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Frustrated electrons on a spatially anisotropic triangular lattice: Emergent competition of charge
orders and exotic disorders due to thermal fluctuations
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We study the interplay of correlation and thermal fluctuation in a system consisting of two species of
classical particles with up and down spin on a geometrically frustrated anisotropic triangular lattice, described
by an extended four-state Potts model. The model corresponds to the strong coupling limit of the extended
Hubbard model at quarter-filling, which is known to host several competing charge ordered phases as well as
an exotic quantum state called pinball liquid. The frustrated intersite Coulomb interactions together with the
on-site Coulomb interaction generate macroscopically degenerate manifolds of low-energy states. They compete
entropically at finite temperature and two characteristic states emerge; a threefold periodic charge ordered
state and a quasi-one-dimensionally disordered state called “good defect state” characterized by the systematic
generation of ferroelectric bonds. The two states show good correspondence with the threefold charge order and
the pinball liquid in the extended Hubbard model, and are separated by the partial Mott transition taking place
on one of the three sublattices of the triangular lattice.
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I. INTRODUCTION

The geometrical frustration effect in magnets has been a
topic of constant interest due to a variety of phenomena it
provides [1], such as spin liquids [2], nematic orders [3],
glasses without extrinsic disorders [4–6], spin chirality [7],
and spin ices [8]. Frustration arises when there is no way
of arranging spins that could satisfy all the interactions
simultaneously, e.g., when spins are aligned on triangular,
kagome, or pyrochlore lattices, etc. Even for such single
spin degrees of freedom, a frustration effect is already a
challenging many-body problem. In solids, however, there
are more numbers of degrees of freedom, namely, spins,
charges, orbitals, and lattices that often come into play in their
low-energy properties, giving rise to far richer phenomena.
In such presence of many degrees of freedom, the frustration
effect is quite elusive.

Among them, one could find a relatively simple and almost
solvable example in a class of quarter-filled strongly correlated
electronic systems, where the interplay of geometrical frustra-
tion with the electronic correlation could be observed [9]; con-
sider strong intersite interactions between electrons along the
nearest neighbor sites of a triangular lattice denoted as V and
V ′ (see the inset of Fig. 2), together with the on-site Coulomb
interaction U . At quarter-filling, there is one electron per two
sites on average, and if the frustration is weak and the inter-
actions are strong enough, U � V > V ′, the electrons form a
regular staggered ordered pattern [see Fig. 2(a)] on the square
lattice formed by V bonds to avoid both the double occupancy
(U ) and the neighboring occupancy along the V bonds. In ap-
proaching a regular triangular lattice, V ′ ∼ V , the frustration
increases and destroys this order, and some unexpected phases
may emerge, which is the topic of the present paper.

In geometrically frustrated systems, the competition be-
tween different exchange interactions generates a massive

classical ground state degeneracy. These states are extremely
sensitive to degeneracy breaking perturbations. An example is
the intersite hopping integrals, t , of the electrons in solids in the
strong coupling (classical) limit, t/U,t/V → 0. This quantum
fluctuation mixes the degenerate ground state manifold and
helps to form an ordered state out of classical disorder.
The degeneracy in the free energy is also lifted entropically,
namely, by the thermal fluctuation, and the so-called “order-
by-disorder” may take place with increasing temperatures [10].
While both of these effects play an important role to understand
the behavior of frustrated electrons, the two effects are easily
mixed up, which complicates a plot. In the present paper, we
focus only on the effect of thermal fluctuation, and neglect the
quantum fluctuation, setting t = 0. Then, the issue is simplified
to the classical energetics: four different states with different
energies are allowed per one lattice site, namely (0),(↑), (↓),
and (↑↓), with ↑ and ↓ representing the electrons of that
spin orientation, which are characterized by the number of
charges, ni = 0,1,1,2, respectively, with the total number of

FIG. 1. Schematic relationships between four models: extended
four-state Potts model with U and V,V ′; extended Hubbard model
with U,V,V ′, and t ; Ising model with V and V ′ without spin degrees
of freedom; spinless fermionic t-V model with V,V ′, and t . The
pinball liquid phase [21] appears in both the extended Hubbard and
t-V models, and its classical limit corresponds to the defect state in
the other two models.
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particles fixed to quarter-filling. Since the interactions between
neighboring pair of sites are the multiple of how many charges
each hold, the model could be regarded as an extension of the
classical four-state Potts model [11].

Our extended four-state Potts model has relevance to two
interesting cases (see Fig. 1). First, if we take U = ∞ limit,
the spin degrees of freedom just gives the trivial macroscopic
degeneracy of 2N↑+N↓ , and its intrinsic property is reproduced
to the Ising model, the basic model in statistical physics.
Although its exact solution is already found in 1950 [12,13],
its microscopic features at low temperatures are clarified in
detail only recently [14]. There, it is found that the low-energy
states are governed by the systematic domain-wall excitations
(which is called defects, see Sec. II for details), while the
system remains disordered throughout the whole temperature
region. The introduction of additional longer-range attractive
interactions is found to drive the system to the Berezinskii-
Kosterlitz-Thouless transition at a finite temperature [15].

The other relevant case of the extended four-state Potts
model is realized by the introduction of the intersite transfer
integral, t and t ′ (following the same notation of anisotropy
with V and V ′), where we have a realistic strongly correlated
electron system represented by the extended Hubbard model
at 3/4-filling. Its ground state phase diagram is explored by
several different numerical approaches [16–18]. At relatively
small U/t � 15, there are three different kinds of charge
ordered (CO) phases. The two are the different geometry of
stripes, both with a twofold periodicity of charges along V and
V ′ bonds, respectively [basically the same as those given in
Figs. 2(a) and 2(b)]. The other is the threefold periodic charge
order; in dividing the system into three sublattices, all the
sites in one sublattice is occupied by more than one electron,
and the other two-third of the sites have very small amount
of charges, which form a bad metal. At larger U region, the
constraint of nearly no double occupancy on each site converts
this bad metal to a more exotic metallic state called “pinball
liquid” [19,20], which one of the authors has previously
proposed in the spinless fermionic model in Ref. [21], and is
studied in more detail in other filling recently [22]. The pinball
liquid in the extended Hubbard model is found to show a heavy
fermionic behavior [23], and shows a quantum criticality at low
temperature near the CO phase transition [19,20].

