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We study the classification for a large class of interacting fermionic and bosonic symmetry-protected topological
(SPT) states, focusing on the cases where interaction reduces the classification of free-fermion SPT states. We
define a SPT state as whether it is separated from the trivial state through a bulk phase transition, which is a
general definition applicable to SPT states with or without spatial symmetries. We show that in all dimensions
short-range interactions can reduce the classification of free-fermion SPT states, and we demonstrate these results
by making a connection between the fermionic and bosonic SPT states. We first demonstrate that our formalism
gives the correct classification for several known SPT states, with or without interaction, and then we generalize
our method to SPT states that involve the spatial inversion symmetry.
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I. INTRODUCTION

A symmetry-protected topological (SPT) state 1 is usually
defined as a state with completely trivial bulk spectrum but
nontrivial (e.g., gapless or degenerate) boundary spectrum
when and only when the system including the boundary
preserves certain symmetry [1–4]. The most well-known SPT
states include the Haldane phase of spin-1 chain [5,6], quantum
spin Hall insulator [7,8], topological insulator [9–11], and
topological superconductor such as helium-3 B-phase [12–15].
So far all of the free-fermion SPT states have been well under-
stood and classified in Refs. [16–20], and recent studies sug-
gest that interaction can reduce the classification of fermionic
SPT states [21–28]. Unlike fermionic systems, bosonic SPT
states do need strong interaction to overcome its tendency to
form a Bose-Einstein condensate. Most bosonic SPT states
can be classified by symmetry group cohomology [1–4],
Chern-Simons theory [29,30] and beyond [30], semiclassical
nonlinear σ model [31], and cobordism theory [32,33].

The definition for SPT states we gave above is based on
the most obvious phenomenology of the SPT states, and it
gives SPT states a convenient experimental signature, which
is their boundary state. Indeed, the quantum spin Hall insu-
lator and three-dimensional (3D) topological insulator were
verified experimentally by directly probing their boundary
properties [34–37]. However, if a SPT state needs certain
spatial symmetry [38–46], its boundary may be trivial because
this spatial symmetry can be explicitly broken by its boundary.
In this work we will study SPT states both with and without
spatial symmetries, thus in our current work, a SPT state is
simply defined as a gapped and nondegenerate state that must
be separated from the trivial direct product state defined on the
same Hilbert space through one or more bulk phase transitions,
as long as the Hamiltonian always preserves certain symmetry.

In this work we study both strongly interacting fermionic
and bosonic SPT states. In particular, we focus on the insta-
bility of free-fermionic SPT (fFSPT) states against interaction
and investigate their interaction-reduced classifications. More

1Sometimes this kind of states are also called “symmetry protected
trivial” states in literature, depending on the taste and level of
terminological rigor of authors.

exotic fermionic SPT states that cannot be reduced from
free-fermion descriptions [28,47,48] are not discussed in this
work. The interaction-reduced classification of interacting
fermionic SPT (iFSPT) states can be derived by making
connection to bosonic SPT (BSPT) states with the same
symmetry, 2 and we will argue that the classification of BSPT
states implies the classification of their fermionic counterparts.
More specifically, since BSPT states always need strong
interaction, their classification tells us how interaction affects
the classification of FSPT states. When describing BSPT
states, we will adopt the formalism developed in Ref. [31],
namely we describe a d-dimensional BSPT state using an
O(d + 2) nonlinear σ model (NLSM) field theory with a
topological � term, and we only focus on the stable “fixed
point” states with � = 2πk. Depending on integer k, these
fixed points can correspond to either trivial or BSPT state.
This formalism fits well with our definition of SPT states: It
very naturally tells us whether two “fixed point” states can
be connected with or without a phase transition. This is an
advantage that we will fully exploit in our work.

We will first demonstrate our method in Sec. II with
well-known examples such as 1D Kitaev’s Majorana chain
with ZT

2 symmetry [21,22], 2D p ± ip topological supercon-
ductor (TSC) with Z2 symmetry [23–26], and 3D topological
superconductor 3He-B with ZT

2 symmetry [27,28]. Previous
studies show that although all these states haveZ classification
without interaction, their classifications will reduce to Z8, Z8,
and Z16 under interaction. We will demonstrate that these
interaction-reduced classifications naturally come from the
Z2 classification of the 1D Haldane spin chain, 2D Levin-Gu
paramagnet [1,49], and 3D bosonic SPT state withZT

2 symme-
try [50,51]. More precisely, the Z2 classification of the BSPT
states give us a necessary condition for interaction-reduced
classification of their fermionic counterparts. Moreover, the
analysis of BSPT states also leads to a systematic construction

2More precisely speaking, we consider the BSPT state with a
symmetry action that is compatible with (but not identical to) the
symmetry action on the FSPT state. For instance, ZT

2 symmetry with
T 2 = −1 has no bosonic realization, so the corresponding ZT

2 action
on BSPT state must be derived from the ZT

2 action on the FSPT state
case by case.
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of the specific four-fermion interaction that likely gaps out the
bulk critical point between the free-fermion SPT (fFSPT) state
and the trivial state in the noninteracting limit. In Secs. III–V
we will generalize our method to SPT states that involve the
spatial inversion symmetry. By making connection to BSPT
states, we will show that interaction-reduced classification
occurs very generally for inversion SPT states in all dimensions
with a systematic pattern.

II. SPT STATES WITHOUT SPATIAL SYMMETRY

A. From the Kitaev chain to the Haldane chain

1. Lattice model and bulk theory

The Kitaev Majorana chain is a 1D free-fermion SPT
(fFSPT) state protected by the time-reversal symmetry ZT

2
with T 2 = +1 (symmetry class BDI) [52]. For generality,
we consider ν copies of the Majorana chain. The model is
defined on a 1D lattice with ν flavors of Majorana fermions
χiα (α = 1, . . . ,ν) on each site i,

H×ν =
ν∑

α=1

∑
〈ij〉

iuijχiαχjα, (1)

with the bond strength uij = u[1 + δ(−)i] alternating along
the chain. Each unit cell contains two sites, labeled by A and B,
as shown in Fig. 1. The Hamiltonian is invariant under the time-
reversal symmetry ZT

2 , T : χAα → χAα,χBα → −χBα,i →
−i, which flips the sign of the Majorana fermions on the B

sublattice followed by the complexed conjugation.
Fourier transform to the momentum space and introduce the

basis χkα = (χkAα,χkBα)ᵀ, the Hamiltonian Eq. (1) becomes

H×ν = 1

2

ν∑
α=1

∑
k

χ
ᵀ
−kα

[
0 −iu∗

k

iuk 0

]
χkα, (2)

with iuk = iu(1 + δ) − iu(1 − δ)e−ik , and the time-reversal
symmetry acts as T : χkα → σ 3χ−kα . In this paper, we use
σ 1, σ 2, and σ 3 to denote the Pauli matrices. When δ � 1,
in the long-wavelength limit (k → 0), iuk → u(−k + 2iδ), so
the low-energy effective Hamiltonian reads

H×ν = 1

2

ν∑
α=1

∫
dx χᵀ

α (i∂xσ
1 + mσ 2)χα. (3)

Here we have set u = 1 and introduced m = 2δ as the
topological mass. The time-reversal symmetry operator may
be written as T = Kσ 3, where K−1iK = −i implements the
complex conjugation by flipping the imaginary unit.

On the free-fermion level, the 1D BDI class FSPT states are
Z classified [16,17] as indexed by a bulk topological integer,

N =
∫

dk

4πi
Tr σ 3G(k)∂kG(k)−1, (4)

A B A B A B
unit cell

u1 u2

FIG. 1. Lattice model of the Kitaev Majorana chain.

where G(k) = −〈χkχ
ᵀ
−k〉 is the fermion Green’s function at

zero frequency. Given the model in Eq. (2), the topological
number N = ν(1 − sgn δ)/2 is identical to the fermion flavor
number ν when δ < 0. Every topological number N ∈ Z
indexes a distinct fFSPT phase, which, with respect to the
symmetry, cannot be connected to each other without going
through a bulk transition.

2. Corresponding BSPT state

However with interaction, the classification can be reduced
from Z to Z8, meaning that eight copies of the Majorana chain
(N = 8) can smoothly connect to the trivial state (N = 0)
without closing the bulk gap in the presence of interac-
tion. This interaction-reduced classification was discovered
in Refs. [21,22]. But we will show it again by making a
connection to the boson SPT (BSPT) states, as our approach
can be generalized to higher spacial dimensions.

Let us start by showing that four copies of the Majorana
chain (ν = 4) can be connected to the Haldane spin chain [53]
a ZT

2 BSPT state in 1D. In this case, we have four flavors
of Majorana fermion per site, denoted χiα (α = 1, . . . ,4),
from which we can define a spin-1/2 object on each site,
as Si = (Si1,Si2,Si3) = χ

ᵀ
i (σ 12,σ 20,σ 32)χi in the basis χi =

(χi1,χi2,χi3,χi4)ᵀ.3 One can couple the staggered component
of the spin to an O(3) order parameter ni on each site,
as HBF = −∑

i(−)ini · Si . Then the low-energy effective
Hamiltonian for four copies of the Majorana chain coupled
to the n field reads (which we call the fermionic σ model or
FSM)

H×4 = 1

2

∫
dx χᵀh×4χ,

h×4 = i∂1σ
100 + mσ 200 + n1σ

312 + n2σ
320 + n3σ

332,

(5)

where χ = (χA,χB)ᵀ. The time-reversal symmetry operator
T = Kσ 300 necessarily requires us to flip the order parameters
n → −n under the time reversal. Following the calculation in
Ref. [54], after integrating out the fermion field χ , we arrive at
the effective theory for the boson field n, which is a nonlinear
σ model (NLSM) with a topological � term at � = 2π , given
by the following action:

S[n] =
∫

dτdx
1

g
(∂μn)2 + i�

4π
εabcna∂τnb∂xnc. (6)

g−1(∂νn)2 describes the remaining dynamics in the bosonic
sector. Presumably, we work in the large g → ∞ limit, such
that the n field is deep in its disordered phase. With � = 0,
the Hamiltonian of Eq. (6) reads H = ∫

dx gL2 + 1
g

(∇xn)2

[where L(x) is the canonical conjugate variable of n(x) at
each spatial position x], and since g flows to +∞ under
coarse-graining, in the long-wavelength limit the ground-state
wave function of this theory is a trivial direct product state
|�〉 = ∏

x |l = 0〉 [51] with a fully gapped and nondegenerate

3Through out this paper, we use the notation σ ijk··· ≡ σ i ⊗ σ j ⊗
σ k ⊗ · · · for the Kronecker product (direct product) of the Pauli
matrices, where σ 1, σ 2, σ 3 stands for the three Pauli matrices
respectively while σ 0 denotes the 2 × 2 identity matrix.
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spectrum in the bulk and at the boundary [on each coarse-
grained spatial point, L2 = l(l + 1)]. However, with � = 2π ,
Eq. (6) describes a nontrivial BSPT state for the n field and
is equivalent [5,6,55] to the Haldane phase of spin-1 chain
protected by the spin-flipping time-reversal symmetry T :
n → −n. In fact, the spatial boundary of Eq. (6) with � = 2π

is a (0 + 1)d O(3) NLSM with a Wess-Zumino-Witten (WZW)
term at level k = 1, and by solving this theory exactly, we
can demonstrate explicitly that the ground state of the spatial
boundary of Eq. (6) with � = 2π is doubly degenerate [31,55],
which is equivalent to the boundary ground state of four copies
of Kitaev’s chain under interaction. In the low-energy limit,
the boundary of four copies of the FSPT states is faithfully
captured by the bosonic field n. Thus we have established
a connection between four copies of Majorana chain and a
single copy of Haldane chain, bridging the FSPT and BSPT
states in 1D.

