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Unusual transport properties deviating from the Fermi liquid are observed in ruthenates near a magnetic
quantum-critical point (QCP). To understand the electronic properties of the ruthenates near and away from
an antiferromagnetic (AF) QCP, I study the electronic structure and magnetic and transport properties for the
t2g-orbital Hubbard model on a square lattice in fluctuation-exchange approximation including Maki-Thompson
(MT) current vertex correction (CVC). The results away from the AF QCP reproduce several experimental results
of Sr2RuO4 qualitatively and provide new mechanisms about the enhancement of spin fluctuation at QIC-AF ≈
(0.66π,0.66π ), larger mass enhancement of the dxy orbital than that of the dxz/yz orbital, and nonmonotonic
temperature dependence of the Hall coefficient. Also, the results near the AF QCP explain the T -linear inplane
resistivity in Sr2Ru0.075Ti0.025O4 and give an experimental test on the obtained temperature dependence of the Hall
coefficient. I reveal spatial correlation including the self-energy of electrons beyond mean-field approximations
is essential to determine the electronic properties of the ruthenates. I also show several ubiquitous transport
properties near an AF QCP and characteristic transport properties of a multiorbital system by comparison with
results of a single-orbital system near an AF QCP.
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Many-body effects cause unusual transport properties devi-
ating from the Fermi liquid (FL) [1]. For example, the T -linear
inplane resistivity, ρab, and Curie-Weiss-like T dependence
of the Hall coefficient, RH, are observed in a quasi-2D
single-orbital system near an antiferromagnetic (AF) quantum-
critical point (QCP) [2]. Also, unusual transport properties are
observed in ruthenates (i.e., Ru oxides), quasi-2D t2g-orbital
systems: Sr2Ru0.075Ti0.025O4, located near an AF QCP, shows
the T -linear ρab [3]; Ca2−xSrxRuO4 around x = 0.5, located
near a ferromagnetic QCP, shows the T 1.4 dependence of
ρab and Curie-Weiss-like T dependence of RH [4]. Note that
Sr2RuO4 shows the FL behaviors [5,6].

The origins of these unusual transport properties of the
ruthenates are unclear, although its understanding leads to a
deeper understanding of roles of electron correlation and each
orbital in transport properties.

To clarify these origins, we should understand roles of
electron correlation and each t2g orbital. In particular, it is
necessary to reveal effects of the self-energy of electrons
and electron-hole four-point vertex function due to electron
correlation. These will give considerable effects in multiorbital
systems since these play important roles in the single-orbital
Hubbard model on a square lattice near an AF QCP [7]
(referred to as the single-orbital case); the characteristic T

and k dependence of quasiparticle (QP) damping causes the
T -linear ρab, and the characteristic T and k dependence of
Maki-Thompson (MT) current vertex correction (CVC) due to
MT four-point vertex function [8] causes the Curie-Weiss-
like T dependence of RH; these characteristic dependence
arise from the Curie-Weiss-like T dependence of the spin
susceptibility at k = (π,π ).

In this paper, I reveal the roles of electron correlation
and each t2g orbital in several electronic properties of the
ruthenates near and away from the AF QCP and achieve
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qualitative agreement with experiments [3,5,6]. I show the
importance of spatial correlation including the self-energy of
electrons beyond mean-field approximations (MFAs). Also, I
show several similarities and differences between the transport
properties of the present case and the single-orbital case [7]
and propose the emergence of the orbital-dependent transport
in other systems.

To describe the electronic structure of the ruthenates, I use
the t2g-orbital Hubbard model on a square lattice,
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∑
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with ε11/22(k) = −�t2g

3 − 2t1 cos kx/y − 2t2 cos ky/x − μ,

ε12/21(k) = 4t ′ sin kx sin ky , ε33(k) = 2�t2g

3 − 2t3(cos kx +
cos ky) − 4t4 cos kx cos ky − μ, ε13/23/31/32(k) = 0, J ′ = JH,
and U ′ = U − 2JH. Hereafter, I label the dxz, dyz, and dxy

orbitals 1, 2, and 3, respectively, fix the energy unit at eV, and
set � = c = e = μB = kB = 1.

