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CPT theorem and classification of topological insulators and superconductors
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We present a systematic topological classification of fermionic and bosonic topological phases protected by
time-reversal, particle-hole, parity, and combination of these symmetries. We use two complementary approaches:
one in terms of K-theory classification of gapped quadratic fermion theories with symmetries, and the other in
terms of the K-matrix theory description of the edge theory of (2+1)-dimensional bulk theories. The first
approach is specific to free fermion theories in general spatial dimensions while the second approach is limited
to two spatial dimensions but incorporates effects of interactions. We also clarify the role of the CPT theorem
in the classification of symmetry-protected topological phases, and show, in particular, that the topological
superconductors discussed before are related by the CPT theorem.
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I. INTRODUCTION

Topological insulators (TIs) and topological superconduc-
tors (TSCs) are states of matter that are not adiabatically
connected to, in the presence of a set of symmetry conditions,
topologically trivial states of matter [1,2]. TIs and TSCs
characterized by Altland-Zirnbauer symmetries [3], time-
reversal symmetry (TRS), particle-hole symmetry (PHS), and
combinations thereof, have been theoretically predicted [4–12]
and experimentally discovered [13–20].

In more recent years, the interplay between on-site sym-
metries (such as TRS and PHS listed in Altland-Zirnbauer
symmetry classes) and non-on-site symmetries (such as space
group symmetries) has enriched the topological phases of
matters. A novel class of topological matter characterized
(additionally) by non-on-site symmetries, such as topo-
logical crystalline insulators (TCIs) [21] and topological
crystalline superconductors (TSCSs), have been discovered
[22–29]. The topological classification, originally studied in
the presence/absence of various on-site symmetries in Altland-
Zirnbauer classes [10,11,30], is also extended to include
the non-on-site symmetries such as reflection symmetry
[31,32], inversion symmetry, [33,34] and (crystal) point group
symmetries [35–38] recently.

Motivated by these recent works, in this paper, we further
study TIs and TSCs protected by a wider set of symmetries
than symmetries in Altland-Zirnbauer classes by including,
in particular, a parity symmetry (PS), which is a symmetry
under the reflection of an odd number of spatial coordinates.
One of our focuses is, in addition to the cases where parity is
conserved, on situations where a combination of parity with
some other symmetries, such as CP (product of PHS and PS) or
PT (product of PS and TRS), are preserved. For earlier related
works, see, for example, Refs. [30,39–41].

Another issue we will discuss in this paper is the effect of
interactions on the classification of those topological phases
protected by parity and other symmetries (such as combination
of parity and other symmetries). It has been demonstrated,
in various examples, that there are phases that appear to be
topologically distinct from trivial phases at noninteracting
level, which, in fact, can adiabatically be deformable into a
trivial state of matter in the presence of interactions [42–47].

For example, Ref. [47] discusses (2+1)-dimensional [or two
spatial-dimensional (2D)] superconducting systems in the
presence of parity and time-reversal symmetries, which are
classified, at the quadratic level, by an integer topological
invariant, while once interparticle interactions are included,
states with an integer multiple of eight units of the noninteract-
ing topological invariant are shown to be unstable. Focusing on
2D bulk topological states that support an edge state described
by a K-matrix theory, i.e., Abelian states, we will study the
stability of the edge state (and hence the bulk state) in the
presence of parity symmetry or parity symmetry combined
with other symmetries.

We will also show that, once parity symmetry or parity
symmetry combined with other discrete symmetries is in-
cluded into our consideration, the CPT theorem plays an
important role in classifying topological states of matter.
The CPT theorem holds in Lorentz invariant quantum field
theories, which says, C, P, T, when combined into CPT, is
always conserved, i.e., CPT = 1, schematically. For example,
a Lorentz invariant CP symmetric field theory also possesses
TRS, and vice versa.

In condensed matter systems, however, such relations be-
tween these discrete symmetries (T, C, and P) do not arise since
we are not to be restricted to relativistic systems; symmetries
can be imposed independently. Nevertheless, some physical
properties of these nonrelativistic systems at long wavelength
limit, such as the band topology or the electromagnetic
response, can be encoded in the so-called topological field
theory, which respects the Lorentz symmetry. When these
topological properties are protected (or determined) by some
symmetry, TRS, say, they can also be protected solely by
CP symmetry, which is a “CPT-equivalent” partner to TRS.
For example, the magnetoelectric effect in 3D time-reversal
symmetric TIs [48] is also expected to be observed in a CP
symmetric TI, because they are both described by the axion
term (effective action for electromagnetic response) with the
same nontrivial (quantized) value of θ angle.

In addition, from the prospect of topological classification,
classifying symmetry-protected topological (SPT) phases of
free fermion systems [characterized either by a gapped
Hamiltonian of the (d + 1)-dimensional bulk or by a gapless
Hamiltonian of d-dimensional boundary with symmetries] is
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equivalent to classifying the corresponding Dirac operators
with symmetry restrictions [11]. It is thus natural to associate
TIs protected by TRS with TIs protected by CP symmetry, as
the Dirac Hamiltonian has a CPT invariant form.

In this paper, by going through classification problems of
noninteracting fermions in the presence of various symmetry
conditions, and also microscopic stability analysis of inter-
acting edge theories, we will demonstrate explicitly that such
CPT theorem holds at the level of topological classification for
all cases that we studied. Through this analysis, we can see, for
example, that 2D TSCs protected by spin-parity conservation
[45,46], and 2D TSCs by parity and time reversal [47], both
of which are classified in terms of Z8, are related by the CPT
theorem.

As mentioned above, the CPT theorem (i.e., topological
classification problems with different set of symmetries related
by CPT relations) may largely be expected, for example,
once we anticipate a description of SPT phases by the
underlying topological field theories. However, perhaps more
fundamentally, we will also discuss that while physical Hamil-
tonians may not obey the CPT theorem, their entanglement
Hamiltonians obey a form of the CPT theorem [33,49,50].

We will also discuss yet another duality relation, “T
duality,” for a wide range of topological insulators and
superconductors. T duality is a duality that exchanges a phase
field (φ ∼ ϕL + ϕR) and its dual (θ ∼ ϕL − ϕR) in the (1+1)-
dimensional boson theory or in string theory. [Here, φ and θ

are the compact boson fields in the (1+1)-dimensional boson
theory and ϕL/R are their left/right-moving parts.] Similarly to
CPT theorem, this duality relation (and its proper generaliza-
tion to K-matrix theory with multicomponent boson fields)
relates the topological classification of (2+1)-dimensional
fermionic systems with CP symmetry and charge U(1) sym-
metry to the topological classification with parity symmetry
and spin U(1) symmetry. The latter system is a Bogoliubov-de
Genne (BdG) system with conserved parity and spin U(1)
symmetry. Therefore the topological classifications of (i) time-
reversal symmetric insulators conserving charge U(1) [the
quantum spin Hall effect (QSHE)], (ii) CP-symmetric insula-
tors with conserving charge U(1), (iii) parity-symmetric BdG
systems with conserved spin U(1), and (iv) TC-symmetric BdG
systems with conserved spin U(1) are all related (equivalent);
all these systems are classified by a Z2 topological number.
Such relation is shown pictorially in Fig. 1(a). Figure 1(b)
shows another example for CPT-equivalent insulators and BdG
systems with related symmetries.

While we were preparing the draft, a preprint that is related
to this paper appeared, see Ref. [51]. While our analysis in
terms of the K theory largely overlaps with this preprint, our
analysis in terms of K-matrix theories and our discussion in
terms of the CPT theorem and T duality were not discussed
therein.

A. Outline and main results

The structure of the paper and the main results are
summarized as follows. In Sec. II, we start our discussion
by considering 2D fermionic topological phases protected by
CP symmetry. As inferred from the CPT theorem and the
existence of time-reversal symmetric topological insulators in

(a)

(b)

FIG. 1. (Color online) Two sets of topological (crystalline) in-
sulators and superconductors related by CPT equivalence and/or T
duality: (a) T symmetric TI (QSHE), CP symmetric TCI, chiral (TC)
symmetric TSC with Sz conservation, and P symmetric TCSC with
Sz conservation; (b) T symmetric TSC, P symmetric TCSC, and T
and P symmetric TCI that can support gapless edge states even in the
absence of charge U(1) symmetry.

two dimensions, we will show that there are two topologically
distinct classes of insulators with CP symmetry in two
dimensions, i.e., Z2 classification. We will present in Sec. II A
a simple example (tight-binding model) of CP symmetric band
insulators, which is constructed from two copies of two-band
Chern insulators with opposite chiralities. While we defer a
systematic classification of CP symmetric insulators until Sec.
III, we discuss the edge theory of the CP symmetric topological
insulators, and perturbations to it such as mass terms.

We will also show, in Sec. II B, that systems with CP
symmetry and charge conservation [charge U(1) symmetry]
can also be interpreted as BdG systems that preserve parity and
one component of SU(2) spin, say Sz [spin U(1) symmetry].
That is, CP symmetric topological insulators can be realized as
topological crystalline superconductors with Sz conservation.
In terms of edge theories, the relation between CP symmetric
insulators and P symmetric BdG systems is nothing but T du-
ality or the Kramers-Wannier duality. To the best of our knowl-
edge, this topological superconductor protected by spin U(1)
and parity symmetry has not been discussed in the literature.

In Sec. II C, following Ref. [33], we make a further con-
nection between CP symmetric insulators and time-reversal
(T) symmetric insulators by considering entanglement Hamil-
tonians and effective symmetries thereof. Then we introduce
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the ideas of CPT equivalence and T duality of topological
phases in Sec. II D, taking the CP symmetric TI and its related
systems [shown in Fig. 1(a)] as an example that shows such
equivalence.

In Sec. III, we use K theory to classify noninteracting
CP symmetric TI in arbitrary dimensions. We found the
topological classification of this symmetry class is exactly the
same as that of the symmetry class possessing TRS. An explicit
construction of the “effective” TRS operator from the Dirac
Hamiltonian with CP symmetry is given. Then the topological
invariants of CP symmetric TI are also constructed. On the
other hand, using the extension problem of the Clifford algebra,
the BdG systems with spin U(1) and P symmetries are also
shown to fall in the classification equivalent to the symmetry
class possessing TRS in any dimensions. We thus extend the
CPT equivalence and T duality that we observe in Sec. II in
terms of 2D fermionic systems to all dimensions.

With the same idea, in Sec. III E, we also study topological
phases protected by PT symmetry, which are CPT-equivalent
partners of topological phases protected by PHS. While the
latter is usually implemented by a BdG Hamiltonian that
breaks charge U(1) symmetry (superconducting system), it
is interesting to find a system of insulators with nontrivial
topology protected by PT that manifests the same topological
features as TSCs with PHS. While there is no nontrivial
topological phase protected by PT in 3D and 2D (here we
are not interested in the chiral topological phases in 2D), a
nontrivial PT symmetric TI, which is characterized by a Z2

class, exists in a 1D (and 0D) system.
In Sec. IV, we discuss CPT equivalence for more general

symmetry classes. It can be stated as “topological CPT
theorem” for noninteracting fermionic systems in arbitrary
dimensions. Furthermore, the complete classification of TIs
and TSCs (and TCIs and TCSCs if spatial symmetries are
present) for noninteracting fermionic systems with T, C, P,
and/or their combinations is obtained by considering symme-
try classes “AZ+CPT”: (a) CPT-equivalent symmetry classes
“generated” from AZ classes by a trivial CPT symmetry; (b)
Other symmetry classes “generated” from AZ classes by non-
trivial CPT symmetries. The result is summarized in Table II.

In Sec. V, we use (Abelian) K-matrix theory to classify
2D interacting topological phases protected by T, C, P, the
combined symmetries, and/or U(1) symmetries, for either
bosonic or fermionic systems. The results are summarized in
Tables III and IV. Comparing with the case of noninteracting
fermions, we also give an interacting version of “topological
CPT theorem” for 2D interacting bosonic and fermionic
topological phases. The key point is that any perturbations
(not necessary Lorentz scalars) that can gap the edges of a
2D bulk must be invariant under a “trivial” CPT symmetry.
We also discuss T duality in the K-matrix formalism. Both
CPT equivalence and T duality for 2D interacting topological
phases can be seen manifestly in Tables III and IV.

II. 2D FERMIONIC TOPOLOGICAL PHASES PROTECTED
BY SYMMETRIES

In this section, we start our discussion by considering a
simple fermionic tight-binding model that is invariant under
CP symmetry. We will also note that the fermionic system

can also be interpreted as a topological superconductor (BdG
system) that conserves the z component of spin. Later, we
will comment on the connection between CP symmetric TIs
and T symmetric TIs (QSHE), and introduce the ideas of CPT
equivalence and T duality for topological phases.

A. CP symmetric insulators

1. Tight-binding model

Let us consider the following tight-binding Hamiltonian:

T =
∑

r

ψ†(r)

(
t i�

i� −t

)
ψ(r + x̂) + H.c.

+ ψ†(r)

(
t �

−� −t

)
ψ(r + ŷ) + H.c.

+ ψ†(r)

(
μ 0
0 −μ

)
ψ(r), (1)

where the two-component fermion annihilation operator at site
r on the two-dimensional square lattice, ψ(r), is given in terms
of the electron annihilation operators with spin up and down,
cr,1/2, as ψT (r) = (cr,1,cr,2), and we take t = � = 1. There
are four phases separated by three quantum critical points at
μ = 0, ± 4, which are labeled by the Chern number as Ch = 0
(|μ| > 4), Ch = −1 (−4 < μ < 0), and Ch = +1 (0 < μ <

+4). In the following, we are interested in the phase with Ch =
±1. In momentum space, T = ∑

k∈BZ ψ†(k)[�n(k) · �σ ]ψ(k),

�n(k) =

⎛⎜⎝ −2� sin kx

−2� sin ky

2t(cos kx + cos ky) + μ

⎞⎟⎠ . (2)

We will mostly focus on the case of Ch = ±1.
A lattice model of the topological insulator with CP

symmetry can be constructed by taking two copies of the above
two-band Chern insulator with opposite chiralities. Consider
the Hamiltonian in momentum space,

H =
∑
k∈BZ

∑
s=↑,↓

ψ†
s (k)[�ns(k) · �σ ]ψs(k)

=
∑
k∈BZ

�†(k)H(k)�(k), (3)

where s = ↑,↓ represent “pseudospin” degrees of freedom,
�(k) is a four-component fermion field, and �ns(k) is given,
in terms of �n as �n↑(k) = �n(k), �n↓(k) = �n↑(k̃) = �n(k̃), where
k̃ = (−k1,k2). That is, the single-particle Hamiltonian in
momentum space is given in terms of the 4 × 4 matrix,

H(k) = nx(k)τzσx + ny(k)τ0σy + nz(k)τ0σz, (4)

where τ0,z is the Pauli matrix acting on the pseudospin index.
The Hamiltonian is invariant under the following CP

transformations:

U�(x)U−1 = UCP�
†(x̃), (5)

where x̃ := (−x1,x2) and UCP is given by

UCP = τxσx UT
CP = +UCP, (η = +1),

(6)
UCP = τyσx, UT

CP = −UCP, (η = −1).
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To ditinguish these two cases, we introduced an index η; η =
±1 refers to the first/second case. We will also use the notation
η = e2πiε where ε = 0,1/2 for η = 1, − 1, respectively.

It turns out imposing UCP = τxσx leads to the CP symmetric
topological insulator. This can be seen by looking at the
stability of the edge mode that can appear when we terminate
the system in y direction (i.e., the edge is along the x direction).
One can check, numerically, and also in terms of the continuum
edge theory (see below), that UCP = τxσx protects the edge
state, while UCP = τyσx does not. In the following, these CP
transformations will be combined with charge U(1) gauge
transformation, and the corresponding transformation will be
denoted by U (see below).

2. Edge theory

We now develop a continuum theory for the edge state
that exists when the system is terminated in y direction. That
is, the edge is along x direction. Let us consider the free
fermion

H = v

2π

∫
dx(ψ†

Li∂xψL − ψ
†
Ri∂xψR).

= v

2π

∫
dx�†i∂xσz� , � =

(
ψL

ψR

)
. (7)

We consider two types of CP symmetry operation:

UψL(x)U−1 = eiαψ
†
R(−x),

(8)
UψR(x)U−1 = ηeiαψ

†
L(−x),

where the CP transformation is combined with the EM U(1)
charge twist with an arbitrary phase factor α. The sign η = ±
is +/− for topological/nontopological cases:

η = e2πiε =
{+1 topological

−1 trivial
. (9)

This is a CP symmetry with a twisting by the charge operator,

U = e−iαFV CP, (10)

where FV is the total charge operator:

FV := FR + FL =
∫

dx(ψ†
RψR + ψ

†
LψL). (11)

There are two fermion mass bilinears that are consistent
with the charge U(1) symmetry: these masses are odd under
CP when η = +1. We thus conclude that the edge theory is at
least at the quadratic level stable (ingappable).