Using the knowledge of the better-understood BSPT states,
we can gain insight into the interacting fermion SPT (iFSPT)
states. If eight copies of the iFSPT states is a trivial phase,
then necessarily the bosonic theory of eight copies of the
FSPT states derived using the same method must also be
a trivial state. Indeed, because the Haldane phase has a
well-known Z2 classification [2], it is expected that two copies
of the Haldane chain can be smoothly connected to the trivial
state without breaking the symmetry. This can be shown
by coupling two layers of the Haldane chain with a large
interlayer antiferromagnetic interaction (which preserves the
ZT

2 symmetry), as described by the action

S = S[n(1)g] + S[n(2)] + Scp,

Scp =
∫

dτdx An(1) · n(2),
(7)

when A → +∞, n(1) and n(2) are locked into opposite
directions, i.e., n(1) = −n(2) = n. Then the effective NLSM for
n has � = 0 due to the cancellation of the � angles between
the two layers. So two copies of the Haldane chain can be
trivialized by the A coupling.

Also, when the two Haldane phases in Eq. (7) are decoupled
from each other (A = 0), both Haldane phases in Eq. (7) are
separated from the trivial phase (� = 0) with a critical point at
� = π . However, with A �= 0, this critical point is also gapped
out by the A coupling;4 thus with A > 0, the entire phase
diagram of Eq. (7) has only one trivial phase. This observation
already suggests that eight copies of Kitaev’s Majorana chain
is trivial under interaction.

3. Bulk transition

Now let us carefully investigate the interactions in the
fermion model. Two copies of the Haldane chain would
correspond to eight copies of the Majorana chain. Recall the
relation ni ∼ (−)i〈Si〉 on the mean-field level; the interlayer
coupling A can be immediately ported to the fermion model

4When � = π , both S[n(1)] and S[n(2)] can be viewed as the low
energy field theory of spin-1/2 chains. Then the antiferromagnetic
inter-chain coupling A will drive the system into a fully gapped state
which is a direct product of inter-chain spin singlet on every site.

A BA B

A B

0 Δ

J

FIG. 2. Phase diagram of the interacting Majorana chain at ν = 8.
The bulk criticality at the origin can be avoided if interaction is
allowed. Each horizontal chain is four copies of the Majorana chain,
equivalent to a Haldane chain. The vertical bound is the on-site spin-
spin interaction. A and B labels the sites in a unit cell. Gray ovals
mark out the spin-singlet dimers.

as an on-site interaction among eight flavors of Majorana
fermions,

Hint = J

4

∑
i

S(1)
i · S(2)

i

= J
∑

i

(−χi1χi2χi5χi6 + χi1χi2χi7χi8 − χi1χi3χi5χi7

−χi1χi3χi6χi8 − χi1χi4χi5χi8 + χi1χi4χi6χi7

+χi2χi3χi5χi8 − χi2χi3χi6χi7 − χi2χi4χi5χi7

−χi2χi4χi6χi8 + χi3χi4χi5χi6 − χi3χi4χi7χi8), (8)

with J > 0. We should expect that eight copies of the Majorana
chain can be connected to the trivial state under this interaction,
as the same interaction can trivialize the BSPT in the NLSM.

Such an expectation is obvious in the spin sector. In the
free-fermion limit, depending on the sign of δ, the ν = 8
fFSPT states may correspond to two different spin-singlet
dimerization patterns: the intra-unit-cell dimerization (δ > 0
trivial state) or the inter-unit-cell dimerization (δ < 0 SPT
state), as shown in Fig. 2. While the strong on-site interaction
in Eq. (8) will lead to a third pattern, i.e., the on-site (interlayer)
dimerization, see Fig. 2. The three patterns are connected
by the ring exchange of the dimmers. However, it is known
that the ring exchange is a smooth deformation and will not
close the spin gap, so, at least in the spin sector, the δ < 0 and
the δ > 0 SPT states can be smoothly connected.

To show that the charge gap also remains open, we can
perform an explicit calculation based on the lattice model
Eq. (1) in the strong dimerization limit δ = ±1, such that
the 1D chain is decoupled into independent two-site segments.
In each segment, the interacting fermion system can be exact
diagonalized. Then it can be shown that the charge gap indeed
persists as u is tuned to zero in the present of the interaction
J , as shown in Fig. 3. So one can smoothly connect the N = 8
fFSPT state to the N = 0 fFSPT state in three steps: (i) turn
on J and turn off u, (ii) change the sign of δ, and (iii) turn
on u and turn off J . The bulk gap will never close during this
process. Thus the whole phase diagram in Fig. 2 is actually
one phase.

In conclusion, we have demonstrated that the classification
of the 1D FSPT states with the (BDI class) time-reversal
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FIG. 3. (Color online) Many-body energy levels of the two-site
segment by exact diagonalization. From the weak interaction limit
(left) to the strong interaction (right) limit, the many-body gap never
closes.

symmetry is reduced from Z to Z8 under interation. We obtain
the iFSPT classification by making connection to the BSPT
classification. This approach can be readily generalized to
higher spacial dimensions in the following. Moreover, the
way that the BSPT state can be trivialized in the NLSM
naturally provides us the correct fermion interaction that is
needed to trivialize the FSPT states, which can be much
more general than the currently known Fidkowski-Kitaev type
of interaction. And this interaction can gap out the critical
point m = 0 in Eq. (3), which is eight copies of nonchiral
1D Majorana fermions. This bulk analysis is particularly
suitable to study the crystalline SPT states, which may not
have symmetry-protected physical boundary modes.

B. From 2D TSC to Levin-Gu paramagnet

1. Lattice model and bulk theory

Now we turn to the 2D example of the p ± ip TSC protected
by aZ2 symmetry (symmetric class D) [52]. The px ± ipy TSC
can be viewed as both layers of the px + ipy and the px − ipy

TSC’s [56–58] stacked together with the Z2 symmetry acts
only in the px − ipy layer by flipping the sign of the fermion
operator (i.e., the fermion parity transform). On a 2D lattice,
the model Hamiltonian can be written as

H =
∑
k,l

ξkc
†
klckl + 1

2
(�kc−klckl + H.c.),

ξk = −2t(cos k1 + cos k2) − μ, (9)

�kl = −�(sin k1 + (−)l i sin k2),

where l = 0,1 labels the two opposite layers of the chiral
TSC’s. The Z2 symmetry acts as ckl → (−)lckl , which
prevents the mixing of fermions from different layers, such that
the fermion parity is conserved in each layer independently.
Depending on the chemical potential μ, the model has two
phases: the |μ| > 4t strong pairing trivial superconductor
phase and the |μ| < 4t weak pairing topological supercon-
ductor phase. Switching to the Majorana basis χk = (ck0 +
c
†
−k0,ck1 + c

†
−k1,ick0 − ic

†
−k0,ick1 − ic

†
−k1)ᵀ/

√
2 and in the

long-wave-length limit, the effective Hamiltonian reads

H×1 = 1

2

∑
k

χ
ᵀ
−k(−k1σ

30 − k2σ
13 + mσ 20)χk, (10)

where we have set � = 1 as our energy unit and defined the
topological mass m = −4t − μ (assuming μ < 0). The Z2

symmetry acting on the Majorana fermions as χk → σ 03χk.
The trivial (m > 0) and the topological (m < 0) phases are
separated by the phase transition at m = 0 where the bulk gap
closes. This bulk criticality is protected by the Z2 symmetry.

The above p ± ip TSC is an example of the 2D D class
fFSPT states, which are known to be Z classified [16,17] and
are indexed by the topological number [59]

N =
∫

d3k

8π2
Tr σ 03G∂iωG−1G∂k1G

−1G∂k2G
−1, (11)

where G(k) = −〈χkχ
ᵀ
−k〉 with k = (iω,k) is the fermion

Green’s function in the frequency-momentum space. The
p ± ip TSC in Eq. (9) corresponds to N = 1. While the
other topological states in this Z classification may be
realized by considering multiple copies of such p ± ip TSC’s,
which can be described by the following effective-field-theory
Hamiltonian:

H×ν = 1

2

ν∑
α=1

∫
d2x χᵀ

α (i∂1σ
30 + i∂2σ

13 + mσ 20)χα, (12)

with the Z2 : χα → σ 03χα symmetry protection. ν-copy p ±
ip TSC would correspond to the topological number N = ν.

2. Corresponding BSPT state

However with interaction, the classification of theZ2p ± ip

TSC is reduced from Z to Z8 [23–26], meaning that eight
copies of the p ± ip TSC (N = 8) can be smoothly connected
to the trivial state (N = 0) in the presence of interac-
tion. This interaction-reduced classification was discussed in
Refs. [23–26], but here we will provide another argument for
it by making a connection to 2D BSPT states.

Let us start by showing that four copies of the p ± ip TSC
(ν = 4) can be connected [29,60] to the Levin-Gu topological
paramagnet [1,49], a Z2 BSPT state in 2D. We first introduce
a set of interlayer s-wave pairing terms (with l̄ ≡ 1 − l and
α,α′ = 1,2,3,4 labeling the four copies)

�1 =
∑
l,α,α′

cl̄αiσ 12
αα′clα′ + H.c. = χᵀσ 1112χ,

�2 =
∑
l,α,α′

cl̄αiσ 20
αα′clα′ + H.c. = χᵀσ 1120χ,

�3 =
∑
l,α,α′

cl̄αiσ 32
αα′clα′ + H.c. = χᵀσ 1132χ,

�4 =
∑
l,α

cl̄α(−)lclα + H.c. = χᵀσ 1200χ,

(13)

where χ = (χ1,χ2,χ3,χ4)ᵀ, and couple them to an O(4) order
parameter field n = (n1,n2,n3,n4). The low-energy effective

245120-4



SYMMETRY-PROTECTED TOPOLOGICAL STATES OF . . . PHYSICAL REVIEW B 90, 245120 (2014)

Hamiltonian of this FSM reads

H×4 = 1

2

∫
d2x χᵀh×4χ,

h×4 = i∂1σ
3000 + i∂2σ

1300 + mσ 2000 (14)

+ n1σ
1112 + n2σ

1120 + n3σ
1132 + n4σ

1200.

Because the interlayer pairing mixes the fermions between
the px + ipy and the px − ipy TSC’s, they will gain a minus
sign under the Z2 symmetry transform. To preserve the Z2

symmetry, we must require the order parameters to change
sign as well, i.e., n → −n, under the Z2 symmetry action.
After integrating out the fermion field χ , we arrive at the
effective theory for the boson field n, which is a NLSM with a
topological � term at � = 2π , given by the following action
(d3x = dτd2x):

S[n] =
∫

d3x
1

g
(∂μn)2 + i�

2π2
εabcdna∂0nb∂1nc∂2nd, (15)

which describes a nontrivial BSPT state for the n field [31,61]
and is equivalent to the Levin-Gu state [31] protected by
the Z2 symmetry n → −n. This can be understood from
the wave-function perspective. We first reparameterize n =
(m cos α,φ sin α) where m = (m1,m2,m3) is an O(3) unit
vector and φ = ±1. Suppose the system energetically favors
m (i.e., α = 0); then the wave function for the m field in its
paramagnetic phase (g → ∞) can be derived from the action
Eq. (15) as [61]

|�〉 ∼
∫

D[m]e
∫

d2 x iπ
4π

εabcma∂1mb∂2mc |[m]〉

=
∫

D[m](−)Ns [m]|[m]〉

∼
∫

D[m3](−)Nd [m3]|[m3]〉, (16)

which is a superposition of all m configurations with a sign
factor (−)Ns [m] counting the parity of the Skyrmion number
Ns of the m field. In the Ising limit where m3 is energetically
favored, the Skyrmion number Ns becomes the domain-wall
number Nd of the Ising spin m3, so the wave function becomes
the superposition of Ising configurations with the domain-wall
sign [61], which is exactly the wave function of the Levin-Gu
state [49]. Thus we have established a connection from four
copies of the p ± ip TSC to a single copy of the Levin-Gu
paramagnet, bridging the FSPT and BSPT states in 2D.

