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Fermi-edge singularity in chiral one-dimensional systems far from equilibrium
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We study the effects of strong coupling of a localized state charge to one-dimensional electronic channels out
of equilibrium. While the state of this charge and the coupling strengths determine the scattering phase shifts in
the channels, the nonequilibrium partitioning noise induces the tunneling transitions to the localized state. The
strong coupling leads to a nonperturbative backaction effect which is manifested in the orthogonality catastrophe
and the Fermi-edge singularity in the transition rates. We predict an unusually pronounced manifestation of the
non-Gaussian component of noise that breaks the charge symmetry, resulting in a nontrivial shape, and a shift of
the position of the tunneling resonance.
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I. INTRODUCTION

One-dimensional electronic systems are characterized by
the increased role of interactions and the formation of
gapless collective modes that breaks down the Fermi-liquid
theory. Instead, a state of matter is formed that is described
as the Luttinger liquid [1]. It has become experimentally
accessible in the quantum Hall (QH) effect systems, where
the edge states act as one-dimensional (1D) chiral conductors.
Some of the recent exciting experiments worth mentioning
include electronic Mach-Zehnder (MZ) interferometry, in
which the observed behavior of the interference oscillations
has demonstrated the inapplicability of the single-electron
description [2]; energy relaxation along the QH edge channels
with some unexplained losses in the energy transfer [3]; a
demonstration of coherence and indistinguishability of inde-
pendently emitted electrons [4]; and Coulomb interaction of a
localized state, a quantum dot (QD), with QH edge states [5],
which presents a situation that potentially contains very
interesting physics in the strong coupling regime. However, the
latter experimental work [5] has considered the system only
in thermal equilibrium, where, due to the detailed balance, the
whole range of implications of strong coupling has remained
obscured.

In this work we extend the discussion to the case far
from equilibrium, where the tunneling transitions recharging
the QD are stimulated by the nonequilibrium processes in
the edge channels. The cooperation of the two factors, the
nonequilibrium excitations in the channels and the backaction
of the quantum fluctuations of the Fermi sea due to perturbation
by an event of tunneling, is manifested in the strong coupling
regime by the orthogonality catastrophe, leading to the Fermi
edge singularity (FES) [6–8] in the transition rates, and by
their asymmetry with respect to the sign of the dissipative
component of current. This is because the strong coupling
negates the limitations of the central limit theorem, therefore
giving access to the non-Gaussian fluctuations of the charge
current that break the charge symmetry, which are normally
small [9] and difficult to observe [10,11].

An equivalent system at zero temperature has been consid-
ered in the previous initiative by Rosenow and Gefen [12].
However, we must clearly indicate that in the specific regime

defined above, our results are in sharp contradiction. Partic-
ularly, we believe that thoroughly accounting for the effects
of strong coupling might have been an issue in their case,
while they assumed that the coupling is not weak and is
even maximum possible in the most interesting case. In this
respect, our results can also be contrasted with the results of
some earlier works, in which the transition rates between a
lead and a quantum dot interacting with noisy 1D conductors
were studied, e.g., Refs. [13,14]. In Levinson’s work [13] the
interaction between the QD and a QPC (analogous to the 1D
edge channels in our case) was assumed to be weak. This
assumption narrows the effects to the Gaussian noise and
allowed a perturbative expansion in the interaction strength
to the lowest order. In turn, Ref. [14], although using strong
coupling, has adopted an assumption about the structure of the
scattering matrix that the mixing of the states arriving from
different reservoirs is weak. This led to a substantially reduced
effect of nonequilibrium noise, which only appeared as a small
correction to the power-law exponent in the transition rates.
The differences between the assumptions and the findings of
these works and ours essentially highlight the exceptionality
of the situation where strong coupling is combined with the
non-Gaussian noise.

It should be also noted that a number of exact solutions of
the FES problem exist in various systems [15,16], but they all
require the use of highly complex methods that may obscure
the physics, such as in Ref. [16], in which the distinctive
nonequilibrium phenomenon of charge symmetry breaking
in the strong coupling limit has been overlooked. In 1D
systems, however, the complexity can be largely overcome by
employing the recently developed nonequilibrium bosoniza-
tion technique [17]. This approach naturally accounts for the
interactions and allows us to reduce the problem of finding
electron correlation functions to the calculation of the full
counting statistics (FCS) of a 1D current [18], which can then
be calculated analytically for asymptotically low transmission
or reflection or numerically in a general case.