B. BdG systems with spin U(1) and P symmetries

In this section, we show that systems with charge U(1) and
CP symmetry can be derived from BdG systems with con-
served one component of spin (Sz, say) and parity symmetry.
The system of our interest preserves spin U(1) but not charge
U(1). At the quadratic level, this situation is described by the
BdG Hamiltonian. Following Altland and Zirnbauer [3], we
consider the following general form of a BdG Hamiltonian for

the dynamics of quasiparticles:

H = 1

2
(c†,c)H4

(
c

c†

)
,

(12)

H4 =
(

� �

−�∗ −�T

)
,

where H4 is a 4N × 4N matrix for a system with N orbitals
(lattice sites), and c = (

c↑,c↓
)
. (c and c† can be either column

or row vector depending on the context.) The matrix elements
obey � = �† (hermiticity) and � = −�T (Fermi statistics).
The presence of SU(2) spin rotation symmetry is represented
by

[H4,Ja] = 0, Ja :=
(

sa 0

0 −sT
a

)
, (13)

where a = x,y,z.
With conservation of one component of spin, say, z

component, we have a U(1) symmetry associated with rotation
around z axis. With this Sz conservation, one can reduce this
BdG Hamiltonian into the following form:

H = (c†↑,c↓)H2

(
c↑
c†↓

)
, H2 =

(
ξ↑ δ

δ† −ξT
↓

)
, (14)

up to a term that is proportional to the identity matrix. At
the quadratic level, this Hamiltonian is a member of symmetry
class A (unitary symmetry class in AZ classes) [with c↓ → c†↓,
one can “convert” spin U(1) to fictitious charge U(1)]. This can
be seen as follows. Let us consider BdG Hamiltonians that are
invariant under rotations about the z (or any fixed) axis in spin
space, yielding to the condition [H4,Jz] = 0, which implies
that the Hamiltonian can be brought into the form

H4 =

⎛⎜⎜⎝
a 0 0 b

0 a′ −bT 0
0 −b∗ −aT 0
b† 0 0 −a′T

⎞⎟⎟⎠, a† = a, a′† = a′. (15)

Due to the sparse structure of H4, we can rearrange the
elements of this 4N × 4N matrix into the form of the 2N × 2N

matrix H2 above.
Let us now consider the parity symmetry. For simplicity,

we assume orbitals transform trivially under parity, and hence
assume the following form:

P
(

c↑(r)

c↓(r)

)
P−1 =

(
e−iαc↓(r̃)

ηeiαc↑(r̃)

)
. (16)

Within the reduced 2N × 2N basis, parity symmetry looks
like CP symmetry. To see this, let us write out the Hamiltonian
in the following form:

H = (c†↑,c↓)

(
ξ↑ δ

δ† −ξT
↓

) (
c↑
c†↓

)

= c
†
↑a(r)ξ↑ab(r,r ′)c↑b(r ′) − c↓a(r)ξT

↓ab(r,r ′)c†↓b(r ′)

+ c
†
↑a(r)δab(r,r ′)c†↓b(r ′) + c↓a(r)δ†ab(r,r ′)c↑b(r ′) (17)
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(summation over repeated indices are implicit). Then,

PHP−1 = (c†↑,c↓)br̃ ′

(
ξ↓ −ηδT

−ηδ∗ −ξT
↑

)
br ′,ar

(
c↑
c
†
↓

)
ar̃

(18)

(the transpose T here acts both a and r). Thus, the invariance
under P implies(

ξ↓ −ηδT

−ηδ∗ −ξT
↑

)
ar̃,br̃ ′

=
(

ξ↑ δ

δ† −ξT
↓

)
ar,br ′

. (19)

With the transformation or relabeling

c↑ =: �↑, c↓ =: �
†
↓, (20)

we can write the Hamiltonian as

H =
∑
r,r ′

�†(r) H2(r,r ′) �(r ′). (21)

Provided the system has translational symmetry, H2(r,r ′) =
H2(r − r ′), with periodic boundary conditions in each spatial
direction (i.e., the system is defined on a torus T d ), we can
perform the Fourier transformation and obtain in momentum
space

H =
∑
k∈Bz

�†(k)H2(k) �(k), (22)

where the crystal momentum k runs over the first Bril-
louin zone (Bz), and the Fourier components of the
fermion operator and the Hamiltonian are given by �(r) =
V −1/2 ∑

k∈Bz eik·r�(k) and H2(k) = ∑
r e−ik·rH2(r), respec-

tively.
Then the P invariance demands(

ξ↓ −ηδT

−ηδ∗ −ξT
↑

)
−k̃

=
(

ξ↑ δ

δ† −ξT
↓

)
k

. (23)

Observing that(
0 1

η 0

) (
−ξ↓ ηδT

ηδ∗ ξT
↑

)T (
0 η

1 0

)
= η

(
ξ↑ δ

δ† −ξT
↓

)
, (24)

we then conclude that, when η = 1,

τxH2(−k̃)T τx = −H2(k), τ T
x = +τx, (25)

whereas when η = −1,

τyH2(−k̃)T τy = −H2(k), τ T
y = −τy. (26)

That is, the single-particle Hamiltonian H2 is CP symmetric.
It should be noted that P symmetry with η = +1 is

somewhat unusual. When acting twice on spinors, P2 = +1,
whereas we usually expect P2 = −1. This is so since parity
should reverse the sign of angular momentum, either of orbital
or spin origin. The P symmetry with η = 1 can be considered
as a composition of a P symmetry with η = −1 and spin-parity
(−1)N↑ where N↑ is the number operator associated to up spins.

(a) T duality (Kramers-Wannier duality). By taking T dual
or Kramers-Wannier dual of the above setting,

ψ
†
L(x) → ψL(x), (27)

we obtain the P symmetric system. In the bosonized language,
this amounts to the exchange phase field φ and its dual θ .

Also, if we decompose the complex fermion ψL in terms of
two real (Majorana) fermions χ

1,2
L , ψL = χ1

L + iχ2
L, the above

transformation amounts to χ2
L → −χ2

L while keeping the
right-moving intact. This is nothing but the Kramers-Wannier
duality in the Ising model.

The P symmetry, dualized from CP symmetry above, is
given by

UψL(x)U−1 = e−iαψR(−x),
(28)

UψR(x)U−1 = ηeiαψL(−x).

This is a P symmetry with Sz twisting,

U = e−iαFAP, (29)

where FA is the axial charge,

FA := FR − FL =
∫

dx(ψ†
RψR − ψ

†
LψL). (30)

C. Connection to T-symmetric insulators

The CP symmetric model introduced above is in fact
also time-reversal invariant in the absence of perturbations.
If there is Lorentz invariance, because of the CPT theorem,
any perturbation to the model that is CP symmetric is also T
symmetric. Hence, within Lorentz invariant theories, the same
set of perturbations is prohibited by CP and T symmetries. The
topological phase protected by CP symmetry can thus be also
viewed as a T symmetric topological phase.

However, the above argument based on the CPT theorem
of course raises a question as we do not want to be confined
to relativistic systems, and Lorentz invariance is absent in
the lattice model. Note, however, the following: (i) the
CPT theorem tells us the presence of antiparticles. This
seems a necessary ingredient to have a topological phase
(topologically nontrivial “vacua”). (ii) Topological phases that
are characterized by a term of topological origin in the response
theory, such as the Chern-Simons term or the axion term for the
external (background) U(1) gauge field, are Lorentz invariant.
This in particular means CP symmetry dictates the theta angle
to be 0 or π (mod 2π ), just as TRS does.

Finally, while Hamiltonians may violate Lorentz invari-
ance, and hence CPT theorem, a version of CPT-like theorem
applies to wave functions (= projection operators), or the
“entanglement Hamiltonian.” In other words, wave functions
or the entanglement Hamiltonian have more symmetries
than the physical Hamiltonian. Due to this, for any CP
symmetric system, one can define an “effective” time-reversal
symmetry for the projector or the entanglement Hamiltonian.
See Appendix A.

D. CPT equivalence and T duality of topological phases:
an example

The above discussion reveals a “CPT equivalence” be-
tween CP and T symmetric topological phases. Furthermore,
from the fact that, both CP symmetric TI with (CP)2 = 1
[(CP)2 = (−1)Nf ] and T symmetric TI with T 2 = (−1)Nf

(T 2 = 1), where Nf is the total fermion number operator,
possess the same nontrivial Z2 (trivial) classification in two
dimensions, we expect a specific correspondence between
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these two “CPT-equivalent” topological phases. In general,
such correspondence can be observed among topological
phases protected by discrete symmetries T, C, P, and/or their
combinations. We will discuss it in the following sections.

On the other hand, there is a duality—which we call
“T duality” in this paper—between topological phases of
insulating and superconducting systems with corresponding
symmetries. Imposing a symmetry g on a BdG system with Sz

conservation (14) will result a constraint on the reduced BdG
Hamiltonian H2 by the dual symmetry g̃, which is exactly
in the same symmetry class as a tight-binding Hamiltonian
H constrained by the symmetry g̃ in an insulating system
(with charge conservation implicitly). For example, as we
discussed in Sec. II B, the CP symmetric topological phase
can also be realized in a BdG system with P symmetry and
Sz conservation. Another known example is that a chiral
symmetric topological phase (class AIII in AZ class) can
also be interpreted as a BdG Hamiltonian possessing TRS and
Sz conservation [10,52]. Interestingly (and expectedly), a 2D
T symmetric TI, i.e., the QSHE, also has a dual realization
in a superconducting system—a BdG system with chiral
symmetry and Sz conservation. This can be seen by a similar
discussion from Sec. II B. For a reduced BdG Hamiltonian (by
Sz conservation) (14), if we impose a “chiral” symmetry S
(which is defined as a combination of T and C symmetries) as

S
(

c↑
c↓

)
S−1 =

(
e−iαc†↓
ηeiαc†↑

)
= e−iατzU

(
c†↑
c†↓

)
,

U =
{
τx for η = 1,

iτy for η = −1,
(31)

then

H = SHS−1 = S(c†↑,c↓)H2

(
c↑
c†↓

)
S−1

= (c†↑,c↓)
(
U †H∗

2U
) (

c↑
c†↓

)
(32)

(note that S = T C is antiunitary) implies U †HT
2 U = H2, i.e.,

the single-particle Hamiltonian H2 is TRS. In conclusion,
dual symmetries between the tight-binding Hamiltonian (with
charge conservation) and the BdG reduced Hamiltonian (with
Sz conservation) have the following correspondences:

T ↔ T C, P ↔ CP. (33)

Figure 1 shows some examples about CPT equivalence
and T duality among topological (crystalline) insulators and
superconductors. Especially, Fig. 1(a) shows the connection
between T-symmetric TIs, CP symmetric TIs, and their dual
realizations in BdG systems with Sz conservations introduced
in this section. Another example, as shown in Fig. 1(b), is the
CPT equivalence between T symmetric TSCs, P symmetric
TCSCs, and T and P symmetric TCIs that can support gapless
edge states even in the absence of charge U(1) symmetry. In
the following section, we make a more precise discussion for
the idea of CPT equivalence and T duality introduced here,
focusing on noninteracting fermionic CP symmetric TIs in
arbitrary dimensions

III. CLASSIFICATION OF CP SYMMETRIC TIS
IN ARBITRARY DIMENSION

In this section, we consider systems of noninteracting
fermions with CP symmetry and classify CP symmetric TIs in
arbitrary dimensions using K theory. Relevant symmetries are
written as constraints on the Hamiltonian matrix H as follows.
The particle-hole symmetry (PHS) is an antiunitary operator C

that anticommutes with the Hamiltonian as {C,H} = 0, which
is equivalently written using an unitary operator UC as

UCH∗(−k1, . . . , − kd )U−1
C = −H(k1, . . . ,kd ). (34)

The parity symmetry P is a symmetry that swaps left-handed
and right-handed coordinates, which can be implemented as
a mirror symmetry with respect to a particular direction (here
we take k1) as

PH(−k1,k2, . . . ,kd )P −1 = H(k1,k2, . . . ,kd ), (35)

with a unitary operator P. Combining these two symmetries
C and P, we define CP symmetry by an unitary operator UCP

satisfying

UCPH∗(k1, − k2, . . . , − kd )U−1
CP = −H(k1,k2, . . . ,kd ). (36)

A CP symmetric TI is a topological insulator that does not
possess C nor P symmetry but is characterized with a combined
CP symmetry.

A. Classification by K theory

In noninteracting fermion systems, CP symmetric TIs are
classified using K theory in a way similar to the classification
of topological defects discussed by Teo and Kane [53]. A TI
with CP symmetry (36) is regarded as a TSC with PHS C̃ =
CP in the d̃ = d − 1 dimensions with momenta k2, . . . ,kd

(that are flipped by an action of C̃), containing a defect with a
co-dimension D = 1 parameterized with k1 (that is not flipped
by C̃). When we have PHS C̃ with C̃2 = +1 or C̃2 = −1,
the symmetry class is class D or class C and the associated
classifying spaces Rq are given as [11,32]

class D C̃2 = 1 : R2 (q = 2),
(37)

class C C̃2 = −1 : R6 (q = 6).

Then the classification for CP symmetric TI is given by a
homotopy group [53]

πD(Rq−d̃ ) � π0(Rq−d̃+D) = π0(Rq+2−d ). (38)

This can be interpreted that the relevant classifying space
changes from Rq to Rq+2, which corresponds to the symmetry
class AII (R4) or class AI (R8 � R0), both possessing TRS.
Thus CP symmetric TI behaves similar to TR symmetric TI
in terms of topological classification and corresponding edge
states. This is consistent with the CPT theorem for Lorentz-
invariant systems where CP symmetry can be effectively
converted into time reversal symmetry.

While we adopted the parity symmetry (35) that flips
only one momentum k1, we can generally reverse 2n + 1
coordinates for the parity as

PH(−k1, . . . , − k2n+1,k2n+2, . . . ,kd )P −1

= H(k1, . . . ,k2n+1,k2n+2, . . . ,kd ). (39)
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The TI with CP symmetry constructed from above P can be
regarded as a TSC with PHS in the d̃ = d − 2n − 1 dimensions
with momenta k2n+2, . . . ,kd , containing a defect with a
co-dimension D = 2n + 1 parameterized with k1, . . . ,k2n+1.
Then the classification is given by a homotopy group

πD(Rq−d̃ ) = π0(Rq+4n+2−d ), (40)

where the relevant classifying space looks like Rq+4n+2. Since
we have q = 2 or q = 6, Rq+4n+2 becomes R0 or R4, i.e.,
the classifying space associated with the symmetry class with
TRS, which is consistent with the CPT theorem.

B. Dirac models and CPT theorem

While we cannot explicitly construct an antiunitary operator
T for TRS from CP symmetry in general cases, we can con-
struct a T operator from CP symmetry in a Dirac Hamiltonian:

H(k) = mγ0 +
d∑

i=1

kiγi, (41)

where γi’s are anticommuting gamma matrices, m is a mass,
and ki’s are momenta. The CP symmetry (36) then leads to
relations

{UCPK,γi} = 0, i = 0,1,
(42)

[UCPK,γi] = 0, 2 � i � d,

with a complex conjugation K . Now we can construct an
effective TRS from CP symmetry as T = γ1UCPK , satisfying

γ1UCPH∗(−k1, . . . , − kd )(γ1UCP)−1 = H(k1, . . . ,kd ). (43)

The existence of γ1 in the Dirac model enables us to convert
the CP symmetry into a TRS, which is not the case for a general
lattice model where a kinetic term along reflected coordinate
is not necessarily written by a gamma matrix γ1.

C. Topological invariants

Topological invariants of CP symmetric TIs are constructed
in the same way as those for topological defects [53]. For
q + 2 − d = 0,4 in Eq. (38), we have topological invariants
Z. Due to q = 2,6 [Eq. (37)], the topological invariants Z are
realized in even dimensions d, where we can define the Chern
number over the Brillouin zone. The Chern number gives the
topological invariants, which is written, by putting d = 2n, as

Chn = 1

n!

∫
d2nk tr

(
iF

2π

)n

,

(44)
F = dA + A ∧ A, A = 〈uk|d|uk〉,

with valence bands |uk〉 and a derivative d with respect to
momenta k.