Now we can discuss the iFSPT states using the knowledge
about the BSPT states: If eight copies of the TSC is trivial, then
the bosonic theory derived using the same method above must
necessarily be trivial. Indeed, on the BSPT side, we know that
two copies of the Levin-Gu paramagnets can be smoothly
connected to the trivial state without breaking the sym-
metry, which can be realized by coupling two layers of the
Levin-Gu paramagnet with a large interlayer antiferromagnetic
interaction, such that the domain-wall configuration in both
layers will become identical, and the domain-wall sign from
both layers will cancel out, so the resulting wave function is
just a trivial Ising paramagnetic state. At the field-theory level,
it can be described by the following action with interlayer

coupling:

S = S[n(1)] + S[n(2)] + Scp,

Scp =
∫

d3x A
(
n

(1)
1 n

(2)
1 + n

(1)
2 n

(2)
2 + n

(1)
3 n

(2)
3

) − Bn
(1)
4 n

(2)
4 .

(17)

It is easy to check that the coupling Scp respects the Z2

symmetry. When A,B → +∞, n(1) and n(2) are locked an-
tiferromagnetically for their first three components and ferro-
magnetically for their last components, i.e., n(1)

a = −n(2)
a = na

(a = 1,2,3) and n
(1)
4 = n

(2)
4 = n4. Then the effective NLSM for

the combined field n has � = 0 due to the cancellation of the �

angles between the two layers. So two copies of the Levin-Gu
paramagnet can be trivialized by the A,B → +∞ coupling.5

This suggests that eight copies of the original p ± ip TSC is
trivial.

3. Boundary modes and bulk transition

Recall the relation na ∼ 〈�a〉 (a = 1,2,3,4) on the mean-
field level; the interlayer coupling Scp can be immediately
ported to the fermion model as the following four-fermion
interaction (with A,B > 0):

Hint =
∫

d2x A
∑

a=1,2,3

�(1)
a �(2)

a − B�
(1)
4 �

(2)
4 , (18)

where �a is defined in Eq. (13). Without any interaction, eight
copies of p ± ip TSC with the Z2 symmetry is separated from
the trivial state through a critical point that has 16 copies of 2D
massless Majorana fermions in the bulk [m = 0 in Eq. (12)].
We should expect that the bulk criticality can be gapped out by
the interaction Eq. (18), and eight copies of the p ± ip TSC
can be smoothly connected to the trivial state, as the same
interaction can trivialize the BSPT in the NLSM.

Admittedly, in 2D (and higher dimensions), it is hard to
explicitly demonstrate how the interaction gaps out the gapless
bulk fermion at the critical point. Nevertheless we can show
that, on an open manifold, the interaction Eq. (18) can gap
out the 1D boundary states of eight copies of the p ± ip

TSC (N = 8) without breaking the symmetry, and hence there
should be no obstacle to tune the bulk system smoothly from
the N = 8 state to the N = 0 state under interaction. The
“transition” between the N = 8 and N = 0 states can be
viewed as growing N = 0 domains inside the N = 8 state,
which is equivalent to sweeping the interface between the two
states through the entire bulk (this is essentially the picture
of the Chalker-Coddington model [62] for the quantum Hall
plateau transition), and then, as long as the interface is gapped
out by interaction, the bulk gap never has to close during this
“transition,” namely the bulk phase transition can be gapped
out by the interaction. Thus all we need to show here is that

5As one can see, the design of the coupling is not unique, any
inter-layer coupling that locks odd number of n components anti-
ferromagnetically will do the job to trivialize the BSPT state (for
example A,B → −∞ is also a choice), but here let us stick to our
current design and focus on the A,B → +∞ coupling.
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the interaction Eq. (18) induces an effective interaction at the
1D boundary, which will gap out the boundary states.

Let us consider a boundary of the 2D system along the x2

axis, i.e., the topological mass m ∼ x1 changes sign across
x1 = 0. For four copies of the p ± ip TSC as described in
Eq. (14), the boundary states are given by the projection
operator P = (1 − iσ 3000σ 2000)/2, such that the effective FSM
Hamiltonian along the boundary is given by

H ′
×4 = 1

2

∫
dx2η

ᵀh′
×4η,

h′
×4 = i∂2σ

300 + n1σ
112 + n2σ

120 + n3σ
132 + n4σ

200,

(19)

where η denotes the Majorana edge modes, and the Z2

symmetry acts as η → σ 300η. Under a basis transformation
η → exp(− iπ

4 σ 200)η, the boundary FSM Hamiltonian can be
reformulated as

h′
×4 = −i∂2σ

100 + n1σ
312 + n2σ

320 + n3σ
332 + n4σ

200,

(20)

which, at the field-theory level, is equivalent to four copies
of 1D (critical) Majorana chain described by Eq. (5), with
the transformed Z2 symmetry η → −σ 100η. (n1,n2,n3) is the
analog of the O(3) order parameter of the Majorana chain
introduced in the previous section. All these order parameters
are forbidden to condense by the Z2 symmetry, i.e., 〈n〉 = 0,
so the edge is gapless at the free-fermion level.

Now we consider the boundary of eight copies of the p ± ip

TSC, which is simply a doubling of Eq. (20). The field theory
of this 1D boundary is equivalent to eight copies of the critical
Kitaev’s Majorana chain. The bulk interaction Eq. (18) will
induce the interaction between Majorana surface modes, which
corresponds to the coupling of n(1) and n(2) at the boundary:

S ′
cp =

∫
dτdx2A

′ ∑
a=1,2,3

n(1)
a n(2)

a − B ′n(1)
4 n

(2)
4 . (21)

The A′ term corresponds to exactly the same fermion inter-
action that trivialized eight copies of Majorana chain in the
previous section, and this coupling can gap out the critical
point in the previous 1D case. This means that the A′ term can
also gap out the boundary of the eight copies of 2d p ± ip

TSC without degeneracy. Once the boundary is gapped and
nondegenerate, a weak B ′ term in Eq. (21) will not close the
gap of the boundary. Since the boundary coupling Eq. (21)
is induced by the bulk interaction Eq. (18), this implies that
the interaction in Eq. (18) (with strong enough strength) can
gap out the bulk criticality (with 16 copies of 2D massless
Majorana fermions) in 2D.

C. From 3He-B to 3D bosonic SPT

1. Lattice model and bulk theory

Let us go one dimension higher and consider the 3He
superfluid B phase [12–15] (will be denoted as 3He-B) which
is a 3D TSC protected by the ZT

2 symmetry with T 2 = −1
(symmetry class DIII) [52]. The 3He-B TSC is described by

the following Hamiltonian:

H =
∑

k

(
k2

2mHe
− μ

)
c
†
kck − �

2
(c−kiσ

2k · σck + H.c.),

(22)

where ck = (ck↑,ck↓)ᵀ is the fermion operator for the 3He atom
and � ∈ R is the p-wave pairing strength. The Hamiltonian
is invariant under the time-reversal ZT

2 symmetry, which acts
as T : ck → iσ 2c−k followed by the complex conjugation.
3He-B TSC corresponds to the μ > 0 topological phase of
the model, while for μ < 0 the model describes a trivial
superconductor. Switching to the Majorana basis χk = (ck↑ +
c
†
−k↑, − ck↓ − c

†
−k↓,ick↑ − ic

†
−k↑, − ick↓ + ic

†
−k↓)ᵀ/

√
2 and

in the long-wave-length limit (to the first order in k), the
effective Hamiltonian reads

H×1 = 1

2

∑
k

χ
ᵀ
k (−k1σ

33 − k2σ
10 − k3σ

31 + mσ 20)χk,

(23)

where we have set � = 1 as our energy unit and defined the
topological mass m = −μ (which should not be confused
with the mass of the 3He atom mHe). The time-reversal
operator acting on the Majorana basis is given by T = Kiσ 32.
The trivial (m > 0) and the topological (m < 0) phases are
separated by the phase transition at m = 0 where the bulk gap
closes. This bulk criticality is protected by the ZT

2 symmetry.
The 3He-B TSC belongs to the 3D DIII class fFSPT states,

which is known to be Z classified [16,17] and is indexed by
the topological number [63,64]

N =
∫

d3k
8π2

Tr σ 32G∂k1G
−1G∂k2G

−1G∂k3G
−1, (24)

where G(k) = −〈χkχ
ᵀ
−k〉 is the fermion Green’s function

at zero frequency iω = 0. The 3He-B TSC in Eq. (22)
corresponds to N = 1. While the other topological states in
this Z classification may be realized by considering multiple
copies of the 3He-B TSC’s, which can be described by the
following effective-field-theory Hamiltonian:

H×ν = 1

2

ν∑
α=1

∫
d3xχᵀ

α (i∂1σ
33 + i∂2σ

10 + i∂3σ
31 + mσ 20)χα,

(25)

with theZT
2 symmetry protection (T = Kiσ 32). ν-copy 3He-B

TSC would correspond to the topological number N = ν.

2. Corresponding BSPT state

However, with interaction, the classification of the 3D
DIII class FSPT states is reduced from Z to Z16, meaning
that 16 copies of the 3He-B TSC (N = 16) can be smoothly
connected to the trivial state (N = 0) in the presence of inter-
action. This interaction-reduced classification was discussed
in Refs. [27,28], but here we will provide another argument
for it by making connection to the 3D BSPT states.

Let us start by showing that eight copies of the 3He TSC
(ν = 8) can be connected to the 3D BSPT state with ZT

2
symmetry. Similarly to our previous approach in 1D and 2D,
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here we should introduce five fermion pairing terms and couple
them to an O(5) order parameter field n = (n1,n2,n3,n4,n5),
whereby the low-energy effective FSM Hamiltonian reads

H×8 = 1

2

∫
d3x χᵀh×8χ,

h×8 = i∂1σ
33000 + i∂2σ

10000 + i∂3σ
31000

(26)+mσ 20000 + n1σ
32212 + n2σ

32220

+ n3σ
32232 + n4σ

32300 + n5σ
32100,

where χ = (χ1,χ2, . . . ,χ8)ᵀ. It turns out that these order
parameters are spin-singlet s-wave (time-reversal broken)
imaginary pairing among the eight copies of fermions. The
particular form of the pairing terms given here is not a unique
choice. We only require that the pairing terms anticommute
with each other and also anticommute with the momentum
and the topological mass terms. However, any other set of
such pairing terms are related to the above choice by basis
transformation among the eight copies of fermions, so we
may stick to our current choice without losing any generality.