The extended Hubbard model is considered to give a
minimal theoretical description of the electronic properties of
θ -ET2X organic solids, wherein many intriguing phenomena
that could possibly be attributed to the electronic frustration
are experimentally observed [9], e.g., a sign of inhomogene-
ity [24], nonlinear conductivity [25], and a formation of charge
cluster glass [26] in the metallic state in the vicinity of
charge ordered insulating phase. θ -ET2X has a layered crystal
structure, and the electronic states on the conducting layer is
formed based on the anisotropic triangular lattice structure
of the highest occupied molecular orbitals(HOMO) of ET
molecules 3/4-filled on an average. The intersite Coulomb
interactions, V and V ′, between these HOMO’s are possibly
frustrated, and stripe CO phase as well as quasi-three-fold
periodic short-range order, with not exactly the same spatial
structures (wave numbers) [27] but similar to the ones found
in the extended Hubbard model [33], are experimentally

FIG. 2. (Color online) Ground states (a)–(c) and the low-energy
state (d) of Eq. (1) at U � V,V ′ which do not have double
occupancy on all lattice sites. Bullet represents a single occupation
of particle with either up or down spin. Panels show (a) vertical
stripe charge order at V > V ′ [E = (V ′ − 2V )N/4], (b) chain stripe
order at V ′ > V (E = −V ′N/4) at which the interchain direction
(x-direction) is disordered, (c) three sublattice disordered state
[E = −(V ′ + 2V )N/12] with macroscopic degeneracy. See the texts
for details. In (d), two different configurations of “good defect state”,
the low-energy excited states at V ′ > V , are shown. They host only
the defects with lowest energy excitations, marked with red bonds.
Examples of creating defects is shown in the right panel. (e) Energy
of plaquettes with and without defects, where EV and EU represent
the energy of the first and second term in Eq. (1), respectively. The
ground state consists of eight different plaquettes without defects. The
good defects have the lowest excitation energy, �E = (V ′ − V )/2.
The contribution from the U term is canceled out on the whole as the
total number of particle is fixed and there is no double occupancy. In
order to exclude bad defects with higher energies, the good defects
need to align alternatively between all the neighboring chains. The
number of good defect per chain is fixed, with its total number, Nd .
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observed. We discuss briefly the relevance of our results with
these experiments in the final section.

The present paper discloses the whole finite temperature
phases of the extended four-state Potts model, which then
helps to understand the nature of the above mentioned relevant
models from two aspects; one is to clarify the role of the
thermal fluctuation effect of the extended Hubbard model
by disregarding the quantum fluctuations. The other is to
understand the role of spin degrees of freedom at finite
temperature through the comparison with the “spinless” Ising
model. We also show that the pinball liquid phase in the t-V
and extended Hubbard models is understood as an analog
of the the exotic low-temperature phase in the Ising model
characterized by the defect excitation [14], and that the
transition from the threefold charge order to the pinball liquid
phases could be regarded as a partial Mott transition.

The paper is organized as follows. In Sec. II, we introduce
the model and its possible low-energy states, which actually
appear in our numerical results. We present our results in
Sec. III based on the classical Monte Carlo approach within the
framework of Wang-Landau method, and discuss the relevance
with other models as well as experiments in Sec. IV. A short
summary and outlooks are given in Sec. V.

II. MODEL AND LOW-ENERGY STRUCTURES

A. Model Hamiltonian

Throughout this paper, we consider the extended four-state
Potts model on an anisotropic triangular lattice, which has two
species of particles characterized by up and down spins. The
Hamiltonian is given as

H =
∑
〈ij〉

Vij

(
ni − 1

2

)(
nj − 1

2

)

+
N∑

i=1

U

(
ni↑ − 1

2

) (
ni↓ − 1

2

)
, (1)

where njσ denotes the particle on j th site with index σ (=↑,↓)
and nj = nj↑ + nj↓. The on-site and intersite interactions, U

and Vij = V and V ′, are given in Fig. 2(a), where we consider
a rectangular cluster of size N = Nx×Ny , and refer to the y

direction as chain direction. The summation in the first term
runs over all pairs of neighboring sites 〈ij 〉. As we discussed
earlier, each lattice site holds four different states, (0), (↑), (↓),
and (↑↓), and each species of particle is not allowed to have
double occupancy. The total particle number is fixed to quarter-
filling, N↑ + N↓ = N/2, and only the nonmagnetic states are
considered, which does not deteriorate the results. Note that
due to the particle-hole symmetry, the case of 3/4-filling gives
the identical results.

Let us first briefly mention the relationships with the other
models. The extended Hubbard model Hamiltonian is given
by adding the transfer integral, tij , to Eq. (1) as

HETH =
∑

〈i,j〉,σ
tij (c†iσ cjσ + H.c.) +

∑
〈i,j〉

Vijninj

+
∑

i

Uni↑ni↓, (2)

where c
†
jσ (cjσ ) is the creation (annihilation) operator of

electron with spin σ (=↑,↓) on j -th site, with njσ = c
†
jσ cjσ .

The second and third term is identical to Eq. (1) besides
the constant term, −N (V ′ + 2V )/4, which formally gives the
particle-hole symmetry.

On the other hand, by taking the U/Vij = ∞ limit of Eq. (1)
and disregarding the spin degrees of freedom, the Ising model
is obtained as

Hising =
∑
〈i,j〉

Vij

(
ni − 1

2

)(
nj − 1

2

)
. (3)

The absence and presence (ni = 0 and 1) of the particle at each
site represent the two Ising levels.