Next, first descendant Z2 is given by a Chern-Simons form,
which takes place for q + 2 − d = 1 in Eq. (38), so that the
dimension d is odd. When we have the first descendant Z2,
we can choose a continuous gauge A over the entire Brillouin
zone, and an integration of the Chern-Simons form, which is
defined for odd dimensions, gives a topological invariant Z2.

Second descendant Z2 is given by a dimension reduction
of the above Z2. We consider a one parameter family of

the Hamiltonian H̃(θ,k) connecting the original Hamiltonian
H̃(0,k) = H(k) and a reference CP symmetric Hamiltonian
H̃(π,k) = H0 with a parameter 0 � θ � π . If we extend a
range of θ into −π � θ � π by a relation

H̃(θ,k1,k2, . . . ,kd ) = −UCPH̃∗(−θ,k1, − k2, . . . , − kd )U−1
CP ,

(45)

we can define a CP symmetric Hamiltonian H̃(θ,k) over −π �
θ � π and k. Then the second descendant Z2 characterizing
the Hamiltonian H(k) is given by an integration of Chern-
Simons form for H̃(θ,k).

D. BdG systems with spin U(1) and P symmetries

As we have seen in Sec. II B, a CP symmetric TI can be
realized by a BdG system with a reflection symmetry and
spin U(1) symmetry (Sz conservation). Here we interpret their
equivalence to class AII TIs in terms of K theory and Clifford
algebras. When we have a unitary operator commuting with
the Hamiltonian, we should block diagonalize the Hamiltonian
when we consider a topological classification. When the Sz an-
ticommutes with the PHS C and the reflection symmetry P, the
block-diagonalized Hamiltonian does not possess C nor P any
further, while the combined CP still remains as a symmetry of
the block Hamiltonian. The situation is summarized as follows:

{C,H} = 0, [Sz,H] = 0, {C,Sz} = 0,
(46)

{P,Sz} = 0, S2
z = 1, P 2 = 1,

along with a parity symmetry (35). [Note: we can choose
P 2 = 1 by appropriately multiplying “i,” which may change
a commutation/anticommutation relation with C.]

Now let us look at a topologically nontrivial example of
this construction. We start with a BdG Hamiltonian in class D
and two dimensions as

H(k) = nx(k)σx + ny(k)σy + nz(k)σz, (47)

where �n(k) is defined in Eq. (2) and we have PHS of C = σxK .
A parity symmetry (35) is implemented by taking two copies
of the above BdG Hamiltonian (denoted by τ ) and a spin U(1)
symmetry is implemented by taking two copies representing
spin degrees of freedom (denoted by s), which yields

H(k) = nx(k)σxτzsx + ny(k)σysx + nz(k)σz, (48)

where we have the spin U(1) symmetry Sz = σzsz. We have
two parity symmetries P (a reflection symmetry with respect
to x direction) written as

P =
{
τxsx (topological),

τysx (trivial).
(49)

A choice of parity P = τxsx , commuting with PHS ([C,P ] =
0), leads to a topologically nontrivial insulator, as explained
later with Clifford algebras. We can choose either of parity
symmetries by adding appropriate terms to the Hamiltonian.

Block diagonalization with respect to Sz becomes
clear, if we change bases as (σxsz,σysz,sx,sy,σzsz) →
(σxsx,σysx,σzsx,sy,sz),

H(k) = −nx(k)σxτzsz − ny(k)σysz + nz(k)σz, Sz = sz.

(50)
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The block Hamiltonian with sz = −1 is given by

H(k) = nx(k)σxτz + ny(k)σy + nz(k)σz, (51)

characterized by a CP symmetry with UCP = τxσx . This
corresponds to a nontrivial CP symmetric TI given in Eq. (6)
with η = +1. In (51), the mass term σz is the unique mass
compatible with the CP symmetry. Thus Hamiltonians with
different signs of the unique mass term are topologically
distinct. If we try to double the system where doubled 2 × 2
degrees of freedom are described by Pauli matrices ρ, the
allowed mass terms are not unique since we have σxτxρy and
σxτyρy in addition to σz. Then we can adiabatically connect
two states in the doubled system by appropriately rotating in
the space of mass term, which indicates that the classification
of CP symmetric TI in 2D is Z2.

Next, we show that the above classification for class D
accompanied with spin U(1) and parity P is equivalent to that
in class AII, by adopting a Clifford algebras classification
for Dirac models. The original classification for class D in d

dimensions is given by a Clifford algebra [32]

{γ0,C,CJ,Jγ1, . . . ,J γd} (52)

and its extension problem with respect to the mass term γ0 is

Cld,2 → Cld,3, (53)

where the Clifford algebra Clp,q is an algebra generated by
p generators squaring to −1 and q generators squaring to +1
such that all p + q generators anticommute with each other.
The topological index is given by π0(R2−d ), especially Z for
d = 2. The spin U(1) symmetry (Sz) and the parity symmetry
(P), satisfying (46) and [C,P ] = 0, can be included in the
Clifford algebra as

{γ0,C,CJ,Jγ1, . . . ,J γd,Jγ1P,γ1PSz}, (54)

for which the extension problem for γ0 is written as

Cld,4 → Cld,5, (55)

and the classification is given by π0(R4−d ). In our example
in d = 2, we have Z2 topological number. The above clas-
sification is the same as that for class AII in d-dimensions,
which shows that CP symmetric TI and TR symmetric TI are
equivalent in the level of Dirac models. Indeed, the effective
TRS is given from CP symmetry and a kinetic gamma matrix
as (43).

On the other hand, in the case of the parity symmetry
anticommuting with PHS ({C,P } = 0), the relevant Clifford
algebra is

{γ0,C,CJ,Jγ1, . . . ,J γd,γ1P,Jγ1PSz}, (56)

and the extension problem for γ0 is

Cld+2,2 → Cld+2,3. (57)

Then the topological invariant is π0(R−d ), where we have a
trivial insulator for d = 2 as π0(R−2) = 0, that is equivalent
to class AI in d = 2. This is the reason why we have a trivial
insulator if we choose a parity symmetry P = τysx in Eq. (49).

While we have so far discussed the system in class D
with Sz and P in two dimensions, we note that a system in
three dimensions possesses nontrivialZ2 topological invariant.

This is interesting, since the original class D system in three
dimensions is trivial and a block-diagonalized system with Sz

(class A system) is also trivial, while the CP symmetry gives
rise to a nontrivial insulator.

E. Topological classification of other symmetries

In a similar manner as CP symmetric TIs, we can define
PT symmetric TIs. PT symmetry can be defined by a unitary
operator UPT satisfying

UPTH∗(k1, − k2, . . . , − kd )U−1
PT = H(k1,k2, . . . ,kd ). (58)

Then PT symmetric TI is a topological insulator that does
not possess P nor T symmetry but is characterized with
a combined PT symmetry. In an analogous way for CP
symmetric TI, a classification of PT symmetric TI in d

dimensions is obtained by considering a system with TRS
in d − 1 dimensions containing a topological defect with
co-dimension 1. We assume that classifying space for the TR
symmetric TI with T̃ = UPTK in zero dimensions is Rq . We
have q = 0 for (UPTK)2 = +1, and q = 4 for (UPTK)2 = −1.
Then the classification for PT symmetric TI is given by

π1(Rq−(d−1)) � π0(Rq+2−d ). (59)

Nontrivial PT symmetric TIs are found in two-dimensional
systems in class AI or AII with a reflection symmetry, where
TRS and P are broken by a diagonalization with respect to
some unitary symmetry but the combined PT remains, which
is characterized by a nontrivial topological number Z. A shift
of classifying space by 2 is interpreted as a change of an
effective symmetry class into that with PHS, which is again
consistent with the CPT theorem.

IV. TOPOLOGICAL CPT THEOREM AND TOPOLOGICAL
CPT-EQUIVALENT SYMMETRY CLASSES

Actually, as we discussed in previous sections, such CPT-
equivalence holds “topologically” for more general symmetry
classes (not just for cases discussed in the last sections). In
this section, we discuss the “topological CPT theorem” and
topological CPT-equivalent symmetry classes in noninteract-
ing fermionic systems.

Combining symmetries T , C, and P , we define the CPT
symmetry by a unitary operator W satisfying

WH(k̃)W−1 = −H(k), W 2 = 1, (60)

where H(k) is a d-dimensional (d � 1) single-particle Hamil-
tonian and k̃ = (−k1,k2, . . . ,kd ). Note that here, as W is
unitary, W 2 can always be fixed to be 1 by the redefinition
W ′ = eiαW with any phase factor (such redefinition is also
accompanied by changing the commutation relations with
other existed symmetries at the same time). Now, if the system
already has some symmetries, adding the CPT symmetry
constraint [Eq. (60)] on H would or would not change the
classifying space or the topological classification with respect
to existing symmetries. That is, in the latter case, there exists
a CPT operator W = W0 such that the system transforms
“topologically trivially” under W0. Therefore we have the
following statement.
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Topological CPT theorem for noninteracting fermionic
systems. Let {gi} be a set of symmetries (can be a null set)
composed of T , C, P , and/or their combinations. Then for
noninteracting fermionic systems there is a “trivial” CPT
operator W = W0, which anticommutes with T and P and
commutes with C (from which other commutation relations
between gi and W0 can also be deduced), such that the system
with symmetries {gi} and the system of with symmetries
{gi,W0} possess the same classifying space or topological
classification.

The proof of the above theorem is straightforward as we
consider the Dirac Hamiltonian (41) (the idea here is similar
to the discussion in Sec. III B) :

H(k) = mγ0 +
d∑

i=1

kiγi,

where γi’s are anticommuting gamma matrices. The symme-
tries T , C, and P (if present) satisfy

[T ,γ0] = 0, {T ,γi �=0} = 0,

{C,γ0} = 0, [C,γi �=0] = 0, (61)

{P,γ1} = 0, [P,γi �=1] = 0,

while the CPT symmetry W satisfies

{W,γ0} = 0, [W,γi=1] = 0, {W,γi �=0,1} = 0. (62)

Define M = γ1W , we then have [M,γi] = 0 ∀i and thus M is
an unitary symmetry commuting with H:

[M,H] = 0, M2 = 1. (63)

For the system with symmetries {gi}, composed of T , C, P ,
and/or their combinations, if the additional symmetry M = M0

commutes with all gi , or equivalently if W = W0 satisfies (if
{gi} includes some of the following symmetries)

{W0,T } = 0, [W0,C] = 0, {W0,P } = 0,
(64)

{W0,CP } = 0, [W0,T P ] = 0, {W0,T C} = 0,

we can block diagonalize H with respect to M such that all
symmetries gi are still preserved in each eigenspace of M .
Therefore the symmetry class and hence the classification
would not change as the symmetry M0 or W0 is added to the
original set of symmetries {gi} of the system. This completes
the proof.

We would like to point out that, though the topological
CPT theorem is “proved” (or argued) by considering the
Dirac model (as a representative model of Clifford algebras
that capture the topology of classifying spaces), which seems
obviously to be invariant under a (trivial) CPT symmetry
because of its Lorentz invariance, the same conclusion can
be reached by more (mathematically) rigorous ways, such as
topological K theory, which is irrelevant to Lorentz invariance.
Actually, this is what we did (in Sec. III) in the discussion for
equivalence between T and CP, and C and PT, as part of the
topological CPT theorem discussed here, using K theory in a
way similar to the topological defects discussed in Ref. [53].

Based on topological CPT theorem, some symmetry
classes, defined as topological CPT-equivalent symmetry
classes here, possess the same classification. For example,

symmetry classes

�−(T ), �+(CP ), �−
−+(T ,CP ), (65)

all have the same classification. Here we use notations

�Sg (g), �
Sg1 ,g2
Sg1 Sg2

(g1,g2),
(66)

�
Sg1 ,g2 Sg2 ,g3 Sg3 ,g1
Sg1 Sg2 Sg3

(g1,g2,g3),

to denote the symmetry classes composed of {gi}, with signs
(±) Sgi

dictating the value of g2
i and Sgi ,gj

dictating the
commutation (+) or anticommutation (−) relation between
gi and gj . Expression (65) can be deduced from the following
CPT-equivalent symmetry classes:

�−(T ) � �−
−+(T ,W0) = �−

−+(T ,W0T ) = �−
++(W0,W0T )

� �+(W0T ) = �+(CP ), (67)

where “�” represents the “CPT-equivalence relations” for
symmetry classes (as they possess the same topological clas-
sification). Similarly, as another example, symmetry classes

�+
−+(T ,C), �+

++(C,P ), �−
−+(T ,P ), �++−

−++(T ,C,P ),

�−
++(CP,PT ) = �−

−+(T C,PT ) = �−
−+(T C,CP ), (68)

all have the same classification. In Refs. [31,32], the first
four symmetry classes are denoted respectively as classes
DIII, D+R+, AII+R−, and DIII+R−+, which have the same
zero-dimensional classifying space R3 and thus the same
classification in any dimension (using K theory). Moreover,
it can be checked that, from the results of Refs. [31,32], the
topological CPT theorem indeed holds.

We note that a natural choice of C, P , and T for spin-1/2
fermions leads to a trivial CPT as expected. This can be ex-
plicitly seen in the CPT equivalence of class DIII [�+

−+(T ,C)]
and class DIII+R−+ [�++−

−++(T ,C,P )]. For spin-1/2 fermions,
the symmetry operators are given as

C = σxK, P = sx, T = isyK, (69)

where σi,si are Pauli matrices acting on particle-hole and spin
degrees of freedom. The parity symmetry P is a reflection
along x direction and involves a π rotation of spin around
x axis, which is denoted by R−+ in the classification in
Refs. [31,32]. Then, if we consider CPT symmetry given as
W = −iCPT = σxsz, W satisfies commutation relations in
Eq. (64) and is a trivial CPT. Thus an addition of a trivial
CPT W changes class DIII [�+

−+(T ,C)] to class DIII+R−+
[�++−

−++(T ,C,P )], while it does not change the topological
classification.

On the other hand, adding a nontrivial CPT symmetry
W [which can be represented as a combination of a trivial
CPT symmetry and some (onsite) order-two unitary symmetry
commuting with H such that W changes the commutation
relations (64)] to a symmetry class would change the original
classifying space. Using the result of Ref. [32], we can directly
obtain the change of classifying spaces for AZ symmetry
classes in the presence of extra unitary symmetry M = γ1W

(commuting with H). The result is summarized in Table I.
The complete classification of TIs and TSCs (and TCIs and

TCSCs if spatial symmetries such as P or CP are present)
for noninteracting fermionic systems with T, C, P, and/or their
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TABLE I. Classification of AZ symmetry classes in the presence
of a nontrivial CPT symmetry W or an additional unitary symmetry
M (commuting with H) in zero dimension. SM,g and SW,g dictate
commutation (+) or anticommutation(−) relation of symmetry g,
which can be T, C, or TC. “q” in the last column denotes the original
classifying spaces for the corresponding symmetry classes (before
adding M or W).

Class SM,TC SW,TC Classifying space
AIII − + C0

Class SM,T or SM,C SW,T or SW,C Classifying space
AI, AII − + C0

D, C − − C0

Class (SM,T,SM,C) (SW,T,SW,C) Classifying space
(−,+) (+,+) Rq → Rq+1

BDI, CII (+,−) (−,−) Rq → Rq−1

(−,−) (+,−) C1

(+,−) (−,−) Rq → Rq+1

DIII, CI (−,+) (+,+) Rq → Rq−1

(−,−) (+,−) C1

combinations, instead of studying these symmetries separately,
can also be obtained by the one with symmetry classes
“AZ+CPT” [in Refs. [31,32] classification for symmetry
classes “AZ+P (or reflection R)” have been discussed, but
some combined symmetries like CP are not included there].
Two cases are involved: (a) CPT-equivalent symmetry classes
“generated” from AZ classes by a trivial CPT symmetry;
(b) other symmetry classes “generated” from AZ classes by

nontrivial CPT symmetries (based on the result in Table I).
The result is summarized in Table II.

Generally, we can also reverse an odd number of spatial
coordinates as the parity P and the corresponding CPT
symmetry W , with k̃ = (−k1, . . . , − k2n+1,k2n+2, . . . ,kd ) in
(60). In this situation, the “effective” unitary symmetry M

can be defined as M = inγ1 · · · γ2n+1W , and the commutation
relations between the trivial CPT symmetry W0 and other
symmetries (64) will also change if n is odd (only commutation
relations with antiunitary symmetries such as T and C will
change). Nevertheless, previous discussions on the case for
n = 0 (the same for even n) can be straightforwardly applied
to the case for odd n.