On this ν = 8 Majorana basis, the time-reversal operator is
extended to T = Kiσ 32000, from which it is easy to see that all
five s-wave pairing terms change sign under T . To preserve
the ZT

2 symmetry, we must require the order parameters to
change sign as well, i.e., n → −n, under the ZT

2 transform.
After integrating out the fermion field χ , we arrive at the
effective theory for the boson field n, which is a NLSM with a
topological � term at � = 2π , given by the following action
(d4x = dτd3x):

S[n] =
∫

d4x
1

g
(∂μn)2 + i�

�4
εabcdena∂0nb∂1nc∂2nd∂3ne,

(27)

where �4 = 8π2/3 is the volume of S4. Equation (27)
describes [31] a nontrivial 3D BSPT state [50,51,53] protected
by the ZT

2 symmetry n → −n. Thus we have established a
connection from eight copies of the 3He-B TSC to a single
copy of the 3D ZT

2 BSPT state, bridging the FSPT and BSPT
states in 3D.

Now we can discuss the iFSPT states using the knowledge
about the BSPT states. On the BSPT side, based on the well-
known Z2 classification of this state [2,50], it is expected that
two copies of the ZT

2 BSPT state can be smoothly connected to
the trivial state without breaking the symmetry. In our NLSM
formalism, this conclusion can be drawn by the following
interlayer coupling:

S =S[n(1)] + S[n(2)] + Scp,

Scp =
∫

d4x A
∑

a=1,2,3

n(1)
a n(2)

a − Bn
(1)
4 n

(2)
4 − Cn

(1)
5 n

(2)
5 .

(28)

It is easy to check that the coupling Scp respects the ZT
2

symmetry. When A,B,C → +∞, n(1) and n(2) are locked
antiferromagnetically for their first three components and
ferromagnetically for their last two components, i.e., n(1)

a =
−n(2)

a = na (a = 1,2,3) and n
(1)
b = n

(2)
b = nb (b = 4,5). Then

the effective NLSM for the combined field n has � = 0 due
to the cancellation of the � angles between the two layers.
So two copies of the ZT

2 BSPT state can be trivialized by

the A,B,C → +∞ coupling. Again, this is the necessary
condition for interaction to reduce the classification for 3He-B
phase to Z16.

3. Bulk phase transition under interaction

Now we argue that the quantum critical point in the
noninteracting limit can be gapped out by interaction for 16
copies of 3He-B states. We start from the critical point m = 0
in the FSM Eq. (26), where the bulk gap is closed on the
free-fermzion level. The field-theory Eq. (26) at m = 0 has an
extra inversion symmetry P = −Iiσ 32000 (where the space
inversion operator I sends x → −x), besides the original
time-reversal symmetry T = Kiσ 32000. Fermion interactions
will be generated after integrating out dynamical field n.
We will argue that in this particular field-theory Eq. (26),
interaction can gap out the critical point, without driving the
system into either m < 0 or m > 0 state.

We can first gap out the fermions in the bulk by setting
up a fixed configuration of the order parameter field n at the
cost of breaking the time-reversal symmetry. Then we restore
the symmetry by proliferating the topological defects of the n
field, which is an approach adopted by Refs. [28,65]. Here we
consider the point defect, namely the monopole configuration
of n, which is described by na ∼ xa (for a = 1,2,3) and n4 =
n5 = 0 near the monopole core. This monopole breaks both
T and P , but it preserves the combined symmetry T ′ = PT .
After proliferating this monopole, all the symmetries will be
restored.

However, the potential obstacle is that the monopole may
trap Majorana zero modes and is therefore degenerated.
Proliferating such a defect will not result in a gapped and
nondegenerated ground state and hence it fails to gap out the
bulk criticality. So we must analyze the fermion modes at the
monopole core carefully. By solving the BdG equation for
a single copy of the FSM Eq. (26), it can be shown that
the monopole will trap four Majorana zero modes, which
transforms under T ′ as T ′ : γa → γa , with a = 1, . . . ,4,
followed by complex conjugation and space inversion. Thus
for two copies of FSM Eq. (26), the monopole will trap eight
Majorana zero modes, and the T ′ symmetry will guarantee the
spectrum of the monopole is degenerate at the noninteracting
level. Nevertheless, the degeneracy can be completely lifted by
interaction [21,22] without breaking T ′. So after the monopole
proliferation, all the symmetries of Eq. (26) are restored, and
the system will enter a fully gapped state which still resides
on the line m = 0. Therefore with two copies of the FSM, the
iFSPT state can be smoothly connected to the trivial state via
strong interaction, resulting in the Z16 classification, which is
consistent with the NLSM analysis.

Later we will show that this analysis of the bulk phase tran-
sition using topological defects can be naturally generalized
to all higher dimensions.

4. Boundary modes and bulk transition

Similarly to what has been discussed in the 1D and 2D cases,
the interlayer coupling Scp in Eq. (28) can be immediately
ported to the fermion model as a four-fermion local interaction

245120-7



YI-ZHUANG YOU AND CENKE XU PHYSICAL REVIEW B 90, 245120 (2014)

(with A,B,C > 0),

Hint =
∫

d3x A
∑

a=1,2,3

�(1)
a �(2)

a − B�
(1)
4 �

(2)
4 − C�

(1)
5 �

(2)
5 ,

(29)

where � = χᵀ(σ 32212,σ 32220,σ 32232,σ 32300,σ 32100)χ are de-
fined for both layers of the ν = 8 fermions. We should expect
that 16 copies of the 3He-B TSC can be connected to the
trivial state under this interaction, as the same interaction can
trivialize the BSPT in the NLSM.

Following the same idea of the 2D case, we argue that the
interaction can remove the 3D bulk criticality by showing that
its 2D boundary states can be symmetrically gapped out under
interaction.

Let us consider a boundary of the 3D system along the
x1-x3 plane, i.e., the topological mass m ∼ x2 changes sign
across x2 = 0. For eight copies of the 3He-B TSC as described
in Eq. (26), the boundary states are given by the projection
operator P = (1 − iσ 10000σ 20000)/2, such that the effective
FSM Hamiltonian along the boundary is given by

H ′
×8 = 1

2

∫
dx1dx3η

ᵀh′
×8η,

h′
×8 = i∂1σ

3000 + i∂3σ
1000 + n1σ

2212 + n2σ
2220 (30)

+ n3σ
2232 + n4σ

2300 + n5σ
2100,

where η denotes the Majorana surface modes and the ZT
2

symmetry act as T = Kiσ 2000 on η. Under a series of basis
transformations as follows:

η → e
iπ
4 σ 1302

e− iπ
4 σ 1002

e
iπ
4 σ 2300

e− iπ
4 σ 2000

× e
iπ
4 σ 3102

e− iπ
4 σ 0302

η, (31)

the boundary Hamiltonian can be reformulated as

h′
×8 = i∂1σ

3000 + i∂3σ
1300 + n1σ

1112 + n2σ
1120

+ n3σ
1132 + n4σ

1200 + n5σ
2000, (32)

which, at the field-theory level, is equivalent to four copies
of 2D (critical) p ± ip TSC described by Eq. (14), with the
transformed ZT

2 symmetry T = Kiσ 2300. (n1,n2,n3,n4) is the
analog of the O(4) order parameter of the p ± ip TSC. So,
once again, the problem is reduced by one dimension to the
critical 2D iFSPT states.

If we consider the boundary of 16 copies of the 3He-B TSC,
it will simply be a doubling of Eq. (32), which is analogous
to eight copies of (critical) p ± ip TSC at the field-theory
level. The bulk interaction Eq. (29) will induce the interaction
between Majorana surface modes, which corresponds to the
coupling of n(1) and n(2) at the boundary:

S ′
cp =

∫
dτdx1dx3 A′ ∑

a=1,2,3

n(1)
a n(2)

a

−B ′n(1)
4 n

(2)
4 − C ′n(1)

5 n
(2)
5 . (33)

As we already argued, the A′ and B ′ terms together can gap
out the quantum critical point for eight copies of 2D p ± ip

TSC; this means that the same interaction in the field theory
can also gap out the 2D boundary of 16 copies of the 3D 3He-B

phase. And after the boundary is gapped out, adding a C ′ term
will not close the gap at the boundary. So there should be no
obstacle to smoothly connect 16 copies of 3He-B TSC to the
trivial state, under the interaction that is ported from interlayer
coupling for the corresponding 3D ZT

2 BSPT states, i.e., the
3D bulk interaction in Eq. (29) can gap out the SPT to trivial
state quantum critical point of 16 copies of 3He-B.

As one can see clearly now, the same pattern of logic
will appear again and again in every spatial dimension.
Using the dimension reduction argument, the boundary of
the d-dimensional iFSPT state can be viewed, at the field-
theory level, as the (d − 1)-dimensional (critical) iFSPT. If the
(d − 1)-dimensional criticality can be gapped out by a (d − 1)-
dimensional interaction, then the same kind of interaction will
be able to trivialize the boundary of the d-dimensional iFSPT
state, and the d-dimensional bulk interaction that induces
this (d − 1)-dimensional boundary interaction likely gaps out
the d-dimensional bulk criticality. Of course, one should be
reminded that we are not saying that the d-dimensional iFSPT
boundary has a (d − 1)-dimensional lattice realization; our
induction is only based on the effective-field-theory descrip-
tion of the long-wavelength physics. Following this induction
approach, a class of the iFSPT states and their interaction-
reduced classification can be studied systematically in all
dimensions.

III. SPT STATES WITH ZP
2 ONLY

A. General constructions

1. Boson SPT with ZP
2

The boson SPT (BSPT) state with inversion symmetry
exists in all dimensions. The construction is based on the
O(d + 2) nonlinear σ model (NLSM) in (d + 1)-dimensional
space-time with a topological �-term at � = 2π ,

S[n] =
∫

dd+1x
1

g
(∂μn)2 + i�

�d+1
εa1a2a3···ad+2

na1∂0na2∂1na3 · · · ∂dnad+2 , (34)

where x0 ≡ τ is the time coordinate and the rest of xi’s (i =
1, . . . ,d) are space coordinates and �d+1 = 2π

d+2
2 /�( d+2

2 ) is
the volume of a (d + 1)-hypersphere with unit radius. The
action of the inversion symmetry ZP

2 inverts the space and
flips all components of n,

P :

{
xi → −xi for i = 1, . . . ,d

na → −na for a = 1, . . . ,d + 2
. (35)

It is straightforward to check that the action Eq. (34) is invariant
under this inversion. In the g → ∞ regime, the model has a
unique gapped disordered ground state, which is a nontrivial
SPT state when � = 2π [31,51,66].

This BSPT state is Z2 classified, meaning that two copies
of such state can be smoothly connected to the trivial state
without breaking the symmetry. To show this, we first make
two copies of the model in Eq. (34), with n vectors denoted
by n(1) and n(2) in each copy, respectively, such that the total
action reads S = S[n(1)] + S[n(2)]. Then we are allowed to
turn on the following inversion symmetric coupling between
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the two copies:

Scp =
∫

dd+1x An
(1)
1 n

(2)
1 − B

d+2∑
a=2

n(1)
a n(2)

a , (36)

In the limit of A,B → +∞, n(1) and n(2) are locked together,
and the final theory has effectively � = 0, and it is a trivial
state. Thus the BSPT with inversion symmetry is classified by
Z2 within the framework of NLSM.

However, in two-dimensional space (perhaps in some
higher dimensions as well), there are additional Z-classified
BSPT states beyond NLSM, such as the E8 state in 2D.
So the classifications in d = 2 mod 4 dimensions should be
extended to Z2 × Z.

2. Free-fermion SPT with ZP
2

The free-fermion SPT (fFSPT) state with inversion sym-
metry also exists in all dimensions, described by the quadratic
Majorana Hamiltonian

H = 1

2

∫
dd x χᵀh×1χ,

h×1 =
d∑

i=1

i∂iα
i + mβ0,

(37)

where χ denotes the Majorana fermion operator. αi are
symmetric matrices while β0 is antisymmetric, and they all
anticommute with each other. The action of the inversion
symmetry is given by the operator P = Iiβ0, where I is
the space inversion operator such that I−1xiI = −xi for all
i = 1, . . . ,d, and it is followed by an orthogonal transform iβ0

in the Majorana basis, where β0 is just the mass matrix. Note
that this inversion symmetry acts as P2 = −1 on the Majorana
fermions.