The parameters in εab(k) are chosen so as to repro-
duce the electronic structure of Sr2RuO4 obtained in local-
density approximation (LDA) [9]: I set (t1,t2,t3,t4,t ′,�t2g

) =
(0.675,0.09,0.45,0.18,0.03,0.13) and choose μ so that the
total occupation number is four. In this choice, the total band-
width is about 4, being twice as large as the experimentally
estimated value of U [10], and the occupation numbers of
the dxz/yz and dxy orbitals are nxz/yz = 1.38 and nxy = 1.25.
The inconsistency of nxz/yz and nxy with the experimental
values [11] (nxz/yz = nxy = 1.33) arises from the quantitative
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FIG. 1. (Color online) (a)–(c) χS
aaaa(q,0) for several U with insets showing the static spin susceptibility, χS(q,0) = ∑

a,b χS
aabb(q,0), and

(d) U or (e) JH/U dependence of mass enhancement factor, za(k)−1 = 1 − ∂�
(R)
aa (k,ω)
∂ω

|ω→0.

difference that the Fermi surface (FS) of the dxy orbital in the
LDA [9] is closer to the inner sheet in kx = ky line.

The interaction term is treated by fluctuation-exchange
(FLEX) approximation [12,13] that bubble and ladder dia-
grams only for electron-hole scattering processes are con-
sidered. This is suitable for describing electronic properties
for moderately strong interaction at low T since this is
a perturbation theory beyond MFAs and can treat spatial
correlation appropriately [12]. By using the procedure [13]
for a paramagnetic phase and taking 642 meshes of the
Brillouin zone and 2048 Matsubara frequencies, I solve the
self-consistent equations by iteration until the relative error of
the self-energy is less than 10−4.

The magnetic property and electronic structure of Sr2RuO4

can be well described in the FLEX approximation. First,
enhancing the spin susceptibility at QIC-AF = ( 21

32π, 21
32π ) ≈

(0.66π,0.66π ) [Figs. 1(b) and 1(c)] agrees with the experiment
in Ref. [14]; in contrast to MFAs [9,15], its main orbital
comes from the dxy orbital. This enhancement arises from
the combination of the self-energy of electrons beyond MFAs
and orbital-cooperative spin fluctuation: the self-energy causes
merging of the nesting vectors for the dxz/yz and dxy orbitals
around QIC-AF due to the FS deformation for the dxy orbital and
mode-mode coupling for spin fluctuations [Figs. 1(a)–1(c)];
this merging leads to enhancing the nondiagonal term of spin
fluctuation at QIC-AF between these orbitals; this and diagonal
terms cause the orbital-cooperative enhancement of spin
fluctuation at QIC-AF. Second, the larger mass enhancement
[11] of the dxy orbital than that of the dxz/yz orbital is naturally
reproduced due to the stronger (nonlocal) spin fluctuation
of the dxy orbital [Figs. 1(d) and 1(e)]. The agreement with

experiment is better than that in dynamical-mean-field theory
(DMFT) [16]. Third, the values of nxz/yz and nxy are improved
in comparison to the LDA values [9]; e.g., at (T ,U,JH) =
(0.006,1.8,0.3), these are (nxz/yz,nxy) = (1.36,1.28). This
improvement is similar to that of the DMFT [16].

Then, I derive ρab and RH in the weak-field limit by
using the Kubo formulas and considering only the most
divergent terms [17] with respect to the QP lifetime [18]. This
treatment is correct in the FL and remains reasonable in the
metallic phases where a perturbation theory works [19]. In
this treatment, ρab = σ−1

xx and RH = σxy/Hσ 2
xx (σyy = σxx is

used) are determined by
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Here I use
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FIG. 2. (Color online) (a) ρab against T 2 at U = 1.8, (b) ρab against T at U = 2.1, (c) χS( QIC-AF,0) against T at U = 2.1 and 1.8, (d) σxx

and orbital components with the MT CVC against T at U = 2.1, (e) the QP damping against k at (T ,U ) = (0.006,2.1), (f) RH against T at
U = 2.1 and 1.8, and σxy/H and orbital components (g) without or (h) with the MT CVC against T at U = 2.1. The dashed line in panel (e)
corresponds to T = 0.006.