B. Characterization of low-energy states

In the four-state Potts model, there are several regular
alignments of particles as shown schematically in Figs. 2 and 3.
When the double occupancy is absent at sufficiently large U ,
the low-energy states are basically identical with those of the
Ising model besides the trivial 2N↑+N↓ fold spin degeneracy.
Let us summarize these non-doubly-occupied configurations
following Ref. [14]. In the ground state, there are two different
stripe phases as the particles avoid the neighboring occupation
along the strongest interaction bonds; at V > V ′ the regular
stripe along the chain direction with a unique configuration of
particles [Fig. 2(a)], and for V < V ′, the stripe with 2Nx -fold
degenerate configuration due to residual diagonal frustration,
which we call “chain stripe” [Fig. 2(b)]. At V = V ′ the
two stripes become degenerate, and in addition, there is a

FIG. 3. (Color online) Ground state and low-energy states of
Eq. (1) at U � V ′,V , which include sites with double occupancy.
(a) Ground state at relatively small U , consisting of 2N/3 empty
sites and N/6 singly occupied and N/6-doubly occupied sites, where
E = NU/6 − N (V ′ + 2V )/4. The choices of singly and doubly
occupied sites among one of the three sublattices are arbitrary.
(b) Possible configurations of particles on a plaquette including
doubly occupied sites. Another series of “good defects” with double
occupancy on the left or right sides of the plaquette are described by
gray bonds and are discriminated from others since their energy is
comparable to those of the good defects in Fig. 2(e). (c) Left panel
shows the ground state at U � 3V . By moving one particle from a
doubly occupied site marked with broken circle to its neighbor in
the right panel, the state with energy difference of 2V + V ′ − U is
formed. The threefold CO state is converted to the good defect state
in Fig. 2(d) by repeating this operation N/6 times.
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macroscopically degenerate manifold of states called “uud”
or “three-sublattice and its contingents” [21]. Dividing the
system into three sublattices, and keeping one sublattice filled
and another sublattice empty [Fig. 2(c)], and putting the rest of
the particles (N/6) to the third sublattice randomly, we get the
typical pattern known as “uud” in the Ising antiferromagnet
(i.e., two up spins and one down spin per each triangle).
There are numbers of neighboring particle-hole pairs that are
allowed to exchange without changing the energy [see the inset
of Fig. 2(c)], and numerous contingent degenerate states are
generated. The pinball liquid state [21] is formed by the mixing
of this three-sublattice and contingents by the introduction of
t , and appear in the extended Hubbard model at large U as
well as in the t-V model.

At V ′ > V , the ground state is the chain stripe charge
order and its the low energy excitations are described by
the particular class of domain walls called “good defects;”
the simplest elementary particle excitation without double
occupancy is to create a vertical (V ′) bond whose both edge
sites are occupied either by particles or by holes, which
we call “defects” [see Fig. 2(d)]. The energy of defects are
classified according to the occupation number of their two
adjacent sites on the neighboring chains [see the figure in
unit of plaquette in the right panel of Fig. 2(e)], and two of
the defect plaquettes with the lowest energy are called “good
defects.” Each plaquette with good defect carries the energy
of (V ′ − V )/2 in Eq. (3) compared to the plaquette without
defect. When V ′ − V is small enough, the good defect is
expected to dominate the low-energy excitation. However,
it is usually difficult to create only good ones. A random
introduction of defects always creates both good and bad
defects, e.g., when moving one particle along the V ′ bond
by one lattice spacing as shown in the inset of Fig. 2(d),
a pair of both good and bad defects are created. Then, by
creating another defect in the neighboring chain in between
these good and bad defects, the bad defect is converted to the
good ones. In this way, as the plaquettes share their edges with
other plaquettes, they are always correlated with the ones on
the neighboring chains. Thus one needs to follow a rule to
exclude bad defects (see Ref. [14]); in each neighboring set
of chains, the good defects should be inserted alternatively
between left and right chains. This gives a strict constraint
on the number of defects; all the chains must hold the same
number of good defects, Nd/Nx . Once this rule is fulfilled,
the excitation energy of the good defect states are given as,
Nd×(V ′ − V )/2, which is an extensive variable. A manifold
of good defect state with the fixed number of Nd has massive
degeneracy larger than that of the ground state. Considering
the fact that each defect occupies N/Nd sites on an average,
estimation of the degeneracy amounts to (N/Nd )Nd by the
maximum term method, which is the lower bound. As it is
larger than that of the chain stripe, the good defect state appears
at low temperature in the Ising model at V ′ > V � V ′/2,
taking over the chain stripe ground state.

Note that the three-sublattice and contingent states given in
Fig. 2(c) is identical to the good defect state with Nd/N = 1/3
[Fig. 2(d)], which we actually confirmed numerically in the
finite cluster. In fact, the energy of the good defect state is given
as −V ′N/4 + Nd (V ′ − V )/2, which is −(V ′ + 2V )N/12 at
Nd/N = 1/3.

TABLE I. Energy per site, E/N , and the degree of degeneracy, W ,
of three different classical manifolds of states, chain stripe [Fig. 2(b)],
threefold CO [Fig. 3(a)], and good defect states without double
occupancy [Fig. 2(d)]. nd = Nd/N denotes the defect density. Since
the exact value of W of the good defect state is analytically not
available, we give its lower bound, evaluated by the maximum term
method. Our calculation shows that it is larger than the chain stripe
by powers, m = 1 − 2 (see the density of states in Appendix B and
Fig. 14).

chain stripe threefold CO good defect

E/N −V ′/4 U/6−(V ′+2V)/4 −V ′/4+nd (V ′−V )/2
W 2Nx ×2N/2

N/3CN/6×2N/6 ∼ (N/Nd )Nd ×2N/2

If we allow the double occupancy of sites by reducing
U/Vij , another series of low-energy states emerge. Figure 3(a)
shows the threefold CO phase; among three of the sublattices,
two are empty and one is occupied by 3/2 particles on an
average. The choice of the doubly occupied sites among
the N/3 sites together with the choice of spin alignments
of the singly occupied sites, give the N/3CN/6×2N/6-fold
degeneracy.