The ZP
2 fFSPT state belongs to the symmetry class D and

is Z classified in general (see Table II in Ref. [67]). Because
P = Iiβ0 rules out all the other additional mass terms that
anticommute with the topological mass mβ0, one has to go
through a bulk phase transition (by closing the single-particle
gap) to drive the SPT state trivial (i.e., to change the sign of
m). The exception rests in d = 2 mod 4 dimensions, where
the classification is extended to Z × Z, which was pointed out
in Ref. [67] and will be discussed in more detail later.

Although the field-theory Hamiltonian in Eq. (37) only
describes the low-energy physics, it can be immediately cast
into lattice models by the substitution i∂i → sin ki and m →∑d

i=1 cos ki − d + m, with ki being the quasimomentum of
the fermion on the lattice. Some lattice models have been
explicitly constructed in Ref. [67].

3. Interacting fermion SPT with ZP
2

The interacting fermion SPT (iFSPT) states can be obtained
by introducing inversion-symmetric interaction terms to the
free-fermion Hamiltonian in Eq. (37). As we discussed
previously, interaction can reduce the classification of FSPT
states, and the same phenomenon is expected here. To study
the interaction-reduced classification, we still make use of the
BSPT states discussed in the last section and connect the iFSPT

to BSPT by introducing bosonic n degrees of freedom:

S =
∫

dd+1x
1

2
χᵀ(i∂0 + h×ν)χ + 1

g
(∂μn)2 + · · · ,

h×ν =
d∑

i=1

i∂iα
i + mβ0 +

d+2∑
a=1

naβ
a,

(38)

where h×ν describes ν copies of the fFSPT in Eq. (37)
coupling to the bosonic fields na . Here βa are anticommuting
antisymmetric matrices, and they also anticommute with the
all matrices αi and β0 [which has been enlarged from those
in Eq. (37) by tensor product with ν × ν identity matrix].
Of course, we need enough flavors of fermions (by making
enough ν copies of the fFSPT states) in order to support the
d + 2 additional βa matrices. Integrating out the boson field
n, Eq. (38) gives a pure fermionic model with interaction.
While integrating out the fermion field χ , Eq. (38) becomes
the NLSM as in Eq. (34). So Eq. (38) establishes a connection
between the iFSPT and the BSPT phases [53].

The inversion symmetry act as

P :

⎧⎪⎨
⎪⎩

x → −x

χ → iβ0χ

n → −n

. (39)

It is straightforward to verify that the action in Eq. (38) respects
this inversion symmetry. The inversion symmetry satisfies
P2 = +1 on the bosonic n vector but acts projectively asP2 =
−1 on the Majorana fermion. With this set up, we can study
the classification of iFSPT by resorting to the classification of
BSPT states, which are much better understood.

B. Examples in each dimension

1. d = 1

The ZP
2 fFSPT phase in d = 1 is classified by Z, and its

root state (Kitaev’s Majorana chain) is described by the lattice
model Eq. (1) (at ν = 1). The Hamiltonian is invariant under
a bond-centered inversion symmetry ZP

2 (see Fig. 1), which
acts on the Majorana fermions as P : χA → χB,χB → −χA.
Because the bond is directed due to the imaginary hopping
iuij , the inversion not only takes the fermion from A sites to
B sites and vice versa but also must be followed by a gauge
transformation, and hence we can have P2 = −1 here. The
inversion operator can be also written asP = Iiσ 2 in the basis
χ = (χA,χB)ᵀ where I−1xI = −x implements the inversion
of the spacial coordinate.

The low-energy effective Majorana Hamiltonian for the root
state is given by Eq. (3) (at ν = 1), and we repeat here

h×1 = i∂1σ
1 + mσ 2, (40)

with P = Iiσ 2. As long as this inversion symmetry is
preserved, without interaction, the two sides of the phase
diagram m > 0 and m < 0 are always separated by a gapless
critical point at m = 0, no matter how many copies of the
system we make.

To incorporate an O(3) order parameter, the model must be
copied four times,

h×4 = i∂1σ
100 + mσ 200 + n1σ

312 + n2σ
320 + n3σ

332, (41)
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with P = Iiσ 200 acting on the Majorana basis. Under P , we
must also require n → −n. Then, if we integrate out the
fermions, the effective theory becomes the O(3) NLSM at
� = 2π (Haldane spin chain). If we double the model h×4

again to h×8, eight copies of this FSPT root state can be
trivialized by interaction (see Sec. II for detailed analysis),
as the corresponding BSPT state is trivial due to its Z2

classification. Thus the Z2 classification of the BSPT suggests
that the ZP

2 iFSPT in d = 1 is Z8 classified.

2. d = 2

The ZP
2 fFSPT phase in d = 2 is classified by Z × Z,

which has two root states. They are p + ip and p − ip TSC’s,
respectively. The free-fermion p + ip TSC in 2D is already
Z classified without any symmetry protection. However, with
the inversion symmetry, the p + ip and p − ip TSC’s are
not allowed to trivialize with each other, thus we will have
two independent Z topological indices ν1 and ν2 labeling the
copies of the p + ip and p − ip TSC’s, respectively.

To study the interaction-reduced classification of this FSPT,
we start from the special case when ν1 = ν2 (i.e., the nonchiral
p ± ip TSC). The low-energy effective Majorana Hamiltonian
for the nonchiral root state is given by Eq. (12) (at ν = 1), and
we repeat here

h×1 = i∂1σ
30 + i∂2σ

13 + mσ 20, (42)

with P = Iiσ 20. In this case, the iFSPT can be studied by
making connection to the BSPT within the scope of FSM. To
incorporate an O(4) order parameter, the model must be copied
four times,

h×4 = i∂1σ
3000 + i∂2σ

1300 + mσ 2000

+ n1σ
1112 + n2σ

1120 + n3σ
1132 + n4σ

1200, (43)

with P = Iiσ 2000 acting on the Majorana basis. Under P ,
we must also require n → −n. Then, if we integrate out the
fermions, the effective theory becomes the O(4) NLSM at
� = 2π . If we double the model h×4 again to h×8, eight copies
of this FSPT root state can be trivialized by interaction (as was
discussed in Sec. II), as the corresponding BSPT state is trivial
due to its Z2 classification.

When ν1 �= ν2, the iFSPT state cannot be connected to
a BSPT as discussed above, as no order parameter can be
embedded no matter how many copies of the fFSPT state we
make. However, we can consider such FSPT state as attaching
additional layers of chiral p + ip TSC (or p − ip TSC) to the
nonchiral p ± ip TSC’s. It is known that interaction cannot
reduce the classification of the p + ip TSC, and the only
possible effect of the interaction is to drive 16 copies of the
p + ip TSC to a BSPT state known as the E8 state [53]. So
we can simply extend the Z8 classification of nonchiral iFSPT
by attaching the Z-classified chiral iFSTP, and, as a result, the
ZP

2 iFSPT in d = 2 is Z8 × Z classified. Correspondingly, the
BSPT in d = 2 is Z2 × Z, in which the Z index labels
the number of E8 states.

3. d = 3

The ZP
2 fFSPT phase in d = 3 is classified by Z. The low-

energy effective Majorana Hamiltonian for the root state is

given by Eq. (25) (at ν = 1), and we repeat here

h×1 = i∂1σ
33 + i∂2σ

10 + i∂3σ
31 + mσ 20, (44)

with P = Iiσ 20. To incorporate an O(5) order parameter, the
model must be copied eight times,

h×8 = i∂1σ
33000 + i∂2σ

10000 + i∂3σ
31000 + mσ 20000

+ n1σ
32212 + n2σ

32220 + n3σ
32232

+ n4σ
32300 + n5σ

32100, (45)

with P = Iiσ 20000 acting on the Majorana basis. Under P ,
we must also require n → −n. Then, if we integrate out the
fermions, the effective theory becomes the O(5) NLSM at � =
2π , which is equivalent to the BSPT with ZP

2 symmetry. If we
double the model h×8 again to h×16, 16 copies of this FSPT
root state can be trivialized by interaction, as the corresponding
BSPT state is trivial due to its Z2 classification. Therefore the
ZP

2 iFSPT in d = 3 is Z16 classified.

4. Higher dimensions

The above examples can be systematically generalized
to higher dimensions using the representation of Clifford
algebras. In d-dimensional space, the nonchiral root state of
the ZP

2 fFSPT phase is described by the following Majorana
Hamiltonian at low energy:

h×1 =
d∑

i=1

i∂iα
i + mβ0, (46)

with d symmetric matrices αi and one antisymmetric matrix
β0, which are taken from the generators of the real Clifford
algebra C�d,1, i.e., {α1, . . . ,αd ; iβ0} (see Appendix A for
definitions). The inversion symmetry acts as P = Iiβ0.

To construct the FSM in d dimensions, we must make
enough copies of the fFSPT root state to incorporate the O(d +
2) order parameter. Supposing ν is the minimal number of
copies that should be made, we can write down the following
Majorana Hamiltonian:

h×ν =
d∑

i=1

i∂iα
i + mβ0 +

d+2∑
a=1

naβ
a, (47)

in which the symmetric matrices αi (i = 1, . . . ,d) and the
antisymmetric matrices βa (a = 1, . . . ,d + 2) can be taken
from the generators of the real Clifford algebra C�d,d+2, i.e.,
{α1, . . . ,αd ; iβ1, . . . ,iβd+2} (see Appendix A for definitions),
and the mass matrix β0 is chosen to be the pseudoscalar of
C�d,d+2, i.e., iβ0 = ∏d

i=1 αi
∏d+2

a=1(iβa). It is straightforward
to verify that the matrix β0 is antisymmetric by definition of
C�d,d+2 and hence qualified as a mass term. The inversion
symmetry still acts as P = Iiβ0, and under P , we require
n → −n as well, such that h×ν is inversion symmetric.

If we integrate out the fermions in the FSM H =∫
ddxχᵀh×νχ , the effective theory becomes a NLSM of n

at � = 2π . If we double h×ν again to h×2ν , 2ν copies of
this d-dimensional FSPT root state can be trivialized by
interaction, as the corresponding d-dimensional BSPT is also
trivial due to its Z2 classification. So the nonchiral ZP

2 iFSPT
is classified by Z2ν . The minimal copy number ν will be
determined in the following. However, we recall that for d = 2
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mod 4, we also have the chiral FSPT states, which fall outside
the FSM-based classification [32]. So the ZP

2 iFSPT states in
d = 2 mod 4 dimension will be Z2ν × Z classified, where Z
index labels the chiral FSPT states.

C. The classification table

1. Counting minimal copy number

The minimal copies ν that one should make to go from the
iFSPT root state to the FSM model can be simply determined
from the Majorana fermion flavor numbers of both models.
Given that h×1 and h×ν are constructed using the irreducible
representations of C�d,1 and C�d,d+2, respectively, the minimal
copy number ν follows from

ν = dim C�d,d+2

dim C�d,1
, (48)

where dim C�p,q denotes the dimension of the irreducible real
representation of the real Clifford algebra C�p,q . As concluded
in Appendix A, C�d,d+2

∼= H(2d ), so dim C�d,d+2 = 2d+2.
Therefore we have ν = 2d+2/ dim C�d,1, from which we can
conclude theZ2ν classification ofZP

2 iFSPT states as in Table I.
The classification of iFSPT also shows the eightfold Bott
periodicity.

In d mod 4 = 2 dimensions, the chiral FSPT states are
not included in this classifying scheme [16–18]. The chiral
FSPT states cannot be trivialized by the fermion interaction,
and therefore they provide an additional Z classification.
So we conclude that the ZP

2 iFSPT states in d mod 4 = 2
dimensions are Z2ν × Z classified.