II. THE EXPERIMENTAL SETUP

The experimental setup is constructed by embedding the
1D channel as an arm of an electronic MZ interferometer
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FIG. 1. (Color online) Scheme of the experimental setup: a
Mach-Zender interferometer and a quantum dot are formed by the
1D electronic channels (solid black lines with arrows) on the edges
of the 2D electron gas (shaded areas) in the quantum Hall regime
at filling factor ν = 2. The quantum dot with the single relevant
level at ε0 close to the Fermi energy is Coulomb interacting (green
lines) with the surrounding channels a = U,D,L,R, with coupling
strengths Ua , and has a weak tunnel coupling with amplitudes τL,R

with the inner channels (red dotted lines). Voltage bias �μ is applied
to one of the outer channels, which creates nonequilibrium excitations
after the left partitioning quantum point contact (labeled QPCL) with
transparency T . The visibility of the interference pattern with respect
to the Aharonov-Bohm phase φAB is observed after the right QPC.

at ν = 2 [2,5], as shown schematically in Fig. 1. Then the
electron correlation function in the channel can be investigated
by measuring the phase shift �φAB of the Aharonov-Bohm
(AB) oscillations of the current I = I0 + I� cos(φAB) and the
visibility V0 = I�/I0. The quantum dot charge fluctuates due
to tunneling to some of the additional channels nearby. Voltage
bias �μ applied before the partitioning quantum point contact
(QPC) with transparency T creates nonequilibrium excitations
in the arms of the interferometer.

The operating regime of the setup is determined by the
interplay of the principal energy scales: the temperature β−1

of the environment, the quantum level broadening widths
|τL,R|2νF due to the tunnel coupling, and the classical level
broadening T �μ due to the nonequilibrium noise-induced
transitions, where νF is the Fermi density of states and τL,R

are the tunneling amplitudes. In the essentially quantum case,
when |τL,R|2νF is the dominant energy scale, the interferometer
is found close to its ground state, where the interference pattern
does not sustain any loss of visibility.

Assuming the low-energy limit, where the relevant energies
β−1, the voltage bias �μ, and the detuning ε0 of the quantum
dot level from the Fermi energy are much smaller than the
inverse time of flight through the interferometer, the internal
dephasing in the channels can be neglected, and therefore the
loss of coherence is solely due to the interaction with the
localized state. When the latter is occupied, the interference
pattern acquires an additional shift compared to the empty
state. This shift corresponds to the phase of scattering 2πηD

on the localized charge. Due to the transitions, this pattern is
averaged with the occupation probabilities P , 1 − P of the
quantum dot, which gives the visibility V and the phase shift

�φAB as

V ei�φAB = V0[(1 − P ) + Pei2πηD ], (1)

where the constant prefactor V0 is arbitrary, and without loss
of generality we will further refer to the normalized value of
the visibility V in the sense of assuming V0 = 1.

The experiment by Weisz et al. [5] has been realized in
thermal equilibrium with β−1 being the largest energy scale. In
that case the transition rates at the impurity satisfy the detailed
balance equation, and therefore the dot occupation probability
P = 1/(1 + eβε0 ) is Boltzmannian. This yields the result for
the visibility V ei�φAB = (ei2πηD + eβε0 )/(1 + eβε0 ) [12]. In the
limit of strong Coulomb interaction and symmetric coupling
ηD = ηU = 0.5 (see Fig. 1), complete loss of visibility is
observed, accompanied by the π -valued jump of the phase
shift of the AB oscillations when the energy level of the dot
crosses the Fermi level.