One could see that this threefold CO has similar structure
with the good defect state at Nd/N = 1/3. In fact, if we include
another series of defects with double occupancy shown in
the lower panel of Fig. 3(b) as members of good defects,
the threefold CO state is described as Nd/N = 1/3 state, as
shown in the left panel of Fig. 3(c). Here, by moving one
particle from one doubly occupied site to its neighboring site
along the V ′ bond, the good defect (without double occupancy)
shifts by one lattice spacing, and the two gray bonds in the
neighboring chains are transformed to the red ones without
double occupancy. Such charge fluctuation costs the energy of
2V + V ′ − U , which could be small enough when U is close
to 2V + V ′.

Many of the representative states we discussed above
have massive degeneracy, both due to the variation of the
configuration of particles, and to the residual spin degrees
of freedom, which we summarize in Table I. Since the higher
excited states often have larger degeneracy, they could overtake
the ground state at finite temperature depending on their
relative energy differences, which is the main mechanism of
the emergence of phases we discuss in the next section.

III. NUMERICAL ANALYSIS

A. Methods

We apply both the standard classical Markov chain Monte
Carlo Method (MCMC) based on the Metropolis algorithm
and the Wang-Landau method (WL) [34] to analyze Eq. (1).
For MCMC, we take the thermal average of total 105 samplings
from 20 independent runs, and obtain the main results from
the typical system size of (Nx,Ny) = (12,60).

At temperatures as low as kBT /V ′ � 0.1, the statistical
error of MCMC cannot be neglected, in which case the
statistical average calculated from the density of states (see
Appendix B) obtained by WL give a more reliable results.
This should be because, the WL method gives accurate values
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of density of states when its amplitude is large, and the present
system in fact has large weights of states at low energy, typical
of the frustrated system. For WL, we varied the modification
factor from f = exp(1) up to f � exp(10−3) by updating
f → √

f through about ten independent sweeps of random
walk, and for each sweep we continue until the histogram
converges to a flatness of less than 20% from the average.
Due to the rapidly increasing number of sweeps and steps with
increasing N , the maximum system size used in WL is limited.
Therefore we confine ourselves to the relatively smaller
size of the cluster, while carefully analyze the system size
dependence of the results by comparing them with the MCMC
and exact solutions (see Appendix A). In the following, we
adopt the results at Nx×Ny = 8×24 and 8×48, based on WL
thus obtained. Here, Nx = 8 is the minimum value of Nx ,
where the physical quantities no longer show size effect (see
Appendix A). The reason why we take Ny much larger than Nx

is that, in order to describe the good defects with low density,
which appear near the zero temperature region, we need to
take Ny as large as possible. The lowest good defect density
available is (Nd/N )min = 2/Ny , since the smallest number of
defect per chain is two under the periodic boundary condition.
The results at U = ∞ successfully reproduced the results
of the Ising model in Ref. [14] with (Nx,Ny) = (50,100)
as we see shortly in Fig. 7 (see also Appendix A). Only
when Nd/N � (Nd/N )min, Ng/Nd (but not other quantities
like energy) shows a significant size effect as both Nd and Ng

smaller than 2Nx (not enough to describe both the good defects
and 1D disorder in Fig. 11) are not quantitatively reliable.

The finite temperature phase transition is detected by the
divergence of the specific heat. In fact, we find two different
types of ordered phases at low temperature, the stripe CO
phase and the threefold CO, which are shown in Figs. 2(b)
and 3(a), respectively. To accurately determine the phase
transition point, we analyze the Binder parameter within the
above mentioned sets of WL clusters, which is defined as

OB = 1 − 〈O4〉
3〈O2〉2

. (4)

For the threefold CO phase, we set the order parameter as

O3fold
i = �(i) − 〈�〉d

〈�〉3 − 〈�〉d ,

�(i) = 1

6

6∑
〈j,l〉

[2sgn(nj ) − 1][2sgn(nl) − 1], (5)

where the sum of neighboring sites, 〈j,l〉, is taken along the
hexagonal bonds surrounding site i, and sgn(nj ) = 1/0 when
the j th site is occupied (either singly or doubly)/unoccupied.
In other words, �(i) is the number density of ferrobonds
subtracted by the number density of antiferrobonds on ith
hexagon, and takes the value, 〈�〉3 = −1/3 and 〈�〉d =
1/64, in the threefold CO and fully disordered states,
respectively.

B. Phase diagram

The phase diagram in the kBT -V -U space in unit of V ′ = 1
is given in Fig. 4. At T = 0, the diagram is determined

 2

 3
 4

 0

 0.1

 0.2

 0.3

 0.4

 0.5

kBT

chain stripe

U=3V

three fold CO

FIG. 4. (Color online) Phase diagram including the ground state
and finite temperature as functions of V/V ′ and U/V ′.

by comparing the energies of the characteristic states we
discussed in Sec. II (see Table I). At U/V � 3, we find the
threefold CO ground state [Fig. 3(a)], which is stabilized by
making 1/6 of the sites doubly occupied in order to avoid
the energy loss of neighboring occupancy along the V bonds.
This threefold state is replaced by the chain stripe at large U
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FIG. 5. (Color online) Temperature dependence of the double
occupancy per site D at (a) U/V ′ = 2 and (b) U/V ′ = 4 for
V/V ′ = 0.1 − 1, on a N = 8×24 cluster by the WL method.
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FIG. 6. (Color online) Specific heat C in unit of Boltzmann
constant kB calculated for U/V ′ = 2 at V/V ′ = 0.7 − 1.0 for
N = 8×24 cluster by the WL method. The peak indicates the
transition between the disordered state and the threefold CO state.
There is another lower peak found at V/V ′ � 0.7, while we confirmed
that this point could not be described by the phase transition to any
of the stripe phase. The inset shows the Binder parameter defined in
Eq. (4) for the threefold CO order parameter Eq. (5) at U/V ′ = 2 and
V/V ′ = 0.9, calculated for N = 4×12, 6×18, and 12×30 clusters
by the WL method. The crossing point magnified in the inset is well
detected.

region, and the phase boundary between them are given as
U = 3V . So far, we have considered only limited number of
states, and the disordered states were not taken into account.
To check whether the states other than Figs. 2 and 3 appear in
the ground state, we numerically calculated the energy of the
states over the whole Hilbert space in the small cluster. The
obtained ground state phase diagram coincided with the one
in Fig. 4.