As related to the results in this section, a similar but
more general discussion can also be found in Ref. [51]. The
CPT symmetry defined in (60) here is one kind of order-two
spatial symmetries defined there (on a system without defects).
Therefore, classification of AZ classes in the presence of
either trivial CPT (related by topological CPT theorem) or
nontrivial CPT (result shifts of the classifying spaces shown in
Table I) discussed here can also be deduced from the general
properties of the K groups for the additional order-two spatial
symmetries, as derived in Ref. [51].

V. CLASSIFICATION OF 2D INTERACTING SPT PHASES:
K -MATRIX FORMULATION

In the previous sections, we have discussed topological
phases protected by T, C, P and/or corresponding combined
symmetries and classification related by topological CPT

TABLE II. Classification of TIs and TSCs for noninteracting fermion systems with symmetry classes composed of T, C, P, and/or their
combinations in zero dimension. This can be obtained by adding the CPT symmetry (either trivial or nontrivial ones) to the AZ classes: (a)
CPT-equivalent symmetry classes “generated” from AZ classes by trivial CPT. (b) Other symmetry classes “generated” from AZ classes by
nontrivial CPT (based on the result in Table I). In this table, we have fixed [Ai,Aj ] = 0 and U 2

i = 1 (other choices are equivalent), where Ai/j

and Ui represent antiunitary and unitary symmetries, respectively. Classification in arbitrary dimensions d is given by π0(Cq−d ) or π0(Rq−d ),
as deduced from zero-dimensional classifying spaces Cq or Rq by K theory.

(a)
CPT-equiv. symm. classes “generated” from AZ classes by trivial CPT Cq or Rq π0(Cq or Rq )

“None” (A), �+(CPT ) C0 Z
�+(T C) (AIII), �+(P ), �−

++(T C,P ) C1 0
�+(T ) (AI), �−(CP ), �+

+−(T ,CP ) R0 Z
�+

++(T ,C) (BDI), �−
++(C,P ), �+

++(T ,P ), �+−+
+++(T ,C,P ), �+

−+(CP ,PT ) R1 Z2

�+(C) (D), �+(PT ), �+
++(C,PT ) R2 Z2

�+
−+(T ,C) (DIII), �+

++(C,P ), �−
−+(T ,P ), �++−

−++(T ,C,P ), �+
++(CP ,PT ) R3 0

�−(T ) (AII), �+(CP ), �+
−+(T ,CP ) R4 Z

�+
−−(T ,C) (CII), �−

−+(C,P ), �+
−+(T ,P ), �+−+

−−+(T ,C,P ), �+
+−(CP ,PT ) R5 0

�−(C) (C), �−(PT ), �+
−−(C,PT ) R6 0

�+
+−(T ,C) (CI), �+

−+(C,P ), �−
++(T ,P ), �++−

+−+(T ,C,P ), �+
−−(CP ,PT ) R7 0

(b)

Other symm. classes “generated” from AZ classes by nontrivial CPT Cq or Rq π0(Cq or Rq )

�+
++(T C,P ), �+

++(T ,CP ), �+
−−(T ,CP ), �+

+−(C,PT ), �+
−+(C,PT ) C0 Z

�++−
+++(T ,C,P ), �+−+

−++(T ,C,P ), �++−
−−+(T ,C,P ), �+−+

+−+(T ,C,P ) C1 0
�+++

+−+(T ,C,P ), �+−−
+++(T ,C,P ) R0 Z

�+++
+++(T ,C,P ), �+−−

−++(T ,C,P ) R2 Z2

�+++
−++(T ,C,P ), �+−−

−−+(T ,C,P ) R4 Z
�+++

−−+(T ,C,P ), �+−−
+−+(T ,C,P ) R6 0
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theorem in noninteracting fermionic systems. Actually, such
CPT equivalence is expected to hold even for interacting
systems of either fermions or bosons, as the original CPT
theorem applies to Lorentz invariant quantum field theories
with interactions. As a simple but instructive demonstration,
in this section we discuss interacting SPT phases (without
topological order) in two dimensions by using (Abelian)
K-matrix Chern-Simons theory. Our discussion is based on
Refs. [54–58]. Similar to our result in this section, a discussion
on 2D interacting topological phases by K-matrix theory, with
the ten symmetry constraints from AZ class (with/without T,
C, and the combined symmetries), can be found in Ref. [59].

A. Bulk and edge K -matrix theories incorporated
with symmetries

We begin with the bulk K-matrix action Sbulk =∫
dtd2xLbulk, Lbulk = L0

bulk + Lex
bulk:

L0
bulk = 1

4π
εμνλKIJ aIμ∂νaJλ,

(70)

Lex
bulk = −eQI

2π
εμνλAμ∂νaIλ − sSI

2π
εμνλBμ∂νaIλ,

where aμ represents the N flavors of dynamical Chern-Simons
(CS) gauge fields, Aμ and Bμ are the external gauge potentials
coupling to the electric charges and spin degrees of freedom
(along some quantization axis), K is an integer-valued N × N

matrix (symmetric and invertible), and Q and S are integer-
valued N -component vectors representing electric charges (in
unit of the electric charge e) and spin charges (in unit of the
spin charge s), respectively. The currents in the bulk are

Jμ
c = e

2π
εμνλQI∂νaIλ, J μ

s = s

2π
εμνλSI ∂νaIλ, (71)

where Jc and Js are the total charge and spin currents,
respectively.

In the bulk, we have the transformation laws under
symmetries such as TRS (T ), PHS (C), and PS (P) in the
x direction [gμν = diag (+, − ,−)]:

T : Jμ
c → gμνJ

ν
c , J μ

s → −gμνJ
ν
s , (t,x) → (−t,x),

C : Jμ
c → −Jμ

c , J μ
s → −Jμ

s , (72)

P : Jμ
c → J̃ μ

c , J μ
s → −J̃ μ

s , xμ → x̃μ,

where we have defined X̃μ ≡ (X0, − X1,X2)T for any vector
Xμ. We assume that the gauge fields aμ (flavor index is
suppressed) obey the following transformation laws:

T aμ(t,x)T −1 = gμνUTaν(−t,x),

Caμ(t,x)C−1 = UCaμ(t,x), (73)

Paμ(x)P−1 = UPã
μ(x̃),

where UT,UC, and UP are integer-valued N × N matrices,
then we can find these matrices of transformations by the
symmetries of the theory. However, the above symmetry
transformation law does not fully specify the symmetry
properties of charged excitations.

A convenient way to complete the description of the
symmetries is to consider the action at the edge Sedge =

∫
dtdx Ledge, Ledge = L0

edge + Lex
edge:

L0
edge = 1

4π
(KIJ ∂tφI ∂xφJ − VIJ ∂xφI ∂xφJ ) ,

(74)

Lex
edge = e

2π
εμνQI∂μφIAν + s

2π
εμνSI ∂μφIBν,

which is derived from the usual bulk-edge correspondence of
the bulk Chern-Simons theory (70). Now the currents in the
edge theory are

jμ
c = e

2π
εμνQI∂νφI , jμ

s = s

2π
εμνSI ∂νφI . (75)

Under T , C, and P , the edge currents transform similarly as
the bulk currents. The transformation law for the bosonic fields
φI is translated from the gauge fields aμ (73), with additional
(constant) phases:

T φ(t,x)T −1 = −UTφ(−t,x) + δφT,

Cφ(t,x)C−1 = UCφ(t,x) + δφC, (76)

Pφ(t,x)P−1 = UPφ(t, − x) + δφP.

The minus sign in front of UT is just a convention for a
antiuntary operator. For the edge theory (74) with a general
symmetry group G that has elements as combinations of T , C,
and P , and/or U(1) symmetries, we have

GSedgeG−1 = Sedge, ∀G ∈ G, (77)

with the chiral boson fields transformed as

GφG−1 = αGUGφ + δφG, ∀G ∈ G, (78)

where αG = 1 (−1) represents an unitary (antiunitary) operator
G. Specifically, for TRS, PHS, and PS, (77) gives the
constraints for the matrices UT, UC, UP, and charge and spin
vectors Q, S:

TRS : UT
T KUT = −K,(

IN + UT
T

)
Q = 0,

(
IN − UT

T

)
S = 0,

PHS : UT
C KUC = K,

(79)(
IN + UT

C

)
Q = 0,

(
IN + UT

C

)
S = 0,

PS : UT
P KUP = −K,(

IN + UT
P

)
Q = 0,

(
IN − UT

P

)
S = 0,

where IN is the N × N identity matrix. Cases of the combined
symmetries like CP are straightforward.

For the charge and spin U(1) symmetries of the system,

Ucφ(t,x)U−1
c = φ(t,x) + δφc,

(80)
Usφ(t,x)U−1

s = φ(t,x) + δφs,

where Uc ≡ eiθc

∫
dx j 0

c /e and Us ≡ eiθs

∫
dx j 0

s /s are the charge
and spin U(1) transformations, respectively, and the corre-
sponding phase shifts are given by

δφc = θcK
−1Q, δφs = θsK

−1S. (81)

On the other hand, the phases δφ in Eq. (78) are determined
by how the local quasiparticle excitations, which are described

245111-11



CHANG-TSE HSIEH, TAKAHIRO MORIMOTO, AND SHINSEI RYU PHYSICAL REVIEW B 90, 245111 (2014)

by normal-ordered vertex operators ‡eilT φ‡ = ‡ei�T Kφ‡ ≡
‡ei�(�)‡, with l = K� and � being integer N -component
vectors, under the symmetry transformations. That is, the
transformation law for �(�) is determined by the algebraic
relations of the underlying symmetry operators. To classify
these discrete Z2 symmetries for interacting systems (beyond
the single-particle picture), we constrain the symmetry opera-
tors by the following algebraic relations:

G2
i = S

Nf

Gi
, ∀Gi ∈ G;

(82)
GiGjG−1

i G−1
j = S

Nf

Gi ,Gj
, ∀Gi ,Gj ∈ G,

where S has values ±1. In a bosonic system, the operator
SNf (subscript omitted) is just the identity 1. In a fermionic
system, SNf can be either the identity 1 or the fermion number
parity operator Pf ≡ (−1)Nf (i.e., symmetries are realized
projectively), where Nf is the total fermion number operator.
Since all T , C, andP (and of course the combined symmetries)
commute with Pf , we have SG1,G2 = SG2,G1 for any two
symmetry operators G1 and G2.

In the presence of U(1) symmetries, the algebraic relations
(82) for fermionic systems might be “gauge equivalent”
through the redefinition of the discrete symmetry G to UαG,
where Uα can be charge or spin U(1) with some phase α.
Denoting G and G̃ the discrete symmetries with the relations to
Uα asGUαG−1 = Uα and G̃UαG̃−1 = U−1

α (specific symmetries
are discussed in Appendix B1), respectively, we have

G2 → U2
αG2, G̃2 → G̃2,

GiGjG−1
i G−1

j → GiGjG−1
i G−1

j ,
(83)

G̃i G̃j G̃−1
i G̃−1

j → U2
αi
U−2

αj
G̃i G̃j G̃−1

i G̃−1
j ,

Gi G̃jG−1
i G̃−1

j → U2
αi
Gi G̃jG−1

i G̃−1
j ,

as we redefine Gi , G̃j to Uαi
Gi , Uαj

G̃j . Therefore the signs
SGi

and SGi ,Gj
that characterize the symmetry group G can be

fixed to be either 1 or −1 (for fermionic systems) if appropriate
phases α’s are chosen, as the U(1) symmetry is present. In such
cases, some symmetry groups with different algebraic relations
might correspond to the same physical SPT phase. For bosonic
systems, on the other hand, such U(1) gauge redundancy of
symmetry operators arises in a more subtle way, since the
algebraic relations between symmetries on bosons are “trivial”
(as the signs S = 1).

From the symmetry constraints (77) and (82), we can
determine how the chiral boson fields transform under the
symmetry group G, i.e., the data {UG,δφG}. To be more
explicit, see Appendix B. Note that we also have the (gauge)
equivalence for the forms of these symmetry transformations
for all physically equivalent K-matrix theories [57,58]:

{UG,δφG} → {X−1UGX, X−1(δφG − αG�φ + UG�φ)},
if X ∈ GL(N,Z), det(X) = ±1, (84)

where αG = 1 (−1) if G is an unitary (antiunitary) operator.
This means we can choose some X and �φ to fix {UGi

,δφGi
}

to the inequivalent forms of transformations.
(b) Statistical phase factors of vertex operators under

symmetry transformation. The edge theory (74) is quantized

according to the equal-time commutators

[φI (t,x),φJ (t,x ′)] = −iπ [(K−1)IJ sgn(x − x ′) + �IJ ],

(85)

where the Klein factor

�IJ := (K−1)IK [sgn(K − L)(KKL + QKQL)](K−1)LJ

(86)

is included to ensure that local excitations satisfy the proper
commutation relations when x �= x ′ and I �= J :

[(Kφ)I (t,x),(Kφ)J (t,x ′)]

= −iπsgn(I − J )QIQJ + 2πiNIJ , (87)

where NIJ is the component of some integer matrix.
For any local quasiparticle excitation ‡ exp i�T Kφ‡, with

�T Kφ = ∑
I �I (Kφ)I ≡ ∑

I θI , the symmetry transforma-
tion G acts as

G‡ei�T Kφ‡G−1 = G‡e
∑

I iθI ‡G−1

= G‡
∏
I

′
eiθI e− 1

2

∑
I<J [iθI ,iθJ ]‡G−1

≡ ‡
∏
I

′
eGiθIG−1‡ e− 1

2

∑
I<J [GiθIG−1,GiθJG−1]ei�φ�

G

= ‡e
∑

I GiθIG−1+i�φ�
G ‡, (88)

where we have used the Baker-Campbell-Hausdorff formula
(with the commutator [iθI ,iθJ ] being a cnumber), the ordered
product “

∏′
I ” is defined as an ordered product in the ascending

order of indices, and

i�φ�
G ≡ 1

2

∑
I<J

([GiθIG−1,GiθJG−1] − G[iθI ,iθJ ]G−1),

(89)

which can be deduced from the commutator (87). Note that we
keep the form G[iθI ,iθJ ]G−1 even if [iθI ,iθJ ] is a c number,
since in general G can be an antiunitary operator (e.g., TRS).
On the other hand,

Gei�T KφG−1 = eGi�T KφG−1 = eG(
∑

I iθI )G−1
, (90)

so we have

G(i�T Kφ)G−1 =
∑

I

GiθIG−1 + i�φ�
G mod 2πi. (91)

This means the way the operator G acts on the chiral boson
field φ is not always linear, because some nontrivial phase �φ�

G
( �= 2nπ ) might arise. In bosonic systems, the phase is always
the multiple of 2π , and thus we can ignore it (corresponding
to the Bose statistics). In fermionic systems, however, we
must be careful with the phase, which might be nontrivial
(corresponding to the Fermi statistics).

For the unitary operator G = Ge (e means “identity el-
ement”) that has the form of the identity or the fermion
number parity operator Pf [such as G2

i and GiGjG−1
i G−1

j in
Eq. (82)], we have GeiθjG−1

e = iθj+ const. In this case, the
phase i�φ�

Ge
vanishes (in the sense of mod 2πi) and thus

such Ge is linear on φ. This fact tells us that instead of
specifying the transformation properties Ge(i�T Kφ)G−1

e for
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all local quasiparticle excitations, we can solely consider the
transformationsGeiφG−1

e to determine the phase δφ, as defined
in (78).

B. Edge stability criteria for SPT Phases

In this section, we briefly discuss the edge stability
and criteria for SPT phases [54–58]. The general terms of
interac0tions (perturbations from the tunneling and scattering
process of local excitations) for the 1+1D edge theory are the
bosonic condensations:

S int
edge = ∑bosonic

�

∫
dtdxU�(t,x) cos[�T Kφ(t,x) + α�(t,x)].

(92)

Note that an integer vector � = (�1, · · · ,�N )T is bosonic
(i.e., excitation ‡ei�T Kφ‡ is a boson) if � satisfy π�T K� =
0 mod 2π . In the discussion of this paper, we assume the
coupling U� is a constant (independent of t and x). In the
absence of any symmetry, a collection of bosonic {�a}, which
satisfies Haldane’s null vector condition [60]

�T
a K�b = 0, ∀a,b = 1, . . . ,N/2 (93)

(here N is even since we focus on the K matrix with equal
numbers of positive and negative eigenvalues), can condense
(be localized) with various (classical) expectation values by
adding the corresponding S int

edge to Sedge. That is, the edge can
be gapped by such perturbations (thus the gapless edge modes
are unstable), and the phase is (topologically) trivial.