III. THE MODEL

Throughout the rest of this paper we assume the low-
temperature limit β�μ � 1, where the charge fluctuations
at the impurity are activated by the partitioning noise of the
QPCL. The low-energy physics of a QH system shown in Fig. 1
can be conveniently described by the bosonized Hamiltonian
(see, e.g., Refs. [17,19])

H =
∫

dxdy

8π2

∑
ab

∂xφa(x)Vab(x,y)∂yφb(y)

+ ε̄0d
†d + d†d

∫
dx

2π

∑
a

Ua(x)∂xφa(x)

+ d†
∑

a

τae
iφa (0) + H.c., (2)

where the Coulomb interaction potential Vab(x,y) of the charge
densities ρ(x) = ∂xφa(x)/2π at different points of channels a

and b governs the propagation of the excitations along the
edge channels; the bosonic fields φa satisfy the commutation
relations [∂xφa(x),φb(y)] = 2iπδabδ(x − y), and indexes a,b

enumerating the fields take the values L,R,U,D on the
corresponding channel to the left of, to the right of, up from,
or down from the quantum dot. The bare level energy of the
quantum dot ε̄0 is determined by the applied gate voltage,
which is the key controllable parameter of the system. The
quantum dot charge d†d interacts with the charge densities on
the channels via the Coulomb potentials Ua(x). The amplitudes
of tunneling from channel a = L,R are denoted by τa , and
eiφa (0) are the annihilation operators of an electron at x = 0,
chosen at the location of the quantum dot.

When the quantum level broadening is smaller than the
classical broadening |τa|2νF � T �μ, tunneling between the
channels and the dot can be taken into account perturbatively.
The remaining part of the Hamiltonian can be diagonalized by
eliminating the Coulomb interaction term with the help of a
standard unitary transformation H̃ = eiSHe−iS , where

S = d†d

∫
dx

∑
a

σa(x)φa(x). (3)
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The functions σa(x) are chosen with the aim to cancel
the interaction part d†d

∫
dx

∑
a Ua(x)∂xφa(x)/2π of the

Hamiltonian by the term produced after the transformation
of the first line in Eq. (2). This requirement is expressed by the
integral equation

Ua(x) = −
∫

dx ′ ∑
b

Vab(x,x ′)σb(x ′). (4)

On the other hand, the Coulomb potential along channel a,
created by the impurity charge and the arbitrary charge density
distribution ρb(x) on channel b, is

ϕa(x) = Ua(x)d†d +
∫

dx ′ ∑
b

Vab(x,x ′)ρb(x ′), (5)

from which it follows that the solution σb(x) of Eq. (4)
is nothing else than the charge density ρb(x) = σb(x), ac-
cumulated on the grounded channels ϕa(x) = 0, screening
the charge present on the quantum dot, i.e., when d†d = 1.
These densities are naturally localized in the interaction region
around the quantum dot at x = 0. The total charges ηa ≡
− ∫

dxσa(x) = ∑
b V −1

ab Ub|k=0 can be expressed in terms
of the zero-frequency Fourier components of the potentials
Ua(x). In the absence of other metallic systems in the proximity
of the dot, the electroneutrality principle implies that

∑
a ηa =

1. This relation repeats the statement of the Friedel sum
rule [20] via the direct connection between the additional phase
�φa = 2πηa acquired by an electron passing by the dot and
the charges ηa .

As a result of the transformation, the tunneling part of the
Hamiltonian is rendered in the form

Ht =
∑

b

τbd
† eiφb(0)−i

∑
a ηaφa (0) + H.c., (6)

where the fields φa(x) have been approximated by their value
φa(x) ≈ φa(0) at x = 0 since in the low-energy limit the fields
change on distances longer than the size of the interferometer
and thus are almost constant in the region of interaction. The
transformation also shifts the parameter ε̄0, which determines
the time evolution of the annihilation operator d(t) by the static
self-interaction energy of the accumulated charge density ε0 =
ε̄0 + ∑

a

∫
dxUa(x)σa(x). The physical quantities, such as the

visibility, will be investigated as functions of this parameter.
The rates of the tunneling transitions between the quantum

dot and the side channels are found from the Golden Rule
expression

�± =
∫

dt 〈∓|Ht (0)Ht (t)|∓〉, (7)

where |−〉 and |+〉 denote the states of the whole system
unperturbed by the tunneling when the quantum dot is empty
and occupied, respectively. Following the nonequilibrium
bosonization approach [17], the fields φa(xL,t) = −2πQa(t)
are expressed in terms of the total charges Qa(t) that are
transmitted across a certain cross section, such as right after
the partitioning QPC for φD(xL,t) on the biased channel, or
the corresponding cross sections of the other channels that
are in the ground state. Tunneling in the beam splitter QPCs
is therefore taken into account nonperturbatively through the
boundary conditions at x = xL (see also Ref. [21]), and the

correlation functions in Eq. (7) can be expressed in terms of
the correlation functions of these charges Q(t) and thus via
the FCS generating function [18]