At finite temperature, the state with the lowest free energy,
F = E − T S, namely, those with relatively low energy and
high entropy emerges. At U/V � 3, the threefold CO phase
which appeared in the ground state is shown to survive up to
the temperature of kBT ∼ 0.4V ′. Figure 5(a) shows the double
occupancy, D = 〈ni↑ni↓〉, calculated at U = 2V ′. At V/V ′ �
0.7, the value of D rapidly increases at low temperature up
to D = 1/6, which indicates that the threefold CO state with
one-sixth of the sites being doubly occupied is realized. At
smaller V and at larger U [see Fig. 5(b)], D continues to
decrease down to zero with decreasing temperature, and the
threefold CO phase no longer takes place.

The boundary between disordered phase and threefold CO
is detected by the anomaly in the temperature dependence of
the specific heat C. Figure 6 shows some examples at U = 2V ′
for several choices of V/V ′. While the specific heat shows a
sharp peak indicating the divergence in its bulk limit, both
its location and the power has cluster size dependence. To
accurately determine the phase boundary, we further calculate
the Binder parameter as shown in the inset of Fig. 6, and
adopt the crossing point of several different clusters as phase
transition point in the bulk limit.

C. Defect states

As we discussed in Sec. II B, the U = ∞ limit of the
extended four state Potts model exactly correspond to the
Ising model besides the trivial spin degeneracy. The low
temperature region of the Ising model is dominated by the
characteristic disordered state called “good defect state.” This
state consists of a manifold of degenerate configurations with
only good defects generated alternatively between neighboring
chains from the chain stripe ground state. The energy of this
manifold is an extensive variable of the number of good defects
Ng . Therefore it is numerically characterized by counting the
number of good and bad defects in the MC steps. We first
show in Figs. 7(a) and 7(b) the temperature dependence of
the number density of good defects, Ng/N , and the ratio
of good defects to the total number of defects, Ng/Nd , at
this U = ∞ limit, which reproduces the results in Ref. [14].
With decreasing temperature and in approaching V ∼ V ′, the
number of bad defects, Nd − Ng , decreases exponentially, and
Ng/Nd approaches unity. At V ∼ V ′ and at low temperature,
most of the defects are converted to good ones, and Ng/N

FIG. 7. (Color online) Analysis on the U = ∞ limit of the
extended four state Potts model on a N = 8×48 cluster, which
corresponds to the Ising model in Eq. (3). (a) Temperature dependence
and (b) contour plot of number density of good defect, Ng/N . (c) and
(d) are those of the ratio of good defect to the total number of defects,
Ng/Nd . The arrows in (c) indicate the crossover temperature Tm from
a 2D disordered state at high temperature to 1D disordered states at
low temperature (see Fig. 11). The value of Ng/Nd shows a size effect
when Nd/N � 2/48, since the defect density there is lower than the
one available for the present size of the cluster. The data in (c) and
contour line (guide to the eye) in (d) in this region are shown in
broken lines. The contour lines of (d) bundle into V/V ′ = 0.5 at zero
temperature, which is confirmed in Ref. [14] as well as supported in
the discussion given in Sec. IV.
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FIG. 8. (Color online) Temperature dependence of the number
density of good defects (Ng/N ) at (a) U/V ′ = 4 and (b) U/V ′ = 2
for V/V ′ = 0.1 − 1. In (c) and (d), the good defects with double oc-
cupancy (Nd

g /N ), and in (e) and (f), those without double occupancy
(No

g /N ), are shown for comparison, where Ng = No
g + Nd

g .

approaches 1/3, which is the three-sublattice and contingent
state [see Fig. 2(c)], included in the ground state manifold at
V = V ′.

Similar results are expected at sufficiently large U .
Figure 8(a) shows the temperature dependence of Ng/N at
U/V ′ = 4, which is in fact qualitatively the same as that of
Fig. 7(a). However, when U becomes as small as U/V ′ = 2
[Fig. 8(b)], and V is close to V ′, Ng/N shows a rapid
increase to 1/3 and stays there down to zero temperature. These
Ng/N = 1/3 states correspond to the threefold CO phase we
discussed earlier. Let us remind that in the present model,
there is another series of good defects which has a doubly

FIG. 9. (Color online) Contour plots of (a) and (b) the number
density of good defect (Ng/N ) and (c) and (d) the ratio of good
defect to the total number of defects (Ng/Nd ) at U/V ′ = 4 and 2.
The broken line in (c) and (d) are the data whose finite size effect is
not negligible, i.e., those in the region of Nd/N � 2/48, where the
defect density is lower than the one available for the present cluster
size.

occupied sites on their plaquettes [see Fig. 3(c)] in addition
to the ones observed at U = ∞. We show in Figs. 8(c)–8(f)
separately the number of good defects with(Nd

g ) and without
double occupancy(No

g ). At U = 2, when entering the threefold
CO phase at low temperature, Nd

g rapidly increases in the
same manner as the double occupancy [Fig. 5(a)], and at
the same time, No

g shows a sudden decrease. The values of
these two kinds of good defects are something which we
expect in the configuration in Fig. 3(a), No

g /N = 1/12 and
Nd

g /N = 1/4. Figure 9 shows the contour plots of Ng/N

and Ng/Nd ; A bundle of contour lines of Ng/N flow into
a single point at zero temperature, V/V ′ = 1 and ∼ 0.7
for U/V ′ = 4 and 2, respectively, which corresponds to the
onset of the Ng/N = 1/3 region. This region is stabilized
at smaller U , and a long-range ordered threefold CO phase
appears.