renormalized group velocity,
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∂kν
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ab (k)

∂kν

, (4)

where �
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renormalized current,
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where J (0)
dcCD(k,k′) is electron-hole four-point vertex function

being irreducible with respect to a pair of the retarded and
advanced Green’s functions. ��

(CVC)
ν;dc (k) is vital to satisfy

conservation laws [20] since it plays the similar role to the
backflow correction.

To calculate �ν;dc(k), I use MT four-point vertex function
in the FLEX approximation,

J (0)
abcd (k,k′) = 2i

(
coth

ε − ε′

2T
+ tanh

ε′

2T

)
ImV

(R)
acbd (k − k′),

(7)

where V
(R)
acbd (q) is retarded effective interaction in this approx-

imation [13]. This treatment will be sufficient for a qualitative
discussion since the neglected terms [21], being of higher
order with respect to the QP damping, are much smaller than
the MT term in the single-orbital case [7] and the similar
result will hold in the present case. Thus, I believe the FLEX
approximation including the MT CVC is suitable to analyze
the transport properties of the metallic phases not far away
from the AF QCP.

We turn to results of ρab and RH. Several quantities as a
function of ε are calculated by the Padé approximation [22]

using the data for the lowest four Matsubara frequencies. The ε

and ε′ integrations are done by discretizing the interval 0.0025
and replacing the upper and lower values by 0.1 and −0.1.
�ν;dc(k) is calculated by iteration until its relative error is less
than 10−4; the singularity of the principal integral for the term
containing coth ε−ε′

2T
is removed by the ε′ derivatives of its

numerator and denominator by using ImV
(R)
dCcD(q,0) = 0.

We first compare ρab at U = 1.8 and 2.1 in Figs. 2(a) and
2(b); hereafter, I consider U = 2.1 (U = 1.8) case near (away
from) the AF QCP since χS( QIC-AF,0) shows the Curie-Weiss-
like (Pauli paramagnetic) T dependence [Fig. 2(c)]. ρab with or
without the MT CVC is roughly proportional to T 2 at U = 1.8
and to T at U = 2.1. Thus, the power of the T dependence of
ρab is determined by the self-energy and becomes one near the
AF QCP.

To reveal the role of each t2g orbital in ρab, orbital
components of σxx with the MT CVC at U = 2.1 are shown
in Fig. 2(d); the component of the dxz and dyz orbitals or
the dxy orbital is calculated from the equation that

∑3
{a}=1

in Eq. (2) is replaced by
∑2

{a}=1 or
∑

{a}=3, respectively.
The main contribution to σxx (σyy) comes from the dxz (dyz)
orbital in contrast to that of the spin fluctuation. This result
arises from the smaller QP damping and larger renormalized
group velocity of the dxz/yz orbital than those of the dxy

orbital. Note that similar results are obtained at U = 1.8 (not
shown).

In addition, the QP damping of the dxz orbital around k =
QIC-AF becomes a hot spot at U = 2.1, although that around
k = ( 23

32π,0) ≈ (0.72π,0) remains a cold spot [Fig. 2(e)]. [At
the cold (hot) spot, the QP damping is (is not) much smaller
than temperature considered.] Thus, the origin of the T -linear
ρab at U = 2.1 is the hot-spot structure of the QP damping
of the dxz/yz orbital around k = QIC-AF. I emphasize that this
T -linear ρab is not due to a breakdown of perturbation theory.