2. Bulk phase transition under interaction

Finally, we would like to mention that the same classifi-
cation for the nonchiral states can be obtained by the same
argument as in Sec. II C 3. The idea is that if 2ν copies of the
FSPT root state can be trivialized by fermion interaction, then
there must be a way to gap out its bulk phase transition with
the trivial FSPT state without breaking the symmetry.

Again we start from the critical point, which corresponds
to m = 0 in the FSM Eq. (47). We first gap out the fermions
in the bulk by setting up a fixed configuration of the order
parameter field n at the cost of breaking the inversion

TABLE I. The classification of ZP
2 iFSPT states in each dimen-

sion d . The data of C�d,1 (also see Appendix A) and the minimal copy
number ν are also listed.

d mod 8 dim C�d,1 ν Classification

0 dimC(2
d
2 ) = 2

d+2
2 2

d+2
2 Z

2
d+4

2

1 dimR(2
d+1

2 ) = 2
d+1

2 2
d+3

2 Z
2

d+5
2

2 dim 2R(2
d
2 ) = 2

d+2
2 2

d+2
2 Z

2
d+4

2
× Z

3 dimR(2
d+1

2 ) = 2
d+1

2 2
d+3

2 Z
2

d+5
2

4 dimC(2
d
2 ) = 2

d+2
2 2

d+2
2 Z

2
d+4

2

5 dimH(2
d−1

2 ) = 2
d+3

2 2
d+1

2 Z
2

d+3
2

6 dim 2H(2
d−2

2 ) = 2
d+4

2 2
d
2 Z

2
d+2

2
× Z

7 dimH(2
d−1

2 ) = 2
d+3

2 2
d+1

2 Z
2

d+3
2

symmetry. Then we restore the symmetry by proliferating the
inversion-symmetric topological defects of the n field. Here
we choose to focus on the point defect, namely the monopole
configuration of n, because such a defect generally exists
in all dimensions. The monopole configuration is described
by na ∼ xa (for a = 1, . . . ,d) and nd+1 = nd+2 = 0 near
the monopole core. Under inversion, both n and x changes
sign, so the above monopole configuration is indeed inversion
symmetric. Thus, if we can proliferate such monopoles, the
inversion symmetry will be restored.

Again by solving the BdG equation for a single copy of
the FSM, it can be shown that the monopole will always trap
four Majorana zero modes no matter in which dimension d.
This general property can be simply verified by counting the
fermion flavors. The d-dimensional FSM has dim C�d,d+2 =
2d+2 flavors of Majorana fermions. Confining them to the core
of a d-dimensional monopole will reduce the fermion flavor
number by 2d , so the remaining flavor number is 2d+2/2d = 4.
Thus for two copies of FSM, the monopole will trap eight
Majorana zero modes, whose degeneracy is protected on
the free-fermion level by the inversion symmetry left in the
monopole core, together with the assumption of m = 0 at the
critical point. Nevertheless, the degeneracy can be completely
lifted by interaction [21,22] such that the monopole can be
trivialized. So after the monopole proliferation, the inversion
symmetry is restored, and we are left with a gapped symmetric
state at m = 0. Therefore, with two copies of the FSM, the
iFSPT state can be smoothly connected to the trivial state via
strong interaction, resulting in the Z2ν classification, which is
consistent with the NLSM analysis.

IV. SPT STATES WITH ZP
2 COMBINED WITH

OTHER SYMMETRIES

A. U(1) ×ZP
2 SPT states

1. BSPT with U(1) ×ZP
2

The U(1) × ZP
2 BSPT states can be studied similarly as the

ZP
2 BSPT states under the framework of the O(d + 2) NLSM.

The inversion symmetry still flips all components of n as in
Eq. (35). One remains to specify the U(1) symmetry action
as well. Based on our experiences from lower-dimensional
cases [31,50], the different ways of imposing the U(1)
symmetry in the NLSM correspond to different BSPT root
states.

In odd dimension d, there are (d + 3)/2 ways to impose
the U(1) symmetry transformation, labeled by k = 0, . . . ,(d +
1)/2 as

Uk : (n2a−1 + in2a) → eiθ (n2a−1 + in2a)

for a = 1,2, . . . ,k, (49)

whereas k = 0 labels the case where the U(1) symmetry has no
action on n. Each assignment Uk of the symmetry action leads
to a Z2 classification of the BSPT states, as two layers of the
BSPT root states can be trivialized via the interlayer coupling
Eq. (36) as argued previously. So the U(1) × ZP

2 BSPT states
in odd dimension is Z(d+3)/2

2 classified.
In even dimension d, there are (d + 4)/2 ways to impose

the U(1) symmetry transformation, labeled by k = 0, . . . ,(d +
2)/2 following the same definition in Eq. (49). For the
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TABLE II. The classification of U(1) × ZP
2 BSPT states.

d mod 2 Classification

0 Z(d+2)/2
2 × Z

1 Z(d+3)/2
2

first (d + 2)/2 implementations Uk (k = 1, . . . ,d/2), each
leads to a Z2 classification, respectively. However, the last
implementation U(d+2)/2 leads to a Z classification, as the
coupling term Eq. (36) would necessary break the U (1)
symmetry and is therefore forbidden, so there is no way to
reduce the Z classification. Thus the U(1) × ZP

2 BSPT states
in even dimensions is Z(d+2)/2

2 × Z classified.
We therefore conclude the classification of U(1) × ZP

2
BSPT states in Table II. However, this classification is not
complete. The chiral states, such as the E8 states in 2D, are
not covered by the NLSM classification.

2. Free-fermion SPT with U(1) ×ZP
2

With the U(1) symmetry, the Majorana fermions χ can
be paired up to Dirac fermions ψ = χ ′ + iχ ′′ such that ψ →
eiθψ under the action of U(1). The nonchiral U(1) × ZP

2 fFSPT
root state can be described by the following Dirac Hamiltonian
at low energy:

H =
∫

dd x ψ†h̃×1ψ,

h̃×1 =
d∑

i=1

i∂iγ
i + mγ d+1,

(50)

in which γ i (i = 1, . . . ,d + 1) are Hermitian complex ma-
trices which anticommute with each other. They can be
taken from the generators of the complex Clifford algebra
C�d+1 (in the complex representation). The action of inversion
symmetry is given by the operator P = Iiγ d+1 (if P2 = −1)
or by P = Iγ d+1 (if P2 = +1). In the presence of the U(1)
symmetry, there is no essential difference between P2 = −1
and P2 = +1 [as they only differed by a U(1) rotation which
is part of the symmetry], so we will focus on the former case.

The U(1) × ZP
2 fFSPT state belongs to the symmetry class

A and isZ classified in odd dimensions and isZ × Z classified
in even dimensions (see Tables I and II in Ref. [67]). Because
the U(1) symmetry rules out any fermion pairing terms, and
within the fermion hopping terms the inversion symmetry P
forbids all the other possible mass terms that anticommute
with the topological mass mγ d+1, one therefore has to go
through a bulk transition (by closing the single-particle gap)
to drive the SPT state trivial (i.e., to change the sign of m). This
explains the Z classification in odd dimensions and one of the
Z classifications in even dimensions. The otherZ classification
in even dimensions comes from the chiral state, whose root
state is described by the Dirac Hamiltonian

h̃×1 =
d∑

i=1

i∂iγ
i + m′γ ch, (51)

where γ ch ≡ ∏d
i=1 γ i is the chiral matrix (which exists only

for even d). The chiral mass m′γ ch also preserves the U(1) ×

ZP
2 symmetry. It is impossible to find any additional U(1)

preserving mass term that anticommute with the chiral mass,
so the chiral states lead to the other Z classification in even
dimensions.

3. Interacting fermion SPT with U(1) ×ZP
2

The nonchiral U(1) × ZP
2 iFSPT states can be also studied

by extending the fFSPT model to the FSM. In each dimension,
the FSM is still given by Eq. (38) in the Majorana fermion
basis, with the matrices αi (i = 1, . . . ,d) and βa (a =
1, . . . ,d + 2) taken from the generators of the real Clifford
algebra C�d,d+2 and the mass matrix β0 chosen to be the
pseudoscalar of C�d,d+2. We must make enough copies of the
U(1) × ZP

2 fFSPT root states described in Eq. (50) to obtain
the FSM. To count the number ν of copies correctly, we first
rewrite the Hamiltonian in Eq. (50) in the Majorana basis,
which takes the form of Eq. (37), with the matrices αi (i =
1, . . . ,d) and β0 still taken from the generators of the complex
Clifford algebra C�d+1 but using its real representation. Then
the minimal copy number ν is given by

ν = dim C�d,d+2

dim C�d+1
, (52)

where dim C�n denotes the dimension of the irreducible real
representation of the complex Clifford algebra C�n. Given that
dim C�d,d+2 = 2d+2 (see Appendix A), ν in each dimension
d can be calculated in Table III. We conclude that the
nonchiral U(1) × ZP

2 fFSPT root state can be made into a
FSM incorporating the O(d + 2) order parameters by copying
ν times, such that their corresponding iFSPT states can be
classified by making a connection to the BSPT classifications.
However, the chiral fFSPT root state (which appears in even
dimensions) cannot be connected to the FSM without breaking
the U(1) symmetry and should be classified separately.

Integrating out the fermions in the FSM, we arrive at the
O(d + 2) NLSM in Eq. (34) at � = 2π , with the symmetry
action inherited from the FSM such that the inversion sym-
metry flips all components of n, while the U(1) symmetry
rotates two and only two components of n, say, (n1 + in2) →
eiθ (n1 + in2) (see Appendix B for examples). The action of
U(1) here corresponds to the U1 implementation as defined in
Eq. (49), which gives a Z2 classification of the BSPT states,
meaning that two copies of the FSM can be trivialized by
the interaction which also trivialize the corresponding BSPT
states. As have been counted in Eq. (52), each copy of the
FSM corresponds to ν copies of the fFSPT root states, so
the nonchiral U(1) × ZP

2 iFSPT states are Z2ν classified (see
Table III). For the chiral fFSPT states, it is not possible to
extend them to the FSM without breaking the U(1) symmetry,

TABLE III. The classification of U(1) × ZP
2 iFSPT states in each

dimension d . The data of C�d+1 (also see Appendix A) and the
minimal copy number ν are also listed.

d mod 2 dim C�d+1 ν Classification

0 dim 2C(2
d
2 ) = 2

d+4
2 2

d
2 Z

2
d+2

2
× Z

1 dimC(2
d+1

2 ) = 2
d+3

2 2
d+1

2 Z
2

d+3
2

245120-12



SYMMETRY-PROTECTED TOPOLOGICAL STATES OF . . . PHYSICAL REVIEW B 90, 245120 (2014)

thus their classification cannot be reduced by the interaction
which is still Z. In conclusion, the U(1) × ZP

2 iFSPT states
are Z

2
d+3

2
classified in odd d dimensions and are Z

2
d+2

2
× Z

classified in even d dimensions.

B. ZT
2 × ZP

2 SPT states

1. Boson SPT with ZT
2 ×ZP

2

We study the ZT
2 × ZP

2 BSPT states under the framework
of the O(d + 2) NLSM. The inversion symmetry ZP

2 always
flips all components of n as in Eq. (35), while the time-reversal
symmetry ZT

2 must flip odd numbers of n components to keep
the �-term invariant. Based on our experiences gained from
lower-dimensional cases [31], the different ways of imposing
the ZT

2 symmetry in the NLSM correspond to different of
BSPT root states.