Such gapping mechanism might be forbidden by symme-
tries, resulting in nontrivial SPT phases, which can not be
transformed adiabatically from the trivial phase within the
symmetry constraints, even in the presence of interactions.
That is, if any possible interaction S int

edge can not be added
to the edge theory (74) without breaking some symmetry,
both explicitly and spontaneously, then the system manifests
a nontrivial SPT phase (protected by these symmetries).
To be more specific, one wants to check that whether the
following conditions are all satisfied. (i) There exists symmetry
preserving S int

edge with a set of Haldane’s null vector {�a}.
(ii) All edge states can be gapped without breaking any

symmetry spontaneously. This can be checked whether all the
elementary bosonic variables {vT

a φ}, with

va = la

gcd(la,1,la,2, . . . ,la,N )
, ∀a, (94)

which are generated from any collections of linear com-
binations of {lTa φ = (K�)Ta φ}, condense without breaking
any symmetry. If both conditions are satisfied, the phase is
(topologically) trivial. Otherwise, the phase is a SPT phase.

C. Classification of SPT phases by K -matrix thoeries:
CPT-equivalent SPT phases and dual SPT phases

By studying the stability/gappability of the 1D edge
of K-matrix theories, we can classify 2D interacting SPT
phases with T, C, P, the combined symmetries, and/or U(1)
symmetries, for either bosonic or fermionic systems. Here, we
consider nonchiral SPT phases described by K matrices with
even dimensions (N is even) in the absence of topological
order (| det K| = 1): the canonical forms of generic K matrix

are

K = σx ⊕ σx ⊕ · · · ⊕ σx = IN/2 ⊗ σx (95)

in bosonic systems and

K = σz ⊕ σz ⊕ · · · ⊕ σz = IN/2 ⊗ σz (96)

in fermionic systems [57,58,61,62].
Similar to the case of noninteracting fermionic systems dis-

cussed in the previous sections, we also have CPT equivalence
among interacting bosonic and fermionic SPT phases with
these discrete symmetries. Combining symmetries T , C, P ,
we define the CPT symmetry by an antiunitary operator W ,

Wφ(t,x)W−1 = −UWφ(−t, − x) + δφW, (97)

which satisfies

WSedgeW−1 = Sedge

⇒ UT
WKUW = K, (98)(

IN + UT
W

)
Q = 0, (IN + UT

W)S = 0.

Imposing W to the system with some existed symmetries
would or would not change the classification of the original
(interacting) topological phase. As the latter case, there exists a
“trivial” CPT operator W = W0 such that the 1D edge theory
with any gapping interactions S int

edge [with a set of Haldane’s null
vectors (93)] is invariant underW0, and thus the corresponding
2D topological phase would not be “additionally” protected by
the presence of such trivial CPT symmetry. Therefore we have
the following statement.

Topological CPT theorem for interacting fermionic and
bosonic nonchiral SPT phases in two dimensions. Let {Gi} be
a set of symmetries (can be a null set) composed of T , C, P ,
the combined symmetries, and/or U(1) symmetries. Then for
2D interacting fermionic or bosonic systems (in the absence of
topological order) described by K-matrix theories, there exists
a “trivial” CPT operator W = W0, with W2

0 being identity op-
erator and relations to other order two symmetries (if present)
as W0GiW−1

0 G−1
i = 1 if UT

Gi
KUGi

= K and W0GiW−1
0 G−1

i =
(−1)Nf if UT

Gi
KUGi

= −K for fermionic systems (for bosonic
systems the algebraic relations is “trivial”), such that the
topological phases protected by {Gi} and the topological phases
protected by {Gi ,W0} possess the same classification.

The proof of the above theorem is left to Appendix C. Now,
from this theorem, we can define CPT-equivalent symmetry
groups/classes or SPT phases for interacting bosonic and
fermionic systems, as we did similarly for noninteracting
fermionic systems in Sec. IV. As an example again, the
(bosonic or fermionic) topological phases protected by both
TRS and charge U(1) symmetry [54,55,57] and the topological
phases protected by both CP and charge U(1) symmetry
[63] possess the same classification, even in the presence of
interactions (to be more precise, we have the CPT-equivalent
symmetry classes {T ,Uc| T 2 = (±1)Nf } � {CP,Uc| (CP)2 =
(∓1)Nf } for interacting fermionic systems, where “�” repre-
sents the CPT-equivalence relations).

Through the trivial CPT symmetry W0, any nontrivial CPT
symmetry W can be expressed as the combination of W0

and some on-site unitary Z2 symmetry M. So imposing a
nontrivial CPT symmetry to a system is identical to imposing
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such unitary symmetry to this system, which might change
the classification of the original SPT phases with existed
symmetries.

Besides CPT equivalence for SPT phases, there are other
“dualities” between SPT phases: classification of the {Gi}-
protected topological phases and the {G̃i}-protected phases
are the same, where {Gi} and {G̃i} are dual symmetries
(see the discussion later). An example is the Td uality
between the topological phases protected by CP and U(1)c
and the topological phases protected by P and U(1)s , as we
discussed for the noninteracting fermionic systems in previous
sections. In K-matrix formalism, this can be observed by the
transformation law for the two U(1) currents under the discrete
Z2 symmetries (72). We can see that the way J

μ
c/s transforms

under CP is the same as the way J
μ
s/c transforms under P . In

general, we have the following duality between these discrete
symmetries as we exchange charge and spin U(1) symmetries:

T ↔ T C, P ↔ CP,
(99)

C ↔ C, PT ↔ PT , CPT ↔ CPT .

Actually, for the bulk K-matrix theory (70) [the same
prospect for the edge theory (74) by the bulk-edge correspon-
dence], we can rewrite it as

Lbulk = 1

4π
εμνλK̃IJ ãIμ∂νãJλ − J̃ μ

c Aμ − J̃ μ
s Bμ,

K̃ = XT KX, ã = X−1a, Q̃ = XT Q, S̃ = XT S,

X ∈ GL(N,Z), det(X) = ±1. (100)

There are two interpretations for Eq. (100), corresponding
to physical equivalent theories described in different ways
[passive or active transformation by X ∈ GL(N,Z)].

(i) It is nothing but field redefinitions (change of basis); the
relabeled gauge fileds ãI describe the same degrees of freedom
as aI .

(ii) The gauge fileds aI are transformed to the dual gauge
fields ãI , which characterize different degrees of freedom (as
X is not the identity matrix) as the original ones (e.g., charge-
vortex duality). The dual theory describes the same physical
system.

As symmetries are present, in description (i) {Gi} (defined
to be on aI ) and {G̃i} (defined to be on ãI ) are identical, while
in description (ii) {Gi} and {G̃i} “look” different (e.g., P and
CP), as they act on different degrees of freedom. However,
they both describe the same “symmetry of the system.”

On the other hand, if we “rotate” every term in (70) by
X except the gauge fields aI [i.e., remove the tilde of a in
(100)], we will obtain a dual theory that describes a different
physical system or SPT phase. For example, if we take X = K

for the K matrix described by (95) or (96), the dual theory,
obtained from a theory with symmetries {Gi}, will describe a
system with dual symmetries {G̃i} by the correspondence (99)
together with exchanging charge-spin U(1) symmetries. Since
the criteria for arguing a SPT phase is independent of how
we choose the gauge X and how we label the field operators,
the dual SPT phase has exactly the same classification as the
original SPT phase.

In the following sections, we give a complete classification
for K-matrix theories with T, C, P, the combined symmetries,

TABLE III. Classification of 2D interacting bosonic nonchiral
SPT phases with symmetry groups generated by T , C, P , and/or U(1)
symmetries. Each nontrivial SPT phase in this table is implemented
by a 2 × 2 K matrix: {K,Q,S} = {σx,(0,1)T ,(1,0)T }. Classification
shown in this table has removed U(1) gauge redundancy.

Classification of 2D bosonic nonchiral
SPT phases

Sym. group No U(1)’s U(1)c is present U(1)s is present

ZT
2 0 Z2 0

ZC
2 0 0 0

ZP
2 0 0 Z2

ZCP
2 0 Z2 0

ZPT
2 0 0 0

ZTC
2 0 0 Z2

ZCPT
2 Z2 Z2 Z2

ZT
2 × ZC

2 Z2 Z2 Z2

ZC
2 × ZP

2 Z2 Z2 Z2

ZP
2 × ZT

2 Z2 Z2 Z2

ZCP
2 × ZPT

2 Z2 Z2 Z2

ZT
2 × ZCP

2 Z2
2 Z2

2 Z2

ZC
2 × ZPT

2 Z2 Z2 Z2

ZP
2 × ZTC

2 Z2
2 Z2 Z2

2

ZT
2 × ZC

2 × ZP
2 Z4

2 Z2
2 Z2

2

and/or U(1) symmetries, for both bosonic and fermionic
systems. We can see that CPT equivalence and T duality hold
exactly through the classification tables for 2D interacting SPT
phases.

1. K-matrix classification of bosonic nonchiral SPT phases

For bosonic K-matrix theories with T, C, P, the combined
symmetries, and/or U(1) symmetries, it is sufficient to im-
plement the nonchiral short-range entangled states by just
considering the 2 × 2 K matrix with determinant det(K) =
(−1)dim(K)/2 = −1. From the canonical form of bosonic K

matirx (95), we have K = σx . The detail for calculating
symmetry transformations and their corresponding SPT phases
is left to Appendix B. Here we summarize the results in
Table III.

In Table III, we show classification of 2D bosonic nonchiral
SPT phases for {K,Q,S} = {σx,(0,1)T ,(1,0)T }, as we focus on
cases with vanishing QT KQ and ST KS (so bosonic quantum
Hall systems are not included in our discussion here). There
are some remarks for Table III.

(i) For each symmetry group listed in Table III, except
groups ZC

2 and ZPT
2 , there are multiple choices for physically

inequivalent realizations of the symmetries, which are not
characterized by the bosonic algebraic relations. For example,
in symmetry group ZCP

2 , the CP symmetries can be represented
by {UCP,δφCP} = {−σz,(0,0)T } or {−σz,(0,π )T }, as they are
physically inequivalent in the absence U(1) symmetries. All
inequivalent choices should be considered in each symmetry
group, and their corresponding nontrivial SPT phases will form
an Abelian group.
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(ii) When U(1) symmetry [either U(1)c or U(1)s] is
present, there might be gauge redundancy among symmetry
transformations (as discussed in Sec. V A). For the example in
(i), the two representations of CP are gauge equivalent when
U(1)s is present, as we can redefine (CP)′ = Us(α) · CP with
a phase α = π to change one representation to another. The
classification shown in Table III has removed such U(1) gauge
redundancy.

(iii) CPT equivalence. At first glance CPT equivalence
seem violated in Table III. For example, SPT phases with
ZCPT

2 symmetry are characterized by a Z2 instead of a trivial
classification, which is resulted in (nonchiral) SPT phases
without any symmetries. Actually, both trivial and nontrivial
CPT symmetries can be realized from ZCPT

2 = Z
W0M
2 , where

W0 is the trivial CPT and M is some onsite unitary Z2

symmetry. The nontrivial Z2 SPT phase here is protected by
the nontrivial CPT symmetry W0 · M with M represented
by {UM,δφM} = {I2,(π,π )T }, where I2 is the 2 × 2 identity
matrix. Therefore ZCPT

2 is CPT equivalent to ZM
2 , which

identically gives the Z2 classification [58]. As implied from
the topological CPT theorem, adding W0 to some symmetry
group G will not change the classification of SPT phases
by G. Similar argument applies for other symmetry groups
that result nontrivial CPT symmetries (by combining the
symmetries), such as ZT

2 × ZCP
2 , which is CPT equivalent

to ZT
2 × ZM

2 and ZCP
2 × ZM

2 (both have Z2
2 classification; the

former case is discussed in Ref. [58]). On the other hand,
if the symmetry groups related by CPT relations do not
possess nontrivial CPT symmetries, such as {ZT

2 ,ZCP
2 } and

{ZT
2 × ZC

2 ,ZC
2 × ZP

2 ,ZP
2 × ZT

2 ,ZCP
2 × ZPT

2 }, they must have
the same classification. (iv) Finally, we can also see that T
duality holds exactly between related symmetry groups [with
the correspondence (99)] in Table III.

2. K-matrix classification of fermionic SPT phases

For fermionic K-matrix theories with T, C, P, the combined
symmetries, and/or U(1) symmetries, we can also implement
the nonchiral short-range entangled states by considering
the 2 × 2 K matrix, except for cases of C2 = (−1)Nf and
(PT )2 = (−1)Nf , which must be realized at least by a 4 × 4
Kmatrix. From the canonical form of fermionic K matrix (96),
we have K = σz. To discuss the classification of the nonchiral
SPT phases with symmetries specified by fermionic algebraic
relations, for convenience we use the following notation

GSG (G), GSG (Uc/s,G), G
SG1 ,G2
SG1 SG2

(G1,G2),

G
SG1 ,G2
SG1 SG2

(Uc/s,G1,G2), G
SG1 ,G2 SG2 ,G3 SG3 ,G1
SG1 SG2 SG3

(G1,G2,G3),

G
SG1 ,G2 SG2 ,G3 SG3 ,G1
SG1 SG2 SG3

(Uc/s,G1,G2,G3) (101)

to denote fermionic symmetry groups generated by Gi (the
discrete Z2 symmetries) and Uc/s [the charge/spin U(1)
symmetry]. The signs SGi

and SGi ,Gj
are defined in Eq. (82).

The details for calculating symmetry transformations and their
corresponding SPT phases is left to Appendix B. Here we
summarize the results in Table IV.

In Table IV, we show the classification of 2D fermionic
nonchiral SPT phases for {K,Q,S} = {σz,(1, − 1)T ,(1,1)T }.
Here, we focus on deconfined fermionic SPT phases obtained

from perturbing noninteracting fermions. The classification
of confined fermionic SPT phases with bosonic degrees of
freedom (such as bosonic Cooper pairs formed by fermions)
can be described by the bosonic SPT phases discussed in the
last sections. There are some remarks for Table IV. (i) As
discussed in Sec. V A, the nontrivial statistical phase factors
might be present when symmetries act on the bosonized fields
of fermions (due to Fermi statistics). Using Eq. (89) and
the commutations relations of chiral bosons (87), we can
determine the statistical phase factors for different symmetries
on local quasiparticle excitations ‡ exp i�T Kφ‡. For example,
for bosonic excitations �± ≡ (1, ± 1)T , we have

�φ
�±
T = �φ

�±
C = �φ

�±
TC = 0 mod 2π ;

(102)
�φ

�±
P = �φ

�±
CP = �φ

�±
PT = �φ

�±
CPT = π mod 2π.

We must be careful about these extra phase factors (which
might cause sign changes) when we analyze the invariance
of condensed (local) bosonic field variables under symmetry
transformations. It would affect the way we determine the SPT
phases with correct fermionic algebraic relations [signs S’s in
Eq. (101)].

(ii) Contrast to bosonic systems, for each symmetry group
listed in Table IV, except groups G±(CPT ) and G±

++(C,PT ),
there is only one physically inequivalent realization of the
set of symmetries, which has been characterized (or fixed) by
fermionic algebraic relations. For example, in symmetry group
G

ST,CP

STSCP
(T ,CP), the symmetries are represented by

UT = σx, δφT = π (0,ηT)T ;

UCP = −σx, δφCP = π

(
n + ηT,CP

2
,n + ηCP + ηT,CP

2

)T

;

ηT, ηCP, ηT,CP, n = 0,1.

As the parameters η’s specify the fermionic symmetry group,
the “internal” parameter n can always be fixed (to 0, say)
by redefining (CP)′ = (−1)Nf · CP , since the fermion parity
is conserved. On the other hand, there are two physically
inequivalent realizations of symmetries (specified by some
“internal” parameters) in G±(CPT ) and G±

++(C,PT ).
(iii) There is gauge redundancy for specifying fermionic

symmetry groups in the presence of U(1) symmetry [either
U(1)c or U(1)s]. We can remove such gauge redundancy based
on the algebraic relations between discrete symmetries and
U(1) symmetries (83). For example, groups G+

++(Us ,T ,CP),
G+

+−(Us ,T ,CP), G+
−+(Us ,T ,CP), G+

−−(Us ,T ,CP) are all
U(1)s gauge equivalent.