To see how the concentration of good defects are varied at
around the phase transition point, we show in Fig. 10 Ng/N ,
Nd

g /N , No
g /N , and D as functions of both V and kBT . The

behavior of the double occupancy synchronize with that of the
number of good defects with double occupancy, which means
that the two states are classified by Nd

g /Ng .

IV. DISCUSSION

We show in Figs. 11(a) and 11(b) the phase diagram
summarizing our results in the previous section. The ground
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FIG. 10. (Color online) Number density of good defects and the
double occupancy D, as functions of (a) temperature and (b) V near
the phase transition to the threefold CO. For the good defects, the
total number (Ng/N ), the one with (Nd

g /N ), and without double
occupancy (No

g /N ) are separately shown.

state at large enough U is basically a chain stripe [see Fig. 2(b)].
When U becomes small, the threefold charge order [see
Fig. 3(a)] emerges near V ∼ V ′. Both of these states form
manifolds of degenerate configurations; the chain stripe does
not have double occupancy, and the particles form staggered
order along the strong V ′ bonds, while the stripes formed
along the otherwise directions are disordered. Similar type of
partial disorder is also observed in the electron system on the
nonfrustrated honeycomb lattice coupled to localized spins,
where the frustration emerges due to the competing double
exchange and superexchange interactions [35]. The threefold
CO is a long range ordered phase based on three sublattice
structure with two of them empty, and with the remaining
sublattice occupied (half of the sites are doubly occupied).

At finite temperature, a series of “good defect states,” which
has slightly higher energy and larger degree of degeneracy
than these ground states, appear as a consequesnce of the
entropic gain of the free energy. In this state, the good defects
each carrying the excitation energy of (V ′ − V )/2 are required
to align alternatively between every neighboring two chains.
Otherwise, they are replaced by bad defects with higher
energies. As the good defects are allowed to move back and
forth along the chain as far as they do not break the alignment
rule, we could regard them as forming a soft dynamic network
in a sea of staggard chain stripe, as illustrated schematically in
Fig. 11(c).

Now, we explain the details of the phase diagram following
the context of Ref. [14]. The good defect states are basically
stabilized near V ∼ V ′ at low temperature where their ex-
citation energy remains small. As the temperature rises, the
bad defects are activated exponentially, Nb/Nd ∼ e−Tb/T , and
the system crossovers to the random 2D disordered phase.
The crossover temperature, Tb, evaluated from the numerical
data is given in broken line in Figs. 11(a) and 11(b). The
good defect state also becomes unstable at smaller V , and
again crossovers to the 1D disorder at V � V ′/2. This could
be understood quite easily from the energetics; as shown in
the left two panels of Fig. 11(d), depleting a pair of good
defects on one chain at the center costs the energy of 2V − V ′,
where the extra two good defects on the neighboring chains
sandwiched by the depleted good defects are converted to

FIG. 11. (Color online) Phase diagram of the extended four state
Potts model based on the numerical results at (a) U/V ′ = 4 and
(b) U/V ′ = 2. Broken line(Tb) and the shaded region [Tm, which is
ambiguous due to finite size effect, see Figs. 9(c) and 9(d)] indicate
the crossover lines, which were not shown in Fig. 4. Solid line is the
transition to the long-range ordered threefold CO phase. The pinball
liquid and threefold CO phases realized at t > 0 are illustrated in the
panels in the bottom right. (c) Schematic illustration of soft dynamic
lattice structure based on the good defects(red bonds) in a sea of CO
(particles are abbreviated) along the chain. The two configurations
are the examples of degenerate manifolds of states with fixed Nd/N .
(d) The depletion of a pair of good defects on the center chain,
namely shifting the three bullets one site downwards, converts the
good defect state in the middle panel to the left ones, increasing the
energy by 2V − V ′, where two good defects disappear and other two
good defects in the neighboring chain are converted to bad ones.
Exchanging the particle occupation as ni = 0 ↔ 1 along the shaded
chain converts the middle panel to the right one, increasing the energy
by 4V . (e) Example of the 1D disordered state in the small V region of
the phase diagram. Exchanging the particle occupation as ni = 0 ↔ 1
along the shaded chains convert the left and right panels to each other
without changing the energy.

bad ones. This means that at V < V ′/2, the good defects
are unstable and are depleted one by one. Then, both good
and bad defects are generated independently on each chain,
and we have a 1D disordered state; converting all the singly
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occupied sites to the empty ones and vise versa over one
chain with the particle number conserved, do not change the
energy, regardless of whether the chain hosts defects or not. In
Fig. 11(e), we actually show the example of converging two
shaded chains independently. Therefore, in any of these 1D
disordered states, each chain could freely choose two different
configurations, so that the Nx chains altogether form a free 1D
pseudo Ising spin system. Such picture does not hold in the
good defect state; the defects could propagate only along the
chain, while at the same time their locations are correlated
between neighboring chains, which is the reason why we
consider them as quasi-two-dimensional. In fact, if we convert
the occupied and empty sites on a good defect chain as in the
right panel of Fig. 11(d), the energy rises by 4V . Therefore
the good defect state is protected against the depleation and
conversion, as far as V > V ′/2.

The good defect state was originally proposed in the Ising
model, namely the U = ∞ limit of the present model. There,
a phase diagram similar to Fig. 11(a) is observed [14]. In the
present model, we additionally consider another series of good
defects which includes doubly occupied sites on a plaquette
it belongs to [Fig. 3(b)], which has comparably low-energy
with the original good defects when U is small enough. By
counting the number of these defects separately as, No

g and Nd
g ,

against the total number of defects, Nd , one could understand
the difference between the two phase diagrams, Figs. 11(a)
and 11(b). At large U and V ∼ V ′, the good defect dominates
the low-temperature phase, and with decreasing U , Nd in-
creases mainly due to the contribution from those with double
occupancy Nd

g . As U further decreases down to ∼ 2V + V ′,
Nd

g rapidly increases and the good defect states undergoes a
phase transition to the threefold CO phase. We indeed find
that the energy difference of threefold CO state from the good
defect state with Nd/N = 1/3 amounts to (U − V ′ − 2V )/6
(see Table I). In the threefold CO phase, the number of good
defects become Nd/N = (Nd

d + No
d )/N = 1/3 at low kBT .