In odd dimension d, there are (d + 3)/2 ways to impose the
ZT

2 symmetry transformation, labeled by k = 0, . . . ,(d + 1)/2
as

Tk : ni → −ni for i = 1, . . . ,2k + 1, (53)

which flips the first (2k + 1) components of n, leaving the
rest of the components unchanged. Each assignment Tk of the
symmetry action leads to aZ2 classification of the BSPT states,
as two layers of the BSPT root states can be trivialized via
the interlayer coupling Eq. (36), as argued previously. So the
ZT

2 × ZP
2 BSPT states in odd dimension is Z(d+3)/2

2 classified.
In even dimension d, there are (d + 2)/2 ways to impose

the U(1) symmetry, labeled by k = 0, . . . ,d/2 following the
same definition in Eq. (53). Each assignment Tk still leads to
a Z2 classification. Thus the ZT

2 × ZP
2 BSPT states in even

dimension is Z(d+2)/2
2 classified.

We therefore conclude the classification of ZT
2 × ZP

2 BSPT
states in Table IV. Again this in not a complete classification,
as the analogs of the E8 states are not considered here.

2. Free-fermion SPT with ZT
2 ×ZP

2

According to Ref. [67], there are no Z-classified free-
fermion ZT

2 × ZP
2 SPT states if the time-reversal T and the

inversion P commute with each other. For our purposes, to
study the interaction-reduced classification of FSPT states, we
wish to start with Z-classified fFSPT states. Therefore we
consider a peculiar setting where T and P do not commute,
and the symmetry group (acting on the fermions) is defined by

T 2 = P2 = −1, T PT P = −1. (54)

This is a projective representation of the ZT
2 × ZP

2 symmetry,
which can be realized as a projective symmetry group [68] if
the fermions are coupled to a Z2 gauge field (such as spinons
in the Z2 spin-liquid).

TABLE IV. The classification of ZT
2 × ZP

2 BSPT states.

d mod 2 Classification

0 Z(d+2)/2
2

1 Z(d+3)/2
2

In the presence of the time-reversal symmetry, the chiral
SPT states are ruled out. The ZT

2 × ZP
2 fFSPT root state is

nonchiral and can be described by the following Majorana
Hamiltonian at low energy:

H = 1

2

∫
dd x χᵀh×1χ,

h×1 =
d∑

i=1

i∂iα
i + mβ1,

(55)

with the inversion symmetry P = Iiβ1 and time-reversal
symmetry T = Kiβ2. Here the symmetric matrices αi (i =
1, . . . ,d) and the antisymmetric matrices β1, β2 are taken
from the generators of the real Clifford algebra C�d,2, i.e.,
{α1, . . . ,αd ; iβ1,iβ2} (see Appendix A for definitions). It
worth mentioning that at dimensions d = 3,7 (mod 8), the rep-
resentations C�3,2

∼= R(4) ⊕ R(4) and C�7,2
∼= H(8) ⊕ H(8)

can be split into two subalgebras. Each subalgebra is sufficient
to faithfully represent the anticommutation relations among
the generators. So the minimal fermion flavor is only half
of dim C�d,2 when d = 3,7 (mod 8). For later convenience,
we define the reduced dimension rdim as the dimension
of the minimal faithful representation of the anticommuting
generators (but not the whole algebra), which follows

rdim C�p,q ≡
{

1
2 dim C�p,q p − q = 1,5(mod8),

dim C�p,q otherwise.
(56)

Thus in terms of the reduced dimension, the Majorana fermion
flavor number of the ZT

2 × ZP
2 root state in Eq. (55) is simply

given by rdim C�d,2 in dimension d.
Because the inversion symmetry P has ruled out all the

other possible mass terms that anticommute with the topolog-
ical mass mβ1, which already leads to the Z classification,
the additional time-reversal symmetry will not change the
classification. So the ZT

2 × ZP
2 symmetry defined in the

Eq. (54) fFSPT states is Z classified.

3. Interacting fermion SPT with ZT
2 × ZP

2

The (projective) ZT
2 × ZP

2 iFSPT states can be also studied
by extending the fFSPT model to the FSM. In each dimension,
the FSM is still given by Eq. (38) in the Majorana fermion
basis, with the matrices αi (i = 1, . . . ,d) and βa (a =
1, . . . ,d + 2) taken from the generators of the real Clifford
algebra C�d,d+2, and the mass matrix β0 is chosen to be the
pseudoscalar of C�d,d+2. We must make enough copies of the
ZT

2 × ZP
2 fFSPT root states described in Eq. (55) to obtain

the FSM. Then the minimal copy number ν is given by

ν = dim C�d,d+2

rdim C�d,2
, (57)

where rdim C�d,2 is the reduced dimension defined in Eq. (56).
Given that dim C�d,d+2 = 2d+2 (see Appendix A), ν in each
dimension d can be calculated in Table V. We conclude that
the ZT

2 × ZP
2 fFSPT root state can be made into a FSM

incorporating the O(d + 2) order parameters by copying ν

times, such that their corresponding iFSPT states can be
classified by making a connection to the BSPT classifications.
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TABLE V. The classification of ZT
2 × ZP

2 iFSPT states in each
dimension d . The data of C�d,2 (also see Appendix A) and the minimal
copy number ν are also listed.

d mod 8 rdim C�d,2 ν Classification

0 rdimH(2
d
2 ) = 2

d+4
2 2

d
2 Z

2
d+2

2

1 rdimC(2
d+1

2 ) = 2
d+3

2 2
d+1

2 Z
2

d+3
2

2 rdimR(2
d+2

2 ) = 2
d+2

2 2
d+2

2 Z
2

d+4
2

3 rdim 2R(2
d+1

2 ) = 2
d+1

2 2
d+3

2 Z
2

d+5
2

4 rdimR(2
d+2

2 ) = 2
d+2

2 2
d+2

2 Z
2

d+4
2

5 rdimC(2
d+1

2 ) = 2
d+3

2 2
d+1

2 Z
2

d+3
2

6 rdimH(2
d
2 ) = 2

d+4
2 2

d
2 Z

2
d+2

2

7 rdim 2H(2
d−1

2 ) = 2
d+3

2 2
d+1

2 Z
2

d+3
2

Integrating out the fermions in the FSM, we arrive at the
O(d + 2) NLSM in Eq. (34) at � = 2π , with the symmetry
action inherited from the FSM such that the inversion symme-
try flips all components of n, while the ZT

2 symmetry always
flips an odd number of n components (see Appendix B for
examples). Such an implementation of the symmetry action
always results in Z2-classified BSPT states, meaning that two
copies of the FSM can be trivialized by the interaction which
also trivializes the corresponding BSPT states. As have been
counted in Eq. (57), each copy of the FSM corresponds to ν

copies of the fFSPT root states, so the ZT
2 × ZP

2 iFSPT states
are Z2ν classified (see Table V).

V. SUMMARY

In this paper we systematically studied the classification
of a large class of strongly interacting fermionic and bosonic
SPT states in all dimensions. And for all the examples we
considered in this paper, we argue that the classification of the
BSPT states implies that short-range interactions can reduce
the classification of FSPT states with the same symmetry.
Furthermore, using different methods, we argue that certain
interactions can gap out the critical point between the FSPT
state and the trivial state in the noninteracting limit, which
implies that under interaction some FSPT states are driven
trivial, and it can be connected to the trivial state without the
bulk phase transition.
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APPENDIX A: IRREDUCIBLE REPRESENTATION OF
CLIFFORD ALGEBRA

The generators of the real Clifford algebra C�p,q can be
represented by a set of real matrices {α1, . . . ,αp; iβ1, . . . ,iβq}

anticommuting with each other,

αiαj = −αjαi, βiβj = −βjβi for i �= j,
(A1)

αiβj = −βjαi for any i,j,

among which the αi matrices square to 1 (as αiαi = 1) and the
iβi matrices squares to −1 (as iβiiβi = −1). We adopt this
notation such that both αi and βj matrices are Hermitian and
can be expressed as the direction product of Pauli matrices. αi’s
are real and transpose symmetric, and there are p of them in
the generators of C�p,q ; while βi’s are imaginary and transpose
antisymmetric, and there are q of them in the generators
of C�p,q .

The real Clifford algebras are isomorphic to the ma-
trix algebras of real numbers R, complex numbers C, or
quaternions H. The first several examples include C�0,0

∼= R,
whose irreducible representation is one dimensional (just a
real number); C�0,1

∼= C, generated by {iσ 2} giving a two-
dimensional irreducible representation (2 × 2 real matrix);
and C�0,2

∼= H, generated by {iσ 12,iσ 32} giving a four-
dimensional irreducible representation (4 × 4 real matrix).
Here σ ijk··· = σ i ⊗ σ j ⊗ σ k ⊗ · · · denotes the direct product
of a series of Pauli matrices σ 0, σ 1, σ 2, or σ 3. The irreducible
representations of the real Clifford algebra are concluded
in Table VI, where R(N ), C(N ), and H(N ) denote the
algebras of N × N matrix over R, C, and H, respectively,
and 2R(N ), 2H(N ) are shorthand notations of R(N ) ⊕ R(N ),
H(N ) ⊕ H(N ). The larger Clifford algebra lying outside
the table can be obtained by the eightfold Bott periodicity,
namely C�p+8,q

∼= C�p,q+8
∼= C�p,q ⊗ R(16). From Table VI,

the dimension of the (real) irreducible representation of the
Clifford algebra can be easily read out as dimR(N ) = N ,
dimC(N ) = 2N , dimH(N ) = 4N , dim 2R(N ) = 2N , and
dim 2H(N ) = 8N .

The complex Clifford algebra C�n is much simpler, whose
generators can be represented by a set of complex matrices
{γ 1, . . . ,γ n}, satisfying

γ iγ j = −γ jγ i(for i �= j ), γ iγ i = 1. (A2)

The complex Clifford algebras are isomorphic to the matrix
algebras of complex numbers C. For even n, C�2m

∼= C(2m),
and for odd n, C�2m+1

∼= C(2m) ⊕ C(2m) [or shorthanded
as 2C(2m)]. Their real irreducible representations are of the
dimensions dimC(2m) = 2m+1 and dim 2C(2m) = 2m+2.

TABLE VI. Periodic table of real Clifford algebras.

q

C�p,q 0 1 2 3 4 5 6 7

0 R C H 2H H(2) C(4) R(8) 2R(8)
1 2R R(2) C(2) H(2) 2H(2) H(4) C(8) R(16)
2 R(2) 2R(2) R(4) C(4) H(4) 2H(4) H(8) C(16)
3 C(2) R(4) 2R(4) R(8) C(8) H(8) 2H(8) H(16)

p
4 H(2) C(4) R(8) 2R(8) R(16) C(16) H(16) 2H(16)
5 2H(2) H(4) C(8) R(16) 2R(16) R(32) C(32) H(32)
6 H(4) 2H(4) H(8) C(16) R(32) 2R(32) R(64) C(64)
7 C(8) H(8) 2H(8) H(16) C(32) R(64) 2R(64) R(128)
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APPENDIX B: FERMION σ -MODEL IN EACH DIMENSION

Here we enumerate the examples of the fermion σ model
(FSM) in each dimension with explicit matrix representation
and show how the various symmetry action is embedded in
the FSM. The action of the FSM in d dimensions takes the
following general form:

S =
∫

dd+1x
1

2
χᵀ(i∂0 + h(d))χ + 1

g
(∂μn)2 + · · · ,

h(d) =
d∑

i=1

i∂iα
i + mβ0 +

d+2∑
a=1

naβ
a,

(B1)

where αi (i = 1, . . . ,d) are transpose-symmetric Hermi-
tian matrices and βa (a = 0, . . . ,d + 2) are transpose-
antisymmetric Hermitian matrices. We consider that the inver-
sion symmetry always act as P = Iiβ0. We will provide the
explicit examples of these matrices in the fermion Hamiltonian
h(d). In general, the Majorana fermion χ is of 2d+2 flavors,
meaning that the dimensions of the matrices αi and βa are
2d+2. We will use the notation σ ijk··· = σ i ⊗ σ j ⊗ σ k ⊗ · · ·
to denote the direct product of Pauli matrices σ 1, σ 2, σ 3 as
well as the 2 × 2 identity matrix σ 0. Each Pauli matrix σ i acts
on a two-dimensional single-particle Hilbert space, which is
also the size of a qubit. We may thus count the dimension of
the single-particle Hilbert space (which is also the Majorana
fermion flavor number) by qubits. A Hamiltonian made of
matrices like σ ijk··· with n indices acts in the Hilbert space
of n qubit which is of the dimension 2n. In the following, we
will use examples to demonstrate both the FSM and the FSPT
root-state model with various symmetries.