(iv) CPT equivalence. From the topological CPT theorem,
the classifications of fermionic SPT phases with symmetry
groups generated by {Gi} and by {Gi ,W0} are equivalent. Here
the trivial CPT symmetry W0 (with W2

0 = 1) satisfies the
fermionic algebraic relations SW0,Gi

= ε for UGi
KU−1

Gi
= εK ,

when it is included to a symmetry group. Some examples can
be found in Table IV:

G−(Uc,T ) � G+(Uc,CP) � G−
−+(Uc,T ,CP),

G+
−+(T ,C) � G+

++(C,P) � G−
+−(P,T )

� G+
++(CP,PT ) � G++−

−++(T ,C,P), (103)
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TABLE IV. Classification of 2D interacting nontrivial fermionic nonchiral SPT phases with symmetry groups generated by T , C, P ,
the combined symmetries, and/or U(1) symmetries. In this table, we do not consider the case for SC = −1 [C2 = (−1)Nf ] and SPT = −1
[(PT )2 = (−1)Nf ], so each nontrivial SPT phase in this table can be implemented by a 2 × 2 K matirx: {K,Q,S} = {σz,(1, − 1)T ,(1,1)T }.
The symmetry groups shown in this table have removed the U(1) gauge redundancy. The classification is obtained for deconfined fermionic
SPT phases with perturbative interactions. The last column shows the relevant symmetry classes represented in the single-particle Hamiltonians
(noninteracting fermionic systems) from Table II; symmetry groups with additional U(1)s can be realized in BdG systems with Sz conservation,
and here we list �̃+(CP ), �̃−(T ), and �̃+

−+(T ,CP ) (�̃ indicates “T dual” to �) as examples (noted by ‡).

Symmetry groups for 2D nontrivial fermionic nonchiral SPT phases Top.

Symm. No U(1)’s U(1)c is present U(1)s is present class. Nonint.

T – G−(Uc,T ) – Z2 �−(T )
C – – – – –
P – – G+(Us ,P) Z2 ‡�̃+(CP )
CP – G+(Uc,CP) – Z2 �+(CP )
PT – – – – –
T C – – G−(Us ,T C) Z2 ‡�̃−(T )
CPT G+(CPT ) G+(Uc,CPT ) G+(Us ,CPT ) Z4 �+(CPT )
T ,C G+

−+(T ,C) G+
−+(Uc,T ,C) G+

−+(Us ,T ,C) Z2 �+
−+(T ,C)

C,P G+
++(C,P) G+

++(Uc,C,P) G+
++(Us ,C,P) Z2 �+

++(C,P )
P,T G−

+−(P,T ) G−
+−(Uc,P,T ) G−

+−(Uc,P,T ) Z2 �−
−+(T ,P )

CP,PT G+
++(CP,PT ) G+

++(Uc,CP,PT ) G+
++(Us ,CP,PT ) Z2 �+

++(CP,PT )
T ,CP G+

−+(T ,CP) G+
−+(Uc,T ,CP) ↓ Z2 �+

−+(T ,CP )
G+

++(T ,CP), G+
−−(T ,CP) G+

++(Uc,T ,CP), G+
++(Us ,T ,CP) Z4 �+

++(T ,CP ),
G+

−−(Uc,T ,CP) �+
−−(T ,CP )

C,PT G+
++(C,PT ) G+

++(Uc,C,PT ) G+
++(Us ,C,PT ) Z4 �+

++(C,T P )
P,T C G+

+−(P,T C) ↓ G+
+−(Us ,P,T C) Z2 ‡�̃+

−+(T ,CP )
G+

++(P,T C), G+
−−(P,T C) G+

++(Uc,P,T C) G+
++(Us ,P,T C), Z4 �+

++(T C,P )
G+

−−(Us ,P,T C)
T ,C,P G−++

+++(T ,C,P), G−+−
−++(T ,C,P), Z2 �++−

−++(T ,C,P )
G++−

−++(T ,C,P), G+−−
−++(T ,C,P), G++−

−++(Uc,T ,C,P) G++−
−++(Us ,T ,C,P)

G+−+
−+−(T ,C,P)

G+++
+++(T ,C,P), G−−−

++−(T ,C,P), G+++
+++(Uc,T ,C,P), G+++

+++(Us ,T ,C,P), Z4 �+++
+++(T ,C,P ),

G−−−
−++(T ,C,P), G+++

−+−(T ,C,P) G+−−
−++(Uc,T ,C,P) G−−−

++−(Us ,T ,C,P) �+−−
−++(T ,C,P )

where � represents the CPT-equivalence relations for sym-
metry groups and the last symmetry group in the first line is
U(1)c gauge equivalent to G+

−+(Uc,T ,CP) in Table IV. On
the other hand, since a nontrivial CPT can be represented
by by W = W0 · M for some onsite unitary Z2 symmetry
M, we also have the CPT equivalence among symmetry
groups generated by {Gi ,M} and by {Gi ,W}. This happens
when symmetries in a group can combine to nontrivial CPT
symmetries. For example, M can be the spin parity (chiral Z2

parity) (−1)NL or (−1)NR so that we have

G+(CPT ) � G+(M),

G+
++(T ,CP) � G−

++(T ,M) � G−
++(CP,M) � G+

−−(T ,CP)

� G−
−+(T ,M) � G−

−+(CP,M). (104)

Topological phases protected by these symmetry groups are
all characterized by Z4 classification (while they are all
characterized by Z classification for noninteracting fermions).
Therefore, due to CPT equivalence, imposing the nontrivial
CPT symmetry effectively enforces the spin parity, resulting
the same classification of either noninteracting or interacting
SPT phases. This provides connections between TSCs pro-
tected by (nontrivial) CPT and TSCs protected by spin parity
discussed in Ref. [46], and also between TSCs protected by
T and P (the same as by T and CP since C is trivial for

Majorana fermions) and TSCs protected by T and spin parity,
as discussed in Refs. [47] and [45], respectively. (Actually,
all the above TCSs possess Z8 instead Z4 classification. The
difference comes from the fact that Majorana edge modes
of TCSs have half-integer center charge, while the edges of
K-matrix Chern-Simons theory we study here have integer
center charge. Nevertheless, the above argument is in a
consistent and reasonable way, as indicated in Ref. [58].)

(v) As a comparison, for each symmetry group with
nontrivial SPT phases in Table IV, we also list the relevant
symmetry classes represented in the single-particle Hamilto-
nians from Table II. As each Z2 classification is unchanged,
each (nonchiral) Z classification changes to Z4 classification
from noninteracting to interacting topological phases.

(vi) Like bosonic theories, T duality also holds exactly
between related symmetry groups [with the correspondence
(99)] in Table IV.

VI. DISCUSSION

We have gone through topological classification problems
in the presence of parity symmetry with emphasis on duality
(equivalence) relations among various topological phases.
One issue which we did not discuss is possible physical
realizations of these topological systems considered in this
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paper. While we leave a detailed discussion on this issue
for the future, a few comments are in order; CP symmetric
systems are rather exotic in condensed matter context, but we
have shown that, through T duality, they have representation in
terms of parity symmetric BdG systems with Sz conservation,
which may be more realizable. On the other hand, with fine
tuning, CP symmetric systems may be realized in electron-hole
coupled systems (like excitons); as seen in this example, CPT
equivalence and T duality allow us to explore topological
phases not listed in conventional Altland-Zirnbauer classes.
Other interesting examples to explore are insulators with T P

or {T ,P } symmetry, which are dual to known topological
superconducting phases.

Another issue that we have not discussed is a relation of
these topological classification to quantum anomalies. The
boundary (edge) theories that we discussed in analyzing
topological classification are not possible to gap out in the
presence of symmetry conditions (i.e., “protected” by the
symmetries). These theories should not exist as an isolated
system but should be realized only as a boundary of a bulk
topological system. In other words, these theories should be,
in the presence of an appropriate set of symmetry conditions,
anomalous or inconsistent. We plan to visit possible anomalies
that pertain to topological phases discussed in this paper
in a forthcoming publication. For the cases of topological
phases protected by CP symmetry and charge U(1) symmetry,
partial discussion on a quantum anomaly that underlies the
topological classification is given in Ref. [63].
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APPENDIX A: ENTANGLEMENT SPECTRUM AND
EFFECTIVE SYMMETRIES

Let us consider a tight-binding Hamiltonian,

H =
∑
r,r ′

∑
α,α′

ψ†
α(r)Hαα′

(r,r ′) ψα′ (r ′)

=
∑
I,I ′

ψ
†
I HII ′ψI ′ , (A1)

where ψα(r) (α = 1, . . . ,Nf ) is an Nf -component fermion
annihilation operator, and index r = (r1,r2, . . . ,rd ) labels a
site on a d-dimensional lattice. In the second line in Eq. (A1),
we have used a more compact notation with the collective index
I = (r,α), etc. Each block in the single-particle Hamiltonian
H(r,r ′) is an Nf × Nf matrix, satisfying the hermiticity
condition H†(r ′,r) = H(r,r ′), and we assume the total size
of the single particle Hamiltonian HII ′ is Ntot × Ntot =
Nf V × Nf V , where V is the total number of lattice sites.
The components in ψ(r) can describe, e.g., orbitals or spin
degrees of freedom, as well as different sites within a crystal
unit cell centered at r . With a canonical transformation, the
Ntot × Ntot Hamiltonian can be diagonalized as

U †HU = diag(EA), A = 1, · · · ,Ntot,

with U = (�u1, . . . ,�uNtot ), (A2)

where �uA is the Ath eigenvector with the eigenenergy EA.
Under this canonical transformation, the fermionic operator
ψI = ψiα(r) can be expressed into fermionic operator χA as

ψI =
Ntot∑
A=1

UIAχA. (A3)

Through out the paper, we consider situations where there is a
spectral gap in the single particle Hamiltonian and the Fermi
level is located within the spectral gap. Then the ground state
|�G〉 at zero temperature can be expressed as

|�G〉 =
Nocc∏
A=1

χ
†
A|0〉, (A4)

where we assume the eigenvalues EA for A = 1, . . . ,Nocc <

Ntot are below the Fermi level.

1. Entanglement spectrum

We bipartition the total Hilbert space into two subspaces,
which we call “L” and “R.” The discussion below is valid for an
arbitrary bipartitioning; we will later focus on the case where
the two subspaces are associated to two spatial regions of the
total system, which are adjacent to each other. We are interested
in the entanglement entropy and spectrum for the ground
state |�G〉 with the bipartitioning specified by the subsystems
L and R.

In a free fermion system, the entanglement spectrum can
be directly obtained from its correlation matrix (equal-time
correlation function) [64]:

CIJ = 〈�G|ψ†
I ψJ |�G〉. (A5)

In terms of the eigen wave functions, the correlation matrix
CIJ can be written as

CIJ =
Nocc∑
A=1

U ∗
IAUJA =

Nocc∑
A=1

(�uA)∗I (�uA)J . (A6)

One then verifies the correlation matrix is a projection operator,
as it satisfies

C2 = C. (A7)

Thus all eigenvalues of the correlation matrix CIJ are either 0
or 1. For later purposes, we define

QIJ := 1 − 2CIJ , (A8)

which has ±1 as its eigenvalues.
For the total system divided into two subsystems L and R,

we introduce the following block structure:

C =
(

CL CLR

CRL CR

)
, CRL = C

†
LR. (A9)

Then the set of eigenvalues {ξν} of CL is the entanglement
spectrum. Similarly, the set of eigenvalues of

QL := 1 − 2CL (A10)

is {1 − 2ξν}, with −1 � 1 − 2ξν � +1. We refer CL and QL as
the entanglement Hamiltonian. (These terminologies may not
be entirely precise, since ln(1/ξμ − 1) may better be entitled
to be called the entanglement energy.)
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We now derive the algebraic relations obeyed these blocks,
by making use of C2 = C. [33,49] Then,

C2
L − CL = −CLRCRL,

QLCLR = −CLRQR,
(A11)

CRLQL = −QRCRL,

C2
R − CR = −CRLCLR,

where QR := 1 − 2CR . This algebraic structure, inherent to
the correlation matrix (the entanglement Hamiltonian), is quite
analogous to supersymmetric quantum mechanics (SUSY
QM). To see this, we define

SL = 1 − Q2
L, SR = 1 − Q2

R,
(A12)

A+ = A† = 2CLR, A− = A = 2CRL,

where note that SL/R are positive semidefinite, and bounded
as 0 � SL/R � 1. One then verifies

SLA+ = A+SR, SRA− = A−SL,

SL = A+A−, SR = A−A+. (A13)

This is the standard setting of SUSY QM. Further defining

S =
(

SL 0

0 SR

)
, Q =

(
0 0

A 0

)
, Q† =

(
0 A†

0 0

)
,

(A14)

they satisfy the SUSY algebra:

[S,Q] = [S,Q†] = 0,
(A15)

{Q,Q†} = S, {Q,Q} = {Q†,Q†} = 0.

Observe that the above SUSY algebra is true for any quadratic
fermionic Hamiltonian and for any choice of partitioning.

One can also prove a “chiral symmetry,” define

� := 2i

(
CLR

−CRL

)
= i(Q† − Q), �† = �,

(A16)

��† = �2 = −4

(
C2

L − CL

C2
R − CR

)
= S.

Then, the Q matrix satisfies a chiral symmetry

Q� = −�Q. (A17)

This effective chiral symmetry can be combined with other
physical symmetries, for example, CP symmetry.

2. Properties of entanglement spectrum with symmetries

We now focus on the case where the dimensions of the two
Hilbert spaces L and R are the same. (In this case, in general,
there is no zero mode of S expected from SUSY.) In addition,
we will consider the cases where there is a (discrete) symmetry
which relates (or “intertwines”) the two Hilbert spaces. As in
the case of the symmetry protected topological phases, such
cases arise when there is a (discrete) symmetry in the total
system before bipartitioning, and when the bipartitioning is
consistent with the symmetry.

Let us consider a symmetry operation O that acts on the
fermion operator as follows:

OψIO† = OIJ ψ
†
J , (A18)

where O is an Nf V × Nf V unitary matrix. The system is
invariant under the symmetry operation when OHO† = H ,
i.e.,

O†HT O = −H. (A19)

This symmetry property of the Hamiltonian is inherited by the
correlation matrix:

O†Q∗O = −Q, (A20)

Defining a block structure as in Eq. (A9), we have

O =
(

OL OLR

ORL OR

)
. (A21)

Our focus below is the case where the symmetry operation
intertwines the L and R Hilbert spaces. In other words,
we can naturally categorize discrete symmetries into two
groups; Firstly, there are symmetry operations that act on L

and R Hilbert spaces independently. If the bipartitioning is
done in the manner that respects the locality of the system,
these include local symmetry operations such as time-reversal
symmetry, and spin-rotation symmetry, etc. On the other hand,
certain spatial symmetries such as reflection, inversion, and
(discrete) spatial rotations can exchange (intertwines) the two
sub-Hilbert spaces. Focusing on the latter situations, we thus
assume the following off-diagonal form:

O =
(

0 OLR

ORL 0

)
, OLRO

†
LR = ORLO

†
RL = 1. (A22)

Combining O and the chiral symmetry �, we get

Q�O† = �O†Q∗. (A23)

In particular,

QLCLRO
†
LR = CLRO

†
LRQ∗

L,
(A24)

QRCRLO
†
RL = CRLO

†
RLQ∗

R.

These show that the Q matrix and its diagonal blocks QL,R

obey an effective time-reversal symmetry.

APPENDIX B: CALCULATIONS OF SYMMETRY
TRANSFORMATIONS AND SPT PHASES

IN K -MATRIX THEORIES

1. Algebraic relations of symmetry operators

As mentioned in the text, we consider a symmetry group
generated by Z2 symmetry operators (T , C, P , and the
combined symmetries in our discussion) with the following
algebraic relations:

G2
i = S

Nf

Gi
, ∀ discrete Gi ∈ G;

(B1)
GiGjG−1

i G−1
j = S

Nf

Gi ,Gj
, ∀ discrete Gi ,Gj ∈ G,

where S has values ±1. In a bosonic system, the operator
SNf (subscript omitted) is just the identity 1. In a fermionic
system, SNf can be the identity 1 or the fermion number parity
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operator Pf ≡ (−1)Nf , where Nf is the total fermion number
operator. Note that SG1,G2 = SG2,G1 for any two symmetry
operators G1 and G2.

On the other hand, algebraic relations between Z2 symme-
tries and U(1) symmetries are described as follows. The total
charge operator

Nc ≡
∫

dxj 0
c = e

2π
QI

∫
dx∂xφI (t,x) = eNf (B2)

and the corresponding charge U(1) transformation Uc ≡
eiθcNc/e satisfy the following relations:

GNcG−1 = Nc, for G = T , P, T P;

GNcG−1 = −Nc, for G = C, T C, CP, CPT ;
(B3)

GUcG−1 = Uc, for G = P, T C, CPT ;

GUcG−1 = U−1
c , for G = T , C, CP, T P.