The comparison of these results with the those of the
extended Hubbard model at quarter-filling will help to un-
derstand the whole physical picture of this frustrated system.
As pointed out in Ref. [19], the extended Hubbard model on
a regular triangular lattice, V = V ′, hosts two characteristic
insulating state, the threefold CO and the pinball liquid,
which are shown schematically in Fig. 11. In the former
state, the number of particles on three different sublattices
are approximately, nB = nC = 0 and nA = 3/2, which gives
D ∼ 1/6 (here we describe the particle numbers in terms of
the holes in the model of Ref. [19] dealing with 3/4-filling).
This phase is realized at relatively small U (�2.5V − 3V ).
As U increases, part of the particles on doubly occupied sites
[a sublattice in Fig. 2(c)] spill out and become a separate
fluid moving freely along the other two sublattices (B and C
sublattices) with the particle distribution of nB = nC = 1/4
and nA = 1.

As clearly seen from the comparison of particle density
distribution, the threefold CO and pinball liquid phases of the
extended Hubbard model correspond to our threefold CO and
good defect states with Nd/N ∼ 1/3, respectively. Starting
from the strong coupling limit of Eq. (2), which is our extended
four state Potts model, and by perturbatively introducing the
tij term, the two states in our model are converted to the

above mentioned two quantum phases [20,21,36], respectively.
In our classical model, the spin degrees of freedom remain
degenerate, so that all the states in the phase diagram
are magnetically disordered. Introduction of tij usually lifts
such degeneracy and the antiferromagnetic long-range order
appears. The structure of magnetic ordering depends not only
on the geometry of localized charges but also on tij , e.g., in
the stripe CO at small V , the antiferromagnetic ordering takes
place along the CO stripe, and at V = V ′ and t = t ′, a small
magnetic moment on one sublattice with rich particle density
in the pinball or threefold CO phase is expected to form a 120◦
Néel order as in the spin 1/2 Heisenberg model [37].

Notice that the good defect state is not a long-range order
but a thermally activated phase that crossovers to the random
disordered phase at higher temperature. The above mentioned
quantum fluctuation, tij , transforms this disordered phase to the
pinball liquid with long-range order of “pins” on A sublattice,
which is a typical order-by-disorder phenomena discussed in
Ref. [21].

As the two phases in both the classical and quantum cases
are discriminated by rapid change (or a possible jump in the
thermodynamic limit of the extended Hubbard model) in the
double occupancy, we could interpret this transition as a partial
and inverse Mott transition. Here, we call “inverse” because
the metallic (pinball or good defect phase) phase becomes
insulating (threefold CO) by the increase of double occupancy,
which is contrary to the usual Mott transition.

Let us finally refer to the experimental studies on the organic
solid, θ -ET2MZn(SCN)4 (M = Cs and Rb). The crystal of θ -
ET2X has an alternating layer of conducting ET molecules and
insulating anions [38], and the ET molecules are aligned in an
anisotropic triangular lattice geometry. Some of the materials
with weaker frustration host a stripe CO at temperature
lower than ∼200 K [horizontal stripe in the left panel in
Fig. 2(b)]. The metallic phase above this transition temperature
is already unconventional, as the optical conductivity cannot
be explained within the ordinary Drude type response of a
normal metal [39]. θ -ET2CsZn(SCN)4, which possibly has
a larger degree of frustration of V and V ′, falls off this
insulating phase and shows weakly temperature independent
resistivity down to low temperature, finally showing an upturn,
which is considered as a sign of an incoherent (bad) metal.
There, nonlinear conductance is observed [40], which is
attributed to the competing two different types of short-range
charge ordering of twofold (stripelike) and threefold in-plane
periodicity [25]. Another material, θ -ET2RbZn(SCN)4, which
lies at the phase boundary, is found to sustain this bad metallic
character only when rapidly cooled down. The experimental
evidence of spatial inhomogeneity of these two competing
short-range orders on a nanometer scale was given by the
x-ray diffraction measurement [41].

Recently, the dynamics of such possibly frustrated charges
is measured by the resistance fluctuation spectroscopy on
θ -ET2RbZn(SCN)4 [26]; the anomalous contributions off the
1/f noise from the resistance power spectrum density are
extracted. They are attributed to the dynamics of charges,
which slows down by the orders of magnitudes with decreasing
temperature. Their temperature dependence also indicates the
growth of heterogeneities charge clusters at the same time,
which extend over ∼25 triangular spacings, as indicated by the
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x-ray diffraction measurement. These experimental findings
suggest that the bad metallic behavior is caused by a rather
classically disordered nature of charges, which is referred to as
a charge glass. Examination of the charge-glass-forming abil-
ity of θ -ET2X is systematically carried out with the aid of x-ray
measurements, and the geometrical frustration is found to play
crucial role to slow down the dynamics of charge ordering [42].

In fact, this glassy kind of disorders may be better described
by the present extended four-state Potts model rather than its
quantum version, an extended Hubbard model. The value of U

and V of θ -ET2X is not known. However, the ab initio density
functional theory evaluates those of the reference system,
κ-ET2X [X = Cu(NCS)2 and Cu2(CN)3] as U/V ∼ 2–5,
based on the constrained random phase approximation [43].
As the on-site Coulomb interaction generally depends only
on the species of molecules, and the κ and θ type of
molecular arrangement is not much different in their molecular
packing density, we consider that this evaluation also holds
of the θ -ET2X as well. In fact, another organic material,
TMTTF/TMTSF2X, based on different molecules, has a
similar ratio of U/V according to the optical measurements
compared with theory, U/t = 5–7 and V/t = 2–3 [44]. Now,
putting U/V ∼ 2–5 into our phase diagram, we find that
the possible charge glass state should correspond to a good
defect state, as the threefold CO phase is stabilized only at
smaller U . The good defect state is basically a disordered state
but is not a simple disorder, so that it could be regarded as
a kind of a short-range order slowly fluctuating along the
chain direction. It is natural to expect that they freeze to
a glassy state as the temperature is lowered if we consider
the extra energy scale such as coupling with the phonons.
While the threefold-like short-range order of θ -ET2X has been
often related to the threefold CO of the extended Hubbard
model [16–18], we consider based the present discussion that
it is much closer to the state between the pinball liquid and
the good defect state. In fact, the transport measurements
show that the relaxation time (aging behavior of resistance) of
the charge glass of θ -ET2CsZn(SCN)4 follows an Arrhenius
type of temperature dependence, indicative of a strong liquid,
in which the rearrangement of charge configurations occurs
locally [45]. This idea perfectly fits with the way the defects
fluctuate locally along the chains.