We next compare RH at U = 2.1 and 1.8 in Fig. 2(f). There
are two main and four secondary results. The main results
are, first, that the peak of RH at T = 0.007 is induced by
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FIG. 3. (Color online) Schematic pictures of the currents of (a) the dxz and (b) the dxy orbital connected by the MT CVC, (c) σxy/H and
(d) σxx against T at U = 2.1 for several special cases whose data are obtained by using part of ImV

(R)
acbd (q) as the CVC, (e) σxy(k)/H with the

MT CVC against k at (T ,U ) = (0.006,2.1), and (f) the difference between the dxz + dyz components of σxy(k)/H with and without the MT
CVC against k at (T ,U ) = (0.006,2.1).

the MT CVC at U = 2.1 and 1.8; second, that the Curie-
Weiss-like T dependence of RH is absent at U = 2.1, although
χS( QIC-AF,0) shows the Curie-Weiss-like behavior. The first
secondary result is that the difference between RH without
the MT CVC at U = 2.1 and 1.8 is small, although the QP
dampings are different. This arises from the small effects of
the QP damping since its effects on σxy/H and σ 2

xx are nearly
canceled out. The second is that the values of these RH are
nearly zero. The third is that at U = 2.1 and 1.8, the MT
CVC causes the positive enhancement of RH in the range of
0.006 � T � 0.012 and the negative enhancement of RH in
the range of 0.014 � T � 0.02. The fourth is that the positive
enhancement at U = 2.1 is larger than that at U = 1.8, while
the negative enhancement at U = 2.1 is of the same order of
magnitude as that at U = 1.8.

To understand the two main and last three secondary
results, I present orbital components of σxy/H , calculated
in a similar way to σxx , without or with the MT CVC at
U = 2.1 in Fig. 2(g) or 2(h); the following results (i)–(iv)
remain qualitatively the same at U = 1.8 (not shown). (i) The
sign of the component of the dxz and dyz orbitals is minus,
and that of the dxy orbital is plus. (ii) The components of
the dxz and dyz orbitals and the dxy orbital without the MT
CVC are nearly the same in magnitude. Thus, the nearly
zero RH without the MT CVC arises from the comparable
and opposite-sign components of these orbitals. (iii) The
magnitude decrease for the dxz/yz orbital due to the MT
CVC is larger than that for the dxy orbital in the range of
0.006 � T � 0.012, while the magnitude decrease for these
t2g orbitals are very small in the higher-T region. Combining

this with the effect of the MT CVC on σxx , we find that
the positive enhancement of RH in the low-T region arises
from the combination of the decrease of σ 2

xx and positive
enhancement of σxy/H due to the MT CVC, and that the
negative enhancement of RH in the high-T region arises from
the combination of the decrease of σ 2

xx due to the MT CVC
and the negative sign of σxy/H with the MT CVC. In addition,
the larger positive enhancement of RH at U = 2.1 than at
U = 1.8 arises from the larger reduction of σ 2

xx due to the MT
CVC, and the small magnitude difference between the negative
enhancement at U = 2.1 and 1.8 arises from the small effects
of the MT CVC on σxx and σxy/H at high T . (iv) The
component of the dxz/yz orbital with the MT CVC shows
the similar peak to that of RH, although such peak does
not appear in the total component. [Note that no peak in
σxy/H does not contradict with the peak in RH since RH is
(σxy/H ) × σ−2

xx .] This result implies the peak and the absence
of the Curie-Weiss-like enhancement of RH are related to the
orbital dependence of the MT CVC.

Then, I analyze how the MT CVC affects the current of
each orbital. Combining Eqs. (4)–(7) with the facts in the
present model that �(0)

ν;aa(k) are much larger than �
(0)
ν;ab(
=a)(k)

due to the larger intraorbital hopping integrals and that the
dominant terms of ImV

(R)
acbd (q) are ImV

(R)
aabb(q) due to stronger

spin fluctuation than other fluctuations, we find the dominant
effects of the MT CVC in the present model are the connections
between the intraorbital terms of the currents at k and k′

near the Fermi level. In particular, since the main terms
of ImV

(R)
aabb(q) are the low-ω terms at q = QIC-AF and the

secondary are the low-ω terms at q = Q′
IC-AF = (π, 21

32π ) ≈
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(π,0.66π ) or Q′′
IC-AF = ( 21