χ (λ,t) = 〈eiλQ(t)e−iλQ(0)〉, (8)

which is defined for t > 0 and is continued for negative
times as χ (λ, − t) = χ∗(λ,t). The total rates are therefore
�± = ∑

b �b±, where b = L,R and

�b± = |τb|2
∫

dt e∓iε0tχb( ± 2π (1 − ηb),t)
∏
a �=b

χa(∓2πηa,t).

(9)

Here χa(λ) ∝ (it + 0)−( λ
2π

)2
for a �= D are the ground-state

correlation functions on the unbiased channels. The
dimensional prefactor is nonuniversal and will be omitted
from here on.

For the nonequilibrium excitations from the partitioning
QPC, the generating function is not trivial but can be found
analytically in the long-time Markovian limit as a classical
probability game result known as the Levitov-Lee-Lesovik
formula [18]:

log χD(λ,t) = − λ2

4π2
log(it + 0) + �μt

2π
log(R + T eiλ).

(10)

As a long-time asymptotic, it is applicable when the main
contribution to the integrals in Eqs. (9) comes from the
long times t ∼ 1/|ε0 − ε�

0| � �μ−1, which requires small
transparency T � 1 or small reflection 1 − T � 1, and small
transmitted energies |ε0 − ε�

0| � �μ. Here ε�
0 is the charge

degeneracy point, i.e., the resonance energy, and will be
discussed later. One therefore obtains the result

�b±(ε0) ∝ sgn(αb)Im

[
A±

(ε0 + iγ )αb

]
, (11)

where the opposite rates �b+ and �b− are distinguished
by the factors A+ = −1 and A− = eiπαb , respectively. The
power-law exponent in the denominator is the conventional
FES absorption-rate exponent

αb = 1 −
[

(1 − ηb)2 +
∑
a �=b

η2
a

]
= 2ηb −

∑
a

η2
a, (12)

expressed in terms of the accumulated charges, related to the
scattering phases 2πηa on the impurity.

The singularity is smeared by the real part of

γ = −�μ

2π
log[1 + T (ei2πηD − 1)], (13)

while the imaginary part of γ defines the shift of the level
energy ε0 depending on the transparency T (see Fig. 5)
and determines the positions of the peaks of �b±(T ), which
are also discussed later. In the free-fermion case αb = 0
without the Coulomb interaction, the rates are reduced to the
corresponding step functions.

Interaction with the same channel a, to which the tunneling
occurs, provides the positive term 2ηb to the exponent αb,
the so-called Mahan contribution [6], which favors low-
energy transitions, leading to a more singular character of the
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FIG. 2. (Color online) The transition rates �+ and �− (in arbitrary units) as functions of the level energy parameter ε0 for symmetrical
screening ηD = 0.5 and (left) exponent α = 0.5 and (right) α = −0.5 at different transparencies T = 0.15 (blue) and T = 0.85 (red). Analytic
results in the Markovian limit are shown by the dashed lines, and the numerical data are shown by the solid lines. As expected for screening
ηD = 0.5, the positions of the corresponding peaks for T → 0 and T → 1 are located at ε0 = 0 and ε0 = −�μ/2, respectively. While the
analytic curves maintain consistent power-law tails on both sides, the nonequilibrium effects are represented by the characteristic suppression
of the tails of the numerical curves; see, for example, T = 0.85 at ε = �μ/2 (red line, top left panel and inset) and at ε = −�μ for T = 0.15
(blue line, bottom left panel and inset). Note the symmetry (15) between rates �+ and �− for small and large transparency.

transition rate profile as in Fig. 2 for the positive exponent
αb = 0.5. Interaction with other channels, a �= b, reduces the
exponent αb by

∑
a η2

a , representing the Anderson contribu-
tion [7], which favors higher-energy transitions; see Fig. 2 for
the negative exponent αb = −0.5, which is approximately the
value in the experiment [5]. However, since αb depends on
the distribution of the couplings Ua(x) between the channels
surrounding the quantum dot via the screening charges ηa , by
switching from weak tunneling to weak backscattering of the
inner channels, one can shift the balance and achieve positive
values αb > 0, changing qualitatively the energy dependence
of the transition rates. Without loss of generality we will omit
index b in �± and α, as in the case where there is tunneling to
only one side channel.