V. SUMMARY AND OUTLOOK

We have studied the effect of thermal fluctuation on the
frustrated electrons living on an anisotropic triangular lattice
by taking the limit of zero quantum fluctuation, i.e., in the
extended four state Potts model. The model consists of two
species of classical particles with up and down spin indices,
having four different states, (0),(↑),(↓), and (↑↓), per each
lattice site. The particles on the same site interact with U

and those on the neighboring site do via V ′ or V , with
one bond direction being different from the other two. Off
the fully frustrated case (i.e., V �= V ′), fixing the particle
number to quarter-filling (one particle per two lattice sites)
basically yields stripe charge ordered phases. Focusing on the
parameter region with relatively large frustration, V ′ � V , we
find that a manifold of low-energy states which we call “good
defects” dominate the low-energy excitations levels of the

model. In this state, the defects, namely, V ′ bonds breaking the
charge ordering, follow the rule to align alternatively between
neighboring V ′ chains. Their freedom to fluctuate freely along
the chains without breaking this rule allows for macroscopic
classical degeneracy. By the entropic gain of free energy due
to this degeneracy, the good defects overtake the stripe ground
state at finite temperature.

Our classical Monte Carlo calculation based on the Wang-
Landau algorithm shows that the low temperature region of
the model at V ′ ∼ V is indeed dominated by the “good
defect” state at large U , where the model smoothly connects
to the classical Ising model in which the good defect state
was originally proposed [14]. As U is decreased, the good
defect state undergoes a transition to the threefold CO phase
at around V ∼ V ′, which could be regarded as a particular
type of Mott transition characterized by the rapid change
of the double occupancy of particles. The good defect state
and the threefold CO phase are the analogues of the pinball
liquid and the threefold CO of the extended Hubbard model at
quarter filling, respectively, which are realized by intoducing
the quantum fluctuation t to our model.

We argue that the glassy and strong liquid nature of the
charges observed in a series of organic materials, θ -ET2X,
could be well understood by the “good defect” picture. How
to characterize such state which is not simply disordered by
defining the positive “order parameter” remains an issue to be
studied.

Δ

Δ

FIG. 12. (Color online) System size dependence of the energy
density, E/N . (a) shows Nx dependences at fixed Ny = 24 and (b)
the variation, �E = E(Nx,Ny = 24) − E(Nx = 4,Ny = 24), (c) Ny

dependences at fixed Nx = 8, and (b) the variation, �E = E(Nx =
8,Ny) − E(Nx = 8,Ny = 12).
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FIG. 13. (Color online) (a) Comparison of the energy of the exact
solution of the Ising model (solid line) with the MCMC and WL
results at U = ∞ and V/V ′ = 0.9. (b) Comparison between the
MCMC and WL at U/V ′ = 2 and V/V ′ = 0.9. In both cases, we set
Nx×Ny = 8×24, and the statistical averages of MCMC is taken over
20 independent runs each with 5000 MCS.

ACKNOWLEDGMENTS

This work is supported by Grant-in-Aid for Scientific
Research (No. 25800204) from the Ministry of Education,
Science, Sports and Culture of Japan.

APPENDIX A: ACCURACY OF THE RESULTS

As we discussed in Sec. III A, we adopted the WL method
since the statistical error at low temperature is reasonably
small compared to MCMC. Whereas, the size of the cluster
available is limited. We examined the size dependence of the
results before determining the cluster size we adopted, namely,

Nx×Ny = 8×24 and 8×48. Figure 12 shows the Nx and Ny

dependencies of the energy at U/V ′ = 2 and V/V ′ = 0.9,
which is the parameter where the WL method has the worst
convergence. As we can see, the Ny dependence is almost
negligible, whereas we need to take Nx � 8 to have the energy
almost converged to that of the bulk limit. The variation of
energy, �E, compared to its extrapolated value in the bulk
limit, deviates the largest near kBT ∼ 0.4V ′, which is the
region where the good defect state sets in.

The accuracy of WL results is examined in Fig. 13. In the
U = ∞ limit, we have the exact solution of the Ising model,
and the WL results show reasonably good agreement even at
Nx×Ny = 8×24 down to lowest temperature. By contrast, the
MCMC method starts to show deviation at kBT /V ′ � 0.1. A
similar tendency is observed at U/V ′ = 2 [Fig. 13(b)], while
we do not have an exact solution for this parameter.

APPENDIX B: DENSITY OF STATES

The WL method provides us with the density of states, �,
which enables us to understand the low-energy structure of
the model. Figure 14 shows �/N as functions of E/N for
several choices of parameters, corresponding to the results
we obtained in the main text. Here, we classified the states
without double occupancy in green, and the good defect state
which includes those with and without double occupancy
in red. One finds that the lowest energy part of �/N are
dominated by the good defect states. The profile of �

scales well with N , namely �/N does not depend much
on N .

Ω
Ω

FIG. 14. (Color online) Density of states per site, �/N , obtained by the WL method. The variation of U/V ′ = 4 and 2, V/V ′ =
1,0.9,0.5,0.1 are shown for Nx×Ny = 6×24. The profile of �/N basically does not depend on N , namely the logarithmic density of
states scale well with N .
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