Similarly, the total spin operator

Ns ≡
∫

dxj 0
s = s

2π
SI

∫
dx∂xφI (t,x) (B4)

and the corresponding spin U(1) transformation Us ≡ eiθsNs/s

satisfy

GNsG−1 = Ns, for G = T C, CP, T P;

GNsG−1 = −Ns, for G = T , C, P, CPT ;
(B5)

GUsG−1 = Us , for G = T , CP, CPT ;

GUsG−1 = U−1
s , for G = C, P, T C, T P.

2. Equations of identity elements

In the basis of chiral boson fields, the constraints (B1)
give the following equations of identity elements (for bosonic
systems, we just take all SNf = 1 in the following expressions):

G2
i = S

Nf

Gi
: U 2

Gi
= IN , (IN + αGi

UGi
)δφGi

= ηGi
π tN ;

GiGjG−1
i G−1

j = S
Nf

Gi ,Gj
or (GiGj )2 = (SGi

SGj
SGi ,Gj

)Nf :
(B6)

(UGi
UGj

)2 = IN ,

(IN + αGi
αGj

UGj
UGi

)(δφGj
+ UGj

δφGi
) = ηGi ,Gj

πtN ,

where αG = 1 (−1) represents an unitary (antiunitary) operator
G, tN ≡ (1, · · · ,1)T is an N -component vector, and the
numbers ηG and ηG1,G2 via the relations to SG and SG1,G2 :

eiπηG = SG, eiπηG1 ,G2 = SG1SG2SG1,G2 . (B7)

Again, for the bosonic systems, we just take all η = 0. Note
that in the above (and the following) equations all phases are
mod 2π .

The constraints including the U(1) symmetry (B3) and (B5)
also become

GUAG−1 = U±1
A or GU∓1

A GUA = G2 = S
Nf

G :

(IN + αGUG)δφG + (IN ∓ αGUG)δφA = ηGπtN

⇒ (IN ∓ αGUG)δφA = 0, (B8)

where the label A represents charge or spin U(1) symmetries.
As examples, for T, C, and P symmetries, we have the
corresponding U(1) symmetries (if present) satisfying

TRS : (IN − UT) δφc = 0, (IN + UT) δφs = 0,

PHS : (IN + UC) δφc = 0, (IN + UC) δφs = 0, (B9)

PS : (IN − UP) δφc = 0, (IN + UP) δφs = 0,

respectively. Identifying δφc = θcK
−1Q and δφs = θsK

−1S,
(B9) exactly corresponds to (79), which are equations of
symmetry constraints for gauged K-matrix Chern-Simons
theories (coupled to external gauge fields).

In this Appendix, we use these constraint equations to find
the way that the chiral boson fields transform under T , C, P ,
the combined symmetries, and/or the U(1) symmetries. Note
that we also have the gauge equivalence for the forms of these
symmetry transformations:

{UG,δφG} → {X−1UGX, X−1(δφG − αG�φ + UG�φ)},
if X ∈ GL(N,Z), XT KX = K, (B10)

where αG = 1 (−1) if G is an unitary (antiunitary) operator.
This means we can choose some X and �φ to fix {UGi

,δφGi
}

to the inequivalent forms of transformations.
Here, we just consider the case of 2 × 2 K matrix (K = σx

for a bosonic system and a K = σz for fermionic system).
All gauge inequivalent solutions for discrete symmetry trans-
formations in different classes are summarized in Table V
for bosonic systems, and in Table VI for fermionic systems,
respectively.

3. Discussion of SPT phases

Using the criteria for SPT phases developed in Sec. V B,
we can find nontrivial SPT phases and thus topological
classification for both bosonic and fermionic systems, based on
the symmetry transformations described in Tables V and VI.
The results are summarized in Tables VII and VIII, which
directly derive Tables III and IV in the text, respectively.

To accomplish Tables VII and VIII, we give explicit calcu-
lations for SPT phases with some examples. In the following
discussions, bosonic systems are realized by {K,Q,S} =
{σx,(0,1)T ,(1,0)T }, while fermionic systems are realized by
{K,Q,S} = {σz,(1, − 1)T ,(1,1)T }. The discussion for finding
group structures of SPT phases follows Ref. [58].

(a) Bosonic SPT phases with symmetry group ZCP
2

From Table V, the symmetry transformations for CP are
given by

UCP = −σz, δφCP = π (0,nCP)T , nCP = 0,1. (B11)

Without U(1) symmetries, the symmetry invariant pertur-
bations can be either (for any values of nCP)

Sc.p.

edge =
∑
l∈Z

Al

∫
dtdx cos (2lφ2 + αl) (B12)

or

Ss.p.

edge =
∑
l∈Z

Bl

∫
dtdx cos (lφ1 + klπ ) , (B13)
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TABLE V. (Gauge inequivalent) symmetry transformations in
different classes for bosonic K-matrix theories with K = σx . In this
table, u = (1,0)T , v = (0,1)T , and all n’s and m’s have the value
0 or 1.

Symm. Transformations (boson: K = σx)

T UT = σz, δφT = nTπv

C UC = −I2, δφC = 0
P UP = σz, δφP = nPπu

CP UCP = −σz, δφCP = nCPπv

PT UPT = I2, δφPT = 0
T C UTC = −σz, δφTC = nTCπu

CPT UCPT = −I2, δφCPT = nCPTπu + mCPTπv

T ,C UT = σz, δφT = nTπu + mTπv

UC = −I2, δφC = 0

C,P UC = −I2, δφC = 0
UP = σz, δφP = nPπu + mPπv

P,T UP = σz, δφP = nPπu

UT = σz, δφT = nTπv

CP,PT UCP = −σz, δφCP = nCPπu + mCPπv

UPT = I2, δφPT = 0

T ,CP UT = σz, δφT = nTπv

UCP = −σz, δφCP = nCPπu + mCPπv

C,PT UC = −I2, δφC = 0
UPT = I2, δφPT = nPTπu + mPTπv

P,T C UP = σz, δφP = nPπu

UTC = −σz, δφTC = nTCπu + mTCπv

T ,C,P UT = σz, δφT = nTπu + mTπv

UC = −I2, δφC = 0
UP = σz, δφP = nPπu + mPπv

where Al, Bl, αl ∈ R, kl ∈ Z, and c.p. (s.p.) stands for
“charge preserved” (“spin preserved”) perturbations, i.e.,
invariant under U(1)c [U(1)s]. In this case, we can always
condense φ1 without breaking CP:

〈φ1〉 CP−→ −〈φ1〉 mod 2π, (B14)

say, 〈φ1〉 has expectation value 0 or π (depending on how we
choose Ss.p.

edge). Thus there are just trivial phases in the absence
of U(1) symmetries.

In addition to CP , if we now include the charge U(1)
symmetry

Uc : δφc = θcK
−1Q = qcθc(1,0)T , θc ∈ R, (B15)

then only the charge preserved perturbations (bosonic variable
φ2) are allowed to add to the system (to condense). Since

〈φ2〉 CP−→ 〈φ2〉 + nCPπ mod 2π, (B16)

we find that nCP = 1 (nCP = 0) corresponds to a nontrivial
(trivial) SPT phase, as the edge can not (can) be gapped by
Sc.p.

edge without breaking CP . Denoting [nCP] the phase with
corresponding CP symmetry, we have [1] ⊕ [1] = [0], i.e.,
putting (adding) two copies of nCP = 1 phases {φk

1 ,φ
k
2 ,k =

1,2} together we can gap out the edge by condensing {φ1
1 −

φ2
1 ,φ

1
2 + φ2

2} without spontaneously breaking CP and charge
U(1) symmetries. Therefore bosonic SPT phases with U(1)c �

ZCP
2 are classified by a Z2 group: [nCP = 0] and [nCP = 1]

correspond to (two) elements of this Z2 group.
On the other hand, if we include the spin U(1) symmetry

instead [no charge U(1)]

Us : δφs = θsK
−1S = qsθs(0,1)T , θs ∈ R, (B17)

then only the spin preserved perturbations (bosonic variable
φ1) are allowed to add to the system (to condense). In this
case, there are just trivial phases as we can always condense
φ1 (B14).

(b) Bosonic SPT phases with symmetry group ZT
2 × ZC

2 × ZP
2

From Table V, the symmetry transformations for {T ,C,P}
are given by

UT = σz, δφT = π (nT,mT)T , nT, mT = 0,1;

UC = −I2, δφC = 0; (B18)

UP = σz, δφP = π (nP,mP)T , nP, mP = 0,1.

Without U(1) symmetries, the symmetry invariant pertur-
bations can be either (for any values of n’s) Sc.p.

edge (B12) or
Ss.p.

edge (B13). However, the edge can not be gapped, as either
Sc.p.

edge (B12) or Ss.p.

edge is added to the system, without breaking
any symmetry for some choices of n’s. The following lists the
nontrivial SPT phases that are denoted as [nT,mT,nP,mP]

[0,0,1,1], [0,1,1,0], [0,1,1,1],

[1,0,0,1], [1,1,0,0], [1,1,0,1], (B19)

[1,0,1,1], [1,1,1,0], [1,1,1,1].

Putting two identical copies of each phase above together will
result a trivial phase, i.e., [nT,mT,nP,mP]2 = [trivial]. On the
other hand, all phases above are inequivalent [we can not
obtain a trivial phase by putting any two different elements
in the set (B19) together]. However, phases shown in (B19)
are not all possible nontrivial SPT phases with symmetries
ZT

2 × ZC
2 × ZP

2 ; putting different phases above together might
result other nontrivial SPT phases that are not listed above. To
determine the group structure of these phases, we observe that
putting three phases in any vertical or horizontal line of the
array (B19) together will result a trivial phase, or equivalently,
we have

[0,0,1,1]
⊕ ⊕ [0,1,1,0]

⊕ = [0,1,1,1]
⊕

[1,0,0,1]
‖ ⊕ [1,1,0,0]

‖ = [1,1,0,1]
‖

[1,0,1,1] ⊕ [1,1,1,0] = [1,1,1,1]. (B20)

From this fact, we know that all nontrivial phases can
be generated by a specific set of four phases, say,
{[0,0,1,1], [0,1,1,0], [1,0,0,1], [1,1,0,0]} (there are 3 × 3 =
9 equivalent choices for these four group generators); there are
total fifteen nontrivial SPT phases, which form a Z4

2 group.
In addition toT ,C, andP , if we now include the charge U(1)

symmetry (B15), then only the charge preserved perturbations
(bosonic variables) are allowed to add to the system (to
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TABLE VI. (Gauge inequivalent) Symmetry transformations in different classes for fermionic
K-matrix theories with K = σz. In this table, (i) u = (1,0)T , v = (0,1)T , and all η’s [defined in (B7)],
n’s, and m’s have the value 0 or 1; (ii) here we do not consider cases for ηC = 1 and ηPT = 1, which
must be realized in the theory with a 4 × 4 K matrix at least; (iii) ηP,T = 0 in symmetry classes {P,T }
and {C,P,T }, as deduced from the equations of identity element (B6).

Symm. Transformations (fermion: K = σz)

T UT = σx , δφT = ηTπv

C UC = −I2, δφC = 0
P UP = σx , δφP = ηPπv

CP UCP = −σx , δφCP = ηCPπv

PT UPT = I2, δφPT = 0
T C UTC = −σx , δφTC = ηTCπv

CPT UCPT = −I2, δφCPT = (
n + ηCPT

2

)
πu + (

m + ηCPT
2

)
πv

T ,C UT = σx , δφT = (
n + ηT−ηT,C

2

)
πu + (

n − ηT+ηT,C
2

)
πv

UC = −I2, δφC = 0

C,P UC = −I2, δφC = 0
UP = σx , δφP = (

n + ηP−ηC,P
2

)
πu + (

n + ηP+ηC,P
2

)
πv

P,T UP = σx , δφP = ηPπv

UT = σx , δφT = ηTπv

CP,PT UCP = −σx , δφCP = (
n + ηCP+ηCP,PT

2

)
πu + (

n − ηCP−ηCP,PT
2

)
πv

UPT = I2, δφPT = 0

T ,CP UT = σx , δφT = ηTπv

UCP = −σx , δφCP = (
n + ηT,CP

2

)
πu + (

n + ηCP + ηT,CP
2

)
πv

C,PT UC = −I2, δφC = 0
UPT = I2, δφPT = (

n + ηC,PT
2

)
πu + (

m + ηC,PT
2

)
πv

P,T C UP = σx , δφP = ηPπv

UTC = −σx , δφTC = (
n + ηP,TC

2

)
πu + (

n + ηTC − ηP,TC
2

)
πv

T ,C,P UT = σx , δφT = (
n + ηT−ηT,C

2

)
πu + (

n − ηT+ηT,C
2

)
πv

UC = −I2, δφC = 0
UP = σx , δφP = (

n + ηP−ηC,P
2

)
πu + (

n + ηP+ηC,P
2

)
πv

condense). Besides those nontrivial phases discussed in the
case without U(1) symmetries, there are other nontrivial
phases protected by U(1)c additionally. Some of the nontrivial
phases are U(1)c gauge equivalent to each other, and we can
just consider the inequivalent set [0,0,1,1], [0,1,1,0], and
[0,1,1,1], which form a Z2

2 group.
On the other hand, if we include the spin U(1) symmetry

(B17) instead [no charge U(1)], then only the spin preserved
perturbations (bosonic variable) are allowed to add to the
system (to condense). Similar to the discussion for charge
U(1), the U(1)s gauge inequivalent nontrivial phases can be
[0,0,1,1], [1,0,0,1], and [1,0,1,1], which form a Z2

2 group.

(c) Fermionic SPT phases with symmetry CP
From Table VI, the symmetry transformations for CP are

given by

UCP = −σx, δφCP = π (0,ηCP)T , ηCP = 0,1. (B21)

Without U(1) symmetries, the symmetry invariant pertur-
bations can be either (for any values of ηCP)

Sc.p.

edge =
∑
l∈Z

Al

∫
dtdx cos [2l(φL − φR) + αl] (B22)

or

Ss.p.

edge =
∑
l∈Z

Bl

∫
dtdx cos [2l(φL + φR) + klπ ] , (B23)

where Al, Bl, αl ∈ R and kl ∈ Z. Note that under CP the
boson fields lT±φ ≡ φL ± φR transform as

(CP)(lT±φ)(CP)−1 = lT± (UCPφ + δφCP) + �φ
l±
CP, (B24)

with the statistical phase �φ
l±
CP = π mod 2π (while statistical

phases in a bosonic K-matrix theory is always trivial; see
discussions in Sec. V A). In this case, we can always condense
l+φ without breaking CP:

〈lT+φ〉 CP−→ −〈lT+φ〉 + (ηCP + 1)π mod 2π, (B25)

say, 〈l+φ〉 has expectation value (ηCP ± 1)π/2 (depending on
how we choose Ss.p.

edge). Thus there are just trivial phases in the
absence of U(1) symmetries.

In addition to CP , if we now include the charge U(1)
symmetry

Uc : δφc = θcK
−1Q = qcθc(1,1)T , θc ∈ R, (B26)
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TABLE VII. Nontrivial bosonic nonchiral SPT phases and their classification with symmetry groups generated by T , C, P , the combined
symmetries, and/or U(1) symmetries, implemented by a 2 × 2 K matrix: {K,Q,S} = {σx,(0,1)T ,(1,0)T }. Results are based on symmetry
transformations described in Table V. Here we use [n,m, · · · ] to label SPT phases (parameters n’s and m’s shown here are not specified
explicitly in symmetry groups in bosonic systems). The classification shown in this table has removed the U(1) gauge redundancy. Table III is
constructed directly from this table.