IV. EXACT NUMERICAL CALCULATIONS

To complement the limited range of applicability of the
Markovian approximation, we use the numerical data obtained
in Ref. [22]. It is valid for intermediate transparencies 0 < T <

1 and shorter times t ∼ 1/�μ.
The approach is based on the calculation of the FCS

generator of the transmitted charges at the left QPC [17,19],
expressed in terms of a free-fermion determinant (see

Ref. [18]):

〈eiλQ(t)e−iλQ(0)〉 = det{1 − f (ε) + exp[iλP (t) ⊗ S(ε)]f (ε)},
(14)

where f (ε) is the electron distribution function, P (t) is the
projector on the time interval [0,t], and S(ε) is the scattering
matrix of the QPC. Such a determinant can then be evaluated
numerically [22]. Although the data are currently available for
one special value of a phase shift of 2πηD = π , that happens
to be the value relevant for the existing experiment [5].

Since the Markovian approximation is valid for asymptot-
ically small transparency or reflection, a direct comparison
with the numerical calculations at finite transparency cannot
be expected. Nevertheless, we still see a surprisingly adequate
quantitative agreement for the transition rate profiles at
transparencies T = 0.15 and T = 0.85 (see Fig. 2). While
the shape of the curves remains very similar, note the shift
of the resonance position of the solid lines compared to the
dashed lines, which is related to the imaginary part of Eq. (13).

In the Markovian limit all the rates have identical energy
profiles �±(T ) and �±(1 − T ) (see dashed lines in Fig. 2), but
in the numerics (solid lines) the opposite direction rates for the
same transparency �±(T ,ε0) are clearly distinct, emphasizing
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the specific correspondence

�+(T ,ε0) = �−(1 − T , − ε0 − �μ/2), (15)

which reflects the particle-hole symmetry, while the simple
charge symmetry �+(T ,ε0) ↔ �−(T ,ε0) is broken.

The structure of the transition rate tails has an origin
similar to that of the dynamic Coulomb blockade effect. In
the present case it is sensitive to the sign of the charge of the
edge excitations. Using the example of the �+ rate at large
partitioning transparency 1 − T � 1 (solid red line in Fig. 2),
the holelike excitations on the arm of the interferometer attract
the electron on the dot, assisting the energetically unfavorable
tunneling transition from the side channel onto the dot and
enhancing the tail at ε0 > −�μ/2, even compared to that
of the Markovian limit result (dashed line). However, away
from the resonance |ε0 − ε�

0| > Re(γ ), the effects become
perturbative in transparency T , and the tunneling is then
enabled by single-particle excitations with a maximum energy
of �μ; thus the tail is eventually suppressed at ε0 = �μ/2.
Conversely, transitions onto the dot at low transparency T � 1
are disadvantaged by the electronlike excitations, leading to
the rapid decay of the �+ rate at ε0 > 0. The �− rates behave
accordingly, in agreement with the symmetry (15).

V. VISIBILITY OF THE AB OSCILLATIONS AND
TUNNELING CURRENTS

The visibility is expressed (1) in terms of the stationary
occupation probability P = �+/(�+ + �−), which is a ratio
of the transition rates. For ηD = 1/2 it demonstrates complete
loss of coherence in the resonances (see Fig. 3) and is
equivalent to the detector function discussed in Ref. [9].
The previous effect of suppression of the transition rate tails
reappears in the rapid reconstruction of the visibility in the