In the d = 1 spacial dimension, the Hamiltonian h(1) is
defined on a three-qubit single-particle Hilbert space,

h(1) = i∂1σ
100 + mσ 200 + n1σ

312 + n2σ
332 + n3σ

320. (B2)

With the ZP
2 : χ → iσ 200χ,n → −n symmetry only, the

root-state Hamiltonian takes the first one-qubit subspace and
must be 4-multiplied to form the FSM. With the additional
U(1) : χ → exp(iϕσ 020)χ,(n1 + in2) → e2iϕ(n1 + in2) sym-
metry, the root-state Hamiltonian takes the first two-qubit
subspace and must be doubled to form the FSM. With the
additional ZT

2 : χ → iσ 320χ,n3 → −n3 symmetry, the root-
state Hamiltonian takes the first two-qubit subspace and must
be doubled to form the FSM.

In d = 2 spacial dimension, the Hamiltonian h(2) is defined
on a four-qubit single-particle Hilbert space,

h(2) = i∂1σ
1000 + i∂2σ

3100 + mσ 2000 + n1σ
3312

+ n2σ
3332 + n3σ

3320 + n4σ
3200. (B3)

With the ZP
2 : χ → iσ 2000χ,n → −n symmetry only, the

root-state Hamiltonian takes the first two-qubit subspace
and must be 4-multiplied to form the FSM. With the ad-
ditional U(1) : χ → exp(iϕσ 0020)χ,(n1 + in2) → e2iϕ(n1 +
in2) symmetry, the root-state Hamiltonian takes the first
three-qubit subspace and must be doubled to form the FSM.
With the additional ZT

2 : χ → iσ 3200χ,n4 → −n4 symmetry,
the root-state Hamiltonian takes the first two-qubit subspace
and must be 4-multiplied to form the FSM.

In the d = 3 spacial dimension, the Hamiltonian h(3) is
defined on a five-qubit single-particle Hilbert space,

h(3) = i∂1σ
10000 + i∂2σ

31000 + i∂3σ
33000 + mσ 20000

+ n1σ
32100 + n2σ

32300 + n3σ
32212 + n4σ

32232

+ n5σ
32220. (B4)

With the ZP
2 : χ → iσ 20000χ,n → −n symmetry only, the

root-state Hamiltonian takes the first two-qubit subspace
and must be 8-multiplied to form the FSM. With the ad-
ditional U(1) : χ → exp(iϕσ 00200)χ,(n1 + in2) → e2iϕ(n1 +
in2) symmetry, the root-state Hamiltonian takes the first three-
qubit subspace and must be 4-multiplied to form the FSM.
With the additional ZT

2 : χ → iσ 32000χ,n → −n symmetry,
the root-state Hamiltonian takes the first two-qubit subspace
and must be 8-multiplied to form the FSM.

In the d = 4 spacial dimension, the Hamiltonian h(4) is
defined on a six-qubit single-particle Hilbert space,

h(4) = i∂1σ
100000 + i∂2σ

310000 + i∂3σ
330000 + i∂4σ

322000

+mσ 200000 + n1σ
321100 + n2σ

321300 + n3σ
321212

+ n4σ
321232 + n5σ

321220 + n6σ
323000. (B5)

With the ZP
2 : χ → iσ 200000χ,n → −n symmetry only, the

root-state Hamiltonian takes the first three-qubit subspace
and must be 8-multiplied to form the FSM. With the addi-
tional U(1) : χ → exp(iϕσ 000200)χ,(n1 + in2) → e2iϕ(n1 +
in2) symmetry, the root-state Hamiltonian takes the first four-
qubit subspace and must be 4-multiplied to form the FSM. With
the additional ZT

2 : χ → iσ 323000χ,n6 → −n6 symmetry, the
root-state Hamiltonian takes the first three-qubit subspace and
must be 8-multiplied to form the FSM.

In the d = 5 spacial dimension, the Hamiltonian h(5) is
defined on a seven-qubit single-particle Hilbert space,

h(5) = i∂1σ
1000000 + i∂2σ

3100000 + i∂3σ
3300000 + i∂4σ

3212000

+ i∂5σ
3232000 + mσ 2000000 + n1σ

3201000 + n2σ
3203000

+ n3σ
3222100 + n4σ

322300 + n5σ
3222212 + n6σ

3222232

+ n7σ
3222220. (B6)

With the ZP
2 : χ → iσ 2000000χ,n → −n symmetry only, the

root-state Hamiltonian takes the first four-qubit subspace
and must be 8-multiplied to form the FSM. With the addi-
tional U(1) : χ → exp(iϕσ 0002000)χ,(n1 + in2) → e2iϕ(n1 +
in2) symmetry, the root-state Hamiltonian takes the first
four-qubit subspace and must be 8-multiplied to form the
FSM. With the additional ZT

2 : χ → iσ 3201000χ,n1 → −n1

symmetry, the root-state Hamiltonian takes the first four-qubit
subspace and must be 8-multiplied to form the FSM.

In the d = 6 spacial dimension, the Hamiltonian h(6) is
defined on an eight-qubit single-particle Hilbert space,

h(6) = i∂1σ
10000000 + i∂2σ

31000000 + i∂3σ
33000000

+ i∂4σ
32120000 + i∂5σ

32320000 + i∂6σ
32222000

+mσ 20000000 + n1σ
32221000 + n2σ

32223000

+ n3σ
32010100 + n4σ

32010300 + n5σ
32010212

+ n6σ
32010232 + n7σ

32010220 + n8σ
32030000. (B7)
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With the ZP
2 : χ → iσ 20000000χ,n → −n symmetry only, the root-state Hamiltonian takes the first five-qubit subspace and must

be 8-multiplied to form the FSM. With the additional U(1) : χ → exp(iϕσ 00002000)χ,(n1 + in2) → e2iϕ(n1 + in2) symmetry,
the root-state Hamiltonian takes the first five-qubit subspace and must be 8-multiplied to form the FSM. With the additional ZT

2 :
χ → iσ 32030000χ,n6 → −n6 symmetry, the root-state Hamiltonian takes the first five-qubit subspace and must be 8-multiplied
to form the FSM.

In the d = 7 spacial dimension, the Hamiltonian h(7) is defined on a nine-qubit single-particle Hilbert space,

h(7) = i∂1σ
100000000 + i∂2σ

310000000 + i∂3σ
330000000 + i∂4σ

321200000 + i∂5σ
323200000 + i∂6σ

320120000 + i∂7σ
320320000

+mσ 200000000 + n1σ
322010002 + n2σ

322030002 + n3σ
322221200 + n4σ

322223200 + n5σ
322220120 + n6σ

322220320

+ n7σ
322222010 + n8σ

322222030 + n9σ
322222220. (B8)

With the ZP
2 : χ → iσ 200000000χ,n → −n symmetry only, the root-state Hamiltonian takes the first five-qubit subspace and must

be 16-multiplied to form the FSM. With the additional U(1) : χ → exp(iϕσ 000020000)χ,(n1 + in2) → e2iϕ(n1 + in2) symmetry,
the root-state Hamiltonian takes the first five-qubit subspace and must be 16-multiplied to form the FSM. With the additional ZT

2 :
χ → iσ 322200000χ,n → −n symmetry, the root-state Hamiltonian takes the first five-qubit subspace and must be 16-multiplied
to form the FSM.

In the d = 8 spacial dimension, the Hamiltonian h(8) is defined on a 10-qubit single-particle Hilbert space,

h(8) = i∂1σ
1000000000 + i∂2σ

3100000000 + i∂3σ
3300000000 + i∂4σ

3212000000 + i∂5σ
3232000000 + i∂6σ

3201200000 + i∂7σ
3203200000

+ i∂8σ
3222200000 + mσ 2000000000 + n1σ

3220310002 + n2σ
3220330002 + n3σ

3220101200 + n4σ
3220103200 + n5σ

3220100120

+ n6σ
3220100320 + n7σ

3220102010 + n8σ
3220102030 + n9σ

3220102220 + n10σ
3220320000. (B9)

With the ZP
2 : χ → iσ 2000000000χ,n → −n symmetry only, the root-state Hamiltonian takes the first five-qubit subspace and

must be 32-multiplied to form the FSM. With the additional U(1) : χ → exp(iϕσ 0000020000)χ,(n1 + in2) → e2iϕ(n1 + in2)
symmetry, the root-state Hamiltonian takes the first six-qubit subspace and must be 16-multiplied to form the FSM. With the
additional ZT

2 : χ → iσ 3220320000χ,n10 → −n10 symmetry, the root-state Hamiltonian takes the first six-qubit subspace and must
be 16-multiplied to form the FSM.

For higher spacial dimensions (d > 8), due to the Bott periodicity of the Clifford algebra, the Hamiltonian h(d) can be extended
systematically from the Hamiltonian h(d−8) with eight dimensions lower. Supposing that h(d) = ∑d

i=1 i∂iα
i + mβ0 + ∑d+2

a=1 naβ
a

and h(d−8) = ∑d−8
i=1 i∂i α̃

i + mβ̃0 + ∑d−6
a=1 naβ̃

a , the extension is given by

αi = α̃i ⊗ σ 00000000, (i = 1, · · · ,d − 9)
βa = β̃a ⊗ σ 00000000, (a = 0, · · · ,d − 7)

αd−8 = α̃d−8 ⊗ σ 22220000, βd−6 = β̃d−6 ⊗ σ 00002222,

αd−7 = α̃d−8 ⊗ σ 10000000, βd−5 = β̃d−6 ⊗ σ 00001000,

αd−6 = α̃d−8 ⊗ σ 30000000, βd−4 = β̃d−6 ⊗ σ 00003000,

αd−5 = α̃d−8 ⊗ σ 21200000, βd−3 = β̃d−6 ⊗ σ 00002120,

αd−4 = α̃d−8 ⊗ σ 23200000, βd−2 = β̃d−6 ⊗ σ 00002320,

αd−3 = α̃d−8 ⊗ σ 20120000, βd−1 = β̃d−6 ⊗ σ 00002012,

αd−2 = α̃d−8 ⊗ σ 20320000, βd = β̃d−6 ⊗ σ 00002032,

αd−1 = α̃d−8 ⊗ σ 22010000, βd+1 = β̃d−6 ⊗ σ 00002201,

αd = α̃d−8 ⊗ σ 22030000, βd+2 = β̃d−6 ⊗ σ 00002203.

(B10)

Every symmetry transform matrix O is extended to O ⊗ σ 00000000. The structure of the Hamiltonian and the symmetry action
remains the same under the extension. The single-particle Hilbert space of every root state is enlarged by four qubits, while that
of the FSM is enlarged by eight qubits, so the minimal copy number to obtain the FSM from the root state is always 16 times
multiplied in every eight dimensions higher.
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