Parameters Nontrivial bosonic nonchiral SPT phases and their classification

Symm. group (from Table V) No U(1)’s U(1)c is present U(1)s is present

ZT
2 [nT] – 0 [1] Z2 – 0

ZC
2 – – 0 – 0 – 0

ZP
2 [nP] – 0 – 0 [1] Z2

ZCP
2 [nCP] – 0 [1] Z2 – 0

ZPT
2 – – 0 – 0 – 0

ZTC
2 [nTC] – 0 – 0 [1] Z2

ZCPT
2 [nCPT,mCPT] [1,1] Z2 [1,1] Z2 [1,1] Z2

ZT
2 × ZC

2 [nT,mT] [1,1] Z2 [1,1] Z2 [1,1] Z2

ZC
2 × ZP

2 [nP,mP] [1,1] Z2 [1,1] Z2 [1,1] Z2

ZP
2 × ZT

2 [nP,nT] [1,1] Z2 [1,1] Z2 [1,1] Z2

ZCP
2 × ZPT

2 [nCP,mPT] [1,1] Z2 [1,1] Z2 [1,1] Z2

ZT
2 × ZCP

2 [nT,nCP,mCP] [0,1,1],[1,1,0], Z2
2 [0,1,1],[1,1,0], Z2

2 [0,1,1] Z2

[1,1,1] [1,1,1]

ZC
2 × ZPT

2 [nPT,mPT] [1,1] Z2 [1,1] Z2 [1,1] Z2

ZP
2 × ZTC

2 [nP,nTC,mTC] [0,1,1],[1,0,1], Z2
2 [0,1,1] Z2 [0,1,1],[1,0,1], Z2

2

[1,1,1] [1,1,1]

ZT
2 × ZC

2 × ZP
2 [nT,mT,nP,mP] 15 nontrivial phases Z4

2 [0,0,1,1],[0,1,1,0], Z2
2 [0,0,1,1],[1,0,0,1], Z2

2

generated by
[0,0,1,1],[0,1,1,0], [0,1,1,1] [1,0,1,1]
[1,0,0,1],[1,1,0,0]

then only the charge preserved perturbations (bosonic vari-
able l−φ) are allowed to add to the system (to condense).
Since

〈lT−φ〉 CP−→ 〈lT−φ〉 + (ηCP + 1)π mod 2π, (B27)

we find that ηCP = 0 (ηCP = 1) corresponds to a nontrivial
(trivial) SPT phase, as the edge can not (can) be gapped bySc.p.

edge
without breaking CP . Moreover, SPT phases with ηCP = 0
[group G+(Uc,CP)] form a Z2 group. This can be seen if we
put two copies of ηCP = 0 phases {φk

L,φk
R,k = 1,2} together

and then gap out the edge by condensing independent bosonic
variables, say, {φ1

L − φ2
R,φ1

R − φ2
L}, without spontaneously

breaking CP and charge U(1) symmetries.
On the other hand, if we include the spin U(1) symmetry

instead [no charge U(1)]

Us : δφs = θsK
−1S = qsθs(1, − 1)T , θs ∈ R, (B28)

then only the pin preserved perturbations (bosonic variable
l+φ) are allowed to add to the system (to condense). In this
case, there are just trivial phases as we can always condense
l+φ (B25).

(d) Fermionic SPT phases with symmetries {T ,CP}
From Table VI, the symmetry transformations for {T ,CP}

are given by

UT = σx, δφT = π (0,ηT)T ;

UCP = −σx, δφCP = π
(
n + ηT,CP

2
,n + ηCP + ηT,CP

2

)T

;

ηT, ηCP, ηT,CP, n = 0,1. (B29)

Without U(1) symmetries, the symmetry invariant pertur-
bations can be either (for any values of η’s)Sc.p.

edge (B22) orSs.p.

edge

(B23). Note that under T /CP the boson fields lT±φ ≡ φL ± φR

transform as

T (lT±φ)T −1 = lT± (−UTφ + δφT) + �φ
l±
T ,

(B30)
(CP)(lT±φ)(CP)−1 = lT± (UCPφ + δφCP) + �φ

l±
CP,

with the statistical phases �φ
l±
T = 0 mod 2π and �φ

l±
CP = π

mod 2π , respectively.
Label the phases with symmetry transformations (B29) as

[ηT,ηCP,ηT,CP ,n]. Then we want to study the group structure
of these phases protected by symmetry group G

sT,CP
sTsCP . As we

are interested, the nontrivial SPT phases, where the edge
cannot be gapped out without spontaneously breaking T or
CP symmetries, are found to be as follows.
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TABLE VIII. Symmetry groups for nontrivial fermionic nonchiral SPT phases and topological classification, by considering T , C, P ,
the combined symmetries, and/or U(1) symmetries for a 2 × 2 K matrix: {K,Q,S} = {σz,(1, − 1)T ,(1,1)T }. Results are based on symmetry
transformations described in Table VI. Parameters η’s shown here can be transferred to the signs S’s that characterize symmetry groups
in fermionic systems by Eq. (B7) (note that ηC, ηPT, and ηP,T, which are all zero, are not specified as parameters). Symmetry groups and
classification shown in this table have removed U(1) gauge redundancy. Table IV is constructed directly from this table.

Parameters Symm. groups for nontrivial fermionic nonchiral SPT phases Top.

Symm. (from Table VI) No U(1)’s U(1)c is present U(1)s is present class.

T ηT – 1 – Z2

C – – – – –
P ηP – – 0 Z2

CP ηCP – 0 – Z2

PT – – – – –
T C ηTC – – 1 Z2

CPT ηCPT 0 0 0 Z4

T ,C (ηT,ηT,C) (1,1) (1,1) (1,1) Z2

C,P (ηP,ηC,P) (0,0) (0,0) (0,0) Z2

P,T (ηP,ηT) (0,1) (0,1) (0,1) Z2

CP,PT (ηCP,ηCP,PT) (0,0) (0,0) (0,0) Z2

T ,CP (ηT,ηCP,ηT,CP) (1,0,1) (1,0,1) ↓ Z2

(0,0,0),(1,1,0) (0,0,0),(1,1,0) (0,0,0) Z4

C,PT ηC,PT 0 0 0 Z4

P,T C (ηP,ηTC,ηP,TC) (0,1,1) ↓ (0,1,1) Z2

(0,0,0),(1,1,0) (0,0,0) (0,0,0),(1,1,0) Z4

T ,C,P (ηT,ηP,ηT,C,ηC,P) (0,0,1,0),(1,0,0,0), (1,0,1,0) (1,0,1,0) Z2

(1,0,1,0),(1,0,1,1),
(1,1,1,0)

(0,0,0,0),(0,1,1,0), (0,0,0,0), (0,0,0,0), Z4

(1,0,0,1),(1,1,1,1) (1,0,1,1) (0,1,1,0)

(1) Z2 classes. When (ηT,ηCP,ηT,CP) = (1,0,1), which is
the symmetry group G+

−+(T ,CP), neither lT+φ = φL + φR or
lT−φ = φL − φR can condense to be invariant under both T and
CP . Thus [1,0,1,n] �= 0 (n can be 0 or 1) are nontrivial SPT
phase. However, for two copies of this theory with variables
{φk

L,φk
R,k = 1,2}, the edge can be gapped by condensing

{φ1
L − φ2

R,φ1
R − φ2

L} without spontaneously breaking any sym-
metries. So we have [1,0,1,n]2 = [1,0,1,n] ⊕ [1,0,1,n] = 0.
On the other hand, it is easy to show [1,0,1,0] ⊕ [1,0,1,1] =
0, which means [1,0,1,0]−1 = [1,0,1,1], and thus we have
[1,0,1,0] = [1,0,1,1], i.e., these two phases correspond to
the same nontrivial SPT phase. Therefore the topological
classification for G+

−+(T ,CP) forms a Z2 group, generated
by the element [1,0,1,0] = [1,0,1,1].

(2) Z4 classes. When (ηT,ηCP,ηT,CP) = (0,0,0)
[G+

++(T ,CP)] or (1,1,0) [G+
−−(T ,CP)], the family of

condensed bosonic fields [or the set of independent
elementary bosonic variables (94)] are not all invariant under
both T and CP for one, two, and three copies of the edge
theory. Only when we consider four copies of the theory the
edge can be gapped out without breaking any symmetry. Thus
both these symmetry groups have Z4 classification. To be
more specific, let us consider the case for symmetry group
G+

++(T ,CP). For G+
++(T ,CP), it is easy to show [0,0,0,n]

for n = 0,1 are both nontrivial SPT phases. Now consider two
copies of the edge theory with variables {φk

L,φk
R,k = 1,2},

and extended K matrix K2 = K ⊕ K = σz ⊕ σz. Then we

find that (either n = 0 or 1), for any independent Haldane
null vectors l1 and l2 (which satisfy lT1 K−1

2 l1 = lT2 K−1
2 l2 =

lT1 K−1
2 l2 = 0), there exists an elementary bosonic variable

vT
a φ = lTa φ/gcd(la,1,la,2,la,3,la,4), where φ = (φ1,φ2)T

and la ≡ a1l1 + a2l2 is some linear combination of l1
and l2, such that vT

a φ cannot condense to be invariant
under both T and CP . This means [0,0,0,n]2 for n = 0,1
are also nontrivial SPT phases. Then, if we put four
[0,0,0,n] states with edge variables {φk

L,φk
R,k = 1,2,3,4}

together, the edge can be gapped out without breaking
any symmetry, by localizing the following independent
bosonic variables {φ1

L + φ2
L + φ3

R + φ4
R,φ1

R + φ2
R + φ3

L +
φ4

L,φ1
L + φ1

R + φ3
L + φ4

R,φ1
L + φ1

R + φ3
R + φ4

L}, i.e., we
have [0,0,0,n]4 = 0 for n = 0,1. On the other hand,
we also have [0,0,0,0] ⊕ [0,0,0,1] = 0, which means
[0,0,0,0]−1 = [0,0,0,1], and thus we have [0,0,0,0]3 =
[0,0,0,1], from the above result. Therefore all different phases
of G+

++(T ,CP) form a Z4 group, generated by the element
[0,0,0,0] = [0,0,0,1]−1. Similar analysis can be applied to
G+

−−(T ,CP).
In addition to T and CP , if we now include the

charge U(1) symmetry (B26), then only the charge pre-
served perturbations (bosonic variables) are allowed to
add to the system (to condense). In this case, we find
topological phases protected by (1,0,1) [G+

−+(Uc,T ,CP)]
and by (1,0,0) [G−

−+(Uc,T ,CP)] are classified by Z2,
while those protected by (0,0,0) [G+

++(Uc,T ,CP)], by
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(1,1,0) [G+
−−(Uc,T ,CP)], by (0,0,1) [G−

++(Uc,T ,byCP)], and
by (1,1,1) [G−

−−(Uc,T ,CP)] are classified by Z4, as we apply
similar argument from previous cases. We can check the gauge
equivalence among these symmetry groups in the presence of
U(1)c symmetry (see Table VIII).

On the other hand, if we include the spin U(1) symmetry
(B28) instead [no charge U(1)], then only the spin preserved
perturbations (bosonic variables) are allowed to add to the
system (to condense). In this case, there is only Z4 classifi-
cation for nontrivial SPT phases, corresponding to symmetry
groups (0,0,0) [G+

++(Us ,T ,CP)], (0,1,1) [G+
+−(Us ,T ,CP)],

(1,0,1) [G+
−+(Us ,T ,CP)], and (1,1,0) [G+

−−(Us ,T ,CP)], re-
spectively. Again, there is gauge equivalence among these
symmetry groups in the presence of U(1)s symmetry (see
Table VIII).

APPENDIX C: PROOF OF TOPOLOGICAL CPT
THEOREM FOR INTERACTING NONCHIRAL SPT

PHASES IN TWO DIMENSIONS

The CPT symmetry W satisfies [Eqs. (97) and (98)]

Wφ(t,x)W−1 = −UWφ(−t, − x) + δφW,

UT
WKUW = K,

(
IN + UT

W

)
Q = 0,

(
IN + UT

W

)
S = 0,

(C1)

and

W2 = S
Nf

W : U 2
W = IN , (IN − UW)δφW = ηWπtN, (C2)

where we have defined an N -component vector tN ≡
(1,1, · · · ,1)T . We first show that, in the absence of any other
symmetries, there exists a CPT operator W0 such that the 1D
edge theory with any gapping interactions S int

edge is invariant
under W0. Remember this must be achieved in two steps: (i)
W0 preserves

S int
edge =

bosonic∑
�∈ZN

U�

∫
dtdx cos(�T Kφ + α�) (C3)

with any collections of bosonic vectors {�a} (i.e., π�T K� =
0 mod 2π ) satisfying Haldane’s null vector condition (93),
and (ii) edge states are gapped without breaking W0 sponta-
neously: all elementary bosonic variables {vT

a φ} [defined in
(94)] are invariant under W0.

For a bosonic system with generic K matrix K = IN/2

⊗ σx , a trivial CPT operator W0 can be chosen as
{ηW0 ,UW0 ,δφW0} = {0, − IN ,0}. Since for a bosonic system
the statistical phase factor is trivial (�φ�

W0
= 0 mod 2π ),

we have W0�
T Kφ(t,x)W−1

0 = �T Kφ(−t, − x) for any � ∈
ZN and thus any interactions S int

edge and the associated {vT
a φ}

are invariant under W0.

For a fermionic system with generic K matrix K = IN/2

⊗ σz, a trivial CPT operator W0 can be chosen as
{ηW0 ,UW0 ,δφW0} = {0, − IN ,tN/2 ⊗ χL} or {0, − IN ,tN/2 ⊗
χR}, where χL ≡ (π,0)T and χR ≡ (0,π )T . Due to the nontriv-
ial statistical phase factor that may arise in a fermionic system,
underW0 we haveW0�

T Kφ(t,x)W−1
0 = �T Kφ(−t, − x) +

�T KδφW0 + �φ�
W0

. Now we show that, for any bosonic vec-
tors � satisfying Haldane’s null vector criterion, �T KδφW0 +
�φ�

W0
is a multiple of 2π . Considering the case δφW0 =

tN/2 ⊗ χL, we have

�T KδφW0 = π (�1 + �3 + · · · + �N−1)

= π
∑
odd I

�I . (C4)

On the other hand, the statistical phase factor associated with
� is given by Eq. (89):

�φ�
W0

≡ 1

2i

∑
I<J

�I�J

{
W0(iKφ)IW−1

0 ,W0(iKφ)JW−1
0

]
−W0[(iKφ)I ,(iKφ)J ]W−1

0

}
= π

∑
I<J

�IQI�J QJ mod 2π

= π
∑
I<J

�I�J mod 2π, (C5)

where we have used Eq. (87) to arrive the second equality (and
remember W0 is antiunitary) and the fact that QI ’s are odd
for a fermionic system to arrive the third equality. Then, since
� satisfies �T K� = ∑

odd I �2
I − ∑

even I �2
I = 0 (and thus∑

odd I �I = ∑
even I �I mod 2), we have

1

π

(
�T KδφW0 + �φ�

W0

)
=

∑
odd I

�I +
∑
I<J

�I�J mod 2

=
(∑

odd I

�I

) ( ∑
even I

�I

)
+

∑
I<J

�I�J mod 2

= 1

2

⎡⎣(∑
odd I

�I

)2

−
( ∑

even I

�I

)2
⎤⎦ mod 2

= 0 mod 2. (C6)

Therefore, any gapping interactions S int
edge and the associated

{vT
a φ} [which are also Haldane’s null vectors from the

definition (94)] are invariant under W0. The argument also
applies similarly to another choice δφW0 = tN/2 ⊗ χR .

Now, if a system possesses some symmetries {Gi}, adding
the trivial CPT operator W0 to the system would not change
the stability condition of the 1D edge theory with symmetries
{Gi}, and thus the criterion for the corresponding 2D SPT
phase by {Gi} is the same as by {Gi} and W0. For a bosonic
system, algebraic relations between these discrete symmetries
are trivial and hence we do not need to specify the relations
between {Gi} and W0 (i.e., W0GiW−1

0 G−1
i = 1,∀i). For a

fermionic system, we must have SW0,Gi
= 1 if UT

Gi
KUGi

= K

and SW0,Gi
= −1 if UT

Gi
KUGi

= −K . To show this, we can

245111-24



CPT THEOREM AND CLASSIFICATION OF TOPOLOGICAL . . . PHYSICAL REVIEW B 90, 245111 (2014)

look at the identity equations for Gi (for clarity we drop index
i of Gi in the following discussion):

G2 = S
Nf

G : U 2
G = IN , (IN + αGUG)δφG = ηGπtN,

(W0G)2 = (SW0SGSW0,G)Nf : (UW0UG)2 = IN , (C7)

(IN − αGUGUW0 )(δφG + αGUGδφW0 ) = ηW0,GπtN,

where αG = 1 (−1) represents a unitary (antiunitary) operator
G. Note that in the above (and the following) equations all
phases are mod 2π . For {ηW0 ,UW0 ,δφW0} = {0, − IN ,tN/2 ⊗
χL}, (C7) gives

(IN + αGUG)δφW0 = (ηG + ηW0,G)πtN . (C8)

Now, since G satisfies UT
G KUG = εK (K = IN/2 ⊗ σz) with

either ε = 1 or −1, UG has the general form

UG =
{

VG ⊗ I2 or VG ⊗ σz for ε = 1

VG ⊗ σx for ε = −1
, (C9)

where VG is some N/2 × N/2 integer matrix with the con-
straint (IN/2 ± VG)tN/2 = 0 mod 2 [from (IN ± UG)Q = 0].
Substitute (C9) to (C8), we then obtain

ηG + ηW0,G =
{

0 mod 2 for ε = 1

1 mod 2 for ε = −1
, (C10)

which can be stated as SW0,G = ε. This completes the proof.
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