FIG. 3. (Color online) The visibility profiles found from the
analytics (dashed lines) and numerics (solid lines) for transparencies
T = 0.15 (blue) and T = 0.85 (red) for α = −0.5 and screening
ηD = 0.5 as in the experiment [5], corresponding to the phase shift
of π on the upper arm; hence the complete loss of visibility is
achieved. Each analytic curve has a mirror symmetry and is also
identical to its equivalent for α = 0.5 due to the symmetry incidental
of the Markovian approximation. The numerical results manifest
a well-pronounced asymmetry of the dip due to the non-Gaussian
effects at strong coupling.

numerical results, shown in Fig. 3. We stress that unlike in
Ref. [9] in the single-photon, weak-coupling regime, in our
case the physical nature of this threshold effect is based
on strong Coulomb coupling and is related to the finite
energy �μ carried by the partitioning excitations in the
interferometer. The charge sign dependence of the coupling
therefore leads to the pronounced asymmetry of the visibility
dip seen in the numerical results due to the odd cumulants of
the nonequilibrium noise.

In the long-time limit, however, the transition rates are
insensitive to the charge sign, and the branches of the visibility
dip are symmetric (see dashed lines in Fig. 3). For ηD = 0.5,
the resulting visibility profile (1) becomes

V ei�φAB = 1 − 2Im[(ε0 + iγ )−α]

Im[(1 + eiπ(1−α))(ε0 + iγ )−α]
. (16)

The branches of the visibility dip exhibit a crossover
between the two asymptotes: V ∼ 2|ε0 − ε�

0|/πθ1, with
the effective temperature θ1 = Reγ (2/πα) tan(πα/2) at
|ε0 − ε�

0| � T �μ, and V ∼ 1 − 2θ2/π |ε0 − ε�
0|, with θ2 =

Reγ [πα/ sin(πα)] at T �μ � |ε0 − ε�
0| � �μ. Both temper-

atures θ1 and θ2 become equal to the “free-fermion” noise
temperature Reγ of the weak-coupling limit |α| � 1 when
the transition rates become regular Lorentzians [9]. Note that
even at fixed upper channel screening ηD and a phase shift
of π , the exponent α can still vary due to the remaining
couplings.

Since the power-law factor (ε0 + iγ )1−α enters homo-
geneously in the transition rates (11), it is canceled in
the tails of the visibility profile (16). Moreover, one can
demonstrate that for the Markovian limit there is a symmetry
VM (α) = VM (−α), even though the transition rate profiles for
α = 0.5 and for α = −0.5 are unmistakably distinct, as can
be seen in Fig. 2. This observation hints that the visibility
itself is not the most fully characteristic quantity for an
experimental consideration. We therefore suggest that apart
from the visibility, other measurements can be very interesting,
such as the linear-response tunneling current (17) through the
quantum dot. For this, a small bias δμ is applied to one of the
tunneling contacts, and the linear-response tunneling current
Iβ = P0�β+ − P1�β− through the quantum dot is measured:

IL = �L+�R− − �R+�L−
�R+ + �R− + �L+ + �L−

. (17)

Assuming symmetric tunneling couplings τL = τR = τ

and charge screening αL = αR = α, the resulting differential
conductance GL = ∂IL/∂δμ then retains the signature of the
FES power law in the Lorentzian-like peak,

G ∝ εα−1
F

|ε0 + iγ |α+2

Re(γ )

cos
{
α
[

π
2 − arg(ε0 + iγ )

]} , (18)

with the power-law tails |ε0 − ε�
0|α+2 and the resonance

width Reγ = −�μ/2π log |R + T ei2πηD | due to the non-
equilibrium noise (see Fig. 4). However, due to the suppression
of the tails at |ε0 − ε�

0| ∼ �μ indicated by the numerical
results, the power law spans only the limited segment of
T �μ < |ε0 − ε�

0| < �μ, which can prove to be problematic
for getting a good fit at moderately small transparencies T .
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FIG. 4. (Color online) The tunneling conductance (in arbitrary
units) for T = 0.15 (blue) and T = 0.85 (red) for the Markovian limit
(dashed lines) and the numerics (solid lines) for (top) α = 0.5 and
(bottom) α = −0.5. Notice how the numeric curves hit the horizontal
axis at ε0 = �μ and ε0 = −�μ/2. For α = −0.5 the Markovian
limit breaks down considerably sooner, which explains the noticeable
discrepancy between the numerics and analytic plots.

