)
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