Alternatively, spectroscopy of the quantum dot can be
performed by filling or draining the dot with a finite bias
in one lead at highly asymmetric tunneling couplings (see,
for example, the recent experiment in [23]) and measuring
directly the transition rates in one of the contacts. Then the
exponent can be accessed from the nonvanishing tails, and
the characteristic shape of the decaying tails should also be
observable.

A particularly notable feature, related to the phase transition
studied in Ref. [17], is the dependence of the position ε�

0
of the resonance, where the visibility is maximally reduced,
on the transparency T of the partitioning QPC T . At full
transparency, the arm of the interferometer acts as an additional
gate with the voltage �μ, which electrostatically raises the
energy level of the quantum dot by ηD�μ. The resonance
therefore occurs at a lower value of the original parameter
ε�

0 = −ηD�μ. This corresponds to the shift obtained in
the Markovian approximation as the imaginary part Imγ

of Eq. (13). For ηD = 0.5 the argument of the logarithm
is real, and Imγ jumps from zero for T < 0.5 to −�μ/2
for T > 0.5 [24]. If the higher cumulants in the correlation
function (8) are suppressed for some reason, one can also
consider the Gaussian approximation that predicts a linear
drift of the level energy on the QPC transparency (dotted line in
Fig. 5). The numerical results show a behavior that is somewhat
intermediate between the Markovian and the Gaussian limits,

FIG. 5. (Color online) The position ε�
0/�μ of the visibility dip

center as a function of the QPC transparency. Solid lines are the
numerical results for α = 0.5 (blue) and α = −0.5 (red). The dashed
line is for the Markovian limit, although it is applicable only
asymptotically for T → 0 and T → 1. The dotted line presents the
Gaussian case with suppression of the higher cumulants, reflecting
simply the average charge density on the channel as the partitioning
QPC transparency changes.

suggesting that for α = 0.5 the higher cumulants have more
influence than they do for α = −0.5. It is therefore partic-
ularly interesting that the actual profiles are measured in an
experiment.

VI. SUMMARY

A quantum Hall edge channel, embedded in an electronic
interferometer with a controllable Coulomb interaction with an
artificial impurity, is a very promising system for investigating
the interaction and noise effects on the Fermi-edge singularity
manifestations in a one-dimensional electronic system. In
the low-energy limit, in which there is no intrinsic loss
of coherence on the edge channels, the visibility of the
interference pattern is only suppressed due to the averaging of
the phase of scattering on the fluctuating impurity charge (1).
Experimental efforts to study such a system have been
undertaken recently [5], although they concentrated on the
thermal equilibrium case, in which the observed visibility
is trivial due to the thermal occupation of the impurity. We
extend the discussion to the case where the transitions at
the impurity are induced by the nonequilibrium partitioning
noise created in the interferometer and the backaction of
the Fermi sea perturbations due to tunneling. Both factors
are strong and are taken into account nonperturbatively. The
nonequilibrium bosonization technique [17] is the framework
of choice, which allows us to express all the electron correla-
tion functions in terms of the full counting statistics (8) of the
charge transmitted through the beam splitter. The analytical
expression for the FCS (10) is used in the Markovian limit
for weak tunneling or backscattering in the partitioning QPC,
and for intermediate transparencies the FCS is computed
numerically.

We have provided a comprehensive description of the
system in the given regime. Even in the long-time Markovian
limit, the visibility profile (Fig. 3) is found to nontrivially
depend on both the FES exponent (12) and the parameters
of the nonequilibrium noise, which are determined by the
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partitioning QPC transparency. Beyond the long-time limit, as
revealed by the numerical calculations, we discover a promi-
nent manifestation of the non-Gaussian component of noise.
In fact, at strong Coulomb coupling this becomes a dominant
effect and leads to a particular kind of particle-hole symmetry,
which also causes a pronounced asymmetry between the
tunneling rates at small transmission versus small reflection of
the QPC. Consequently, the non-Gaussian effects appear in the
asymmetry of the visibility dip branches and the characteristic

dependence of the dip position on the QPC transparency
(Fig. 5). Considering all the predicted features, we can strongly
recommend further experimental investigations with this type
of setup operating out of equilibrium.
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