32π,π ) ≈ (0.66π,π ) (not shown), we
see from Figs. 3(a) and 3(b), first, that the main effects are the
magnitude decreases of the currents of the dxz/yz and dxy or-
bitals at k = QIC-AF near the Fermi level, arising from the low-
ω terms of ImV

(R)
1111/2222( QIC-AF,ω) and ImV

(R)
3333( QIC-AF,ω),

respectively; second, that the secondary effects are the
magnitude decrease of the current of the dxz [dyz] orbital
at k = ( 23

32π,0) ≈ (0.72π,0) [(0, 23
32π ) ≈ (0,0.72π )] due to

the low-ω terms of ImV
(R)

1111( Q′′
IC-AF,ω) [ImV

(R)
2222( Q′

IC-AF,ω)]
and the angle changes of the current of the dxy orbital at
k = ( 7

8π,0) ≈ (0.88π,0) and (0, 7
8π ) ≈ (0,0.88π ) due to the

low-ω terms of ImV
(R)

3333(q,ω) at q = Q′′
IC-AF and Q′

IC-AF,
respectively. In addition to these main and secondary effects,
the MT CVCs arising from the low-ω terms of ImV (R)

aaaa(q)
whose q slightly differs from QIC-AF or Q′

IC-AF or Q′′
IC-AF

cause the angle changes of the corresponding currents near the
Fermi level.

Among these effects, the most important effect on RH

arises from the magnitude decrease of the current of the dxz/yz

orbital around QIC-AF near the Fermi level. One of the facts is
that the T dependence of σxy/H and σxx with the MT CVC
are almost reproduced by using the MT CVC arising from
ImV

(R)
1111/2222(q) [Figs. 3(c) and 3(d)]. This orbital dependence

arises mainly from the smaller QP damping of the dxz/yz

orbital than that of the dxy orbital since the kernel of the MT
CVC for the dxz/yz [dxy] orbital is inversely proportional to
the QP damping of the dxz/yz [dxy] orbital and proportional
to ImV

(R)
1111/2222(q) [ImV

(R)
3333(q)]. The other is that the most

drastic effect of the MT CVC on σxy/H is the positive
enhancement of the dxz + dyz component of σxy(k)/H around
k = QIC-AF, while the secondary is the negative enhancement
of that around k = ( 11

16π,π
4 ) ≈ (0.69π,0.25π ) and (π

4 , 11
16π ) ≈

(0.25π,0.69π ) [Figs. 3(e) and 3(f)].
From those results of the effects of the MT CVC, we find

the peak of RH with the MT CVC arises from the peak
of the dxz + dyz component of σxy/H as a result of the
competition between the positive enhancement around k =
QIC-AF and negative enhancement around k ≈ (0.69π,0.25π )
and (0.25π,0.69π ) due to the MT CVC arising from spin
fluctuations of the dxz/yz orbital.

In addition, combining the orbital dependence of the MT
CVC with the equations of the dependence of σxx and σxy/H

on the leading order of the angle change, �ϕab(k) = ϕab(k) −
ϕ

(0)
ab (k), which are, respectively,

∣∣�(0)
ba (k)

∣∣ cos ϕ
(0)
ba (k)|�dc(k)| cos ϕ

(0)
dc (k)

[
1 − �ϕdc(k)2

2

]
(8)

and

|�ba(k)| cos ϕ
(0)
ba (k)|�dc(k)| cos ϕ

(0)
dc (k)

∂ϕdc(k)

∂ky

+ |�ba(k)| sin ϕ
(0)
ba (k)

∂ϕba(k)

∂ky

|�dc(k)| sin ϕ
(0)
dc (k), (9)

we find the absence of the Curie-Weiss-like enhancement
of RH near the AF QCP arises from the absence of the
angle change of the current due to the main term of the MT
CVC. Note that although the Curie-Weiss-like T -dependent
spin fluctuation leads to the Curie-Weiss-like T dependence

of the magnitude and angle changes of the current through
ImV

(R)
aabb(q) in the MT CVC, the effects of its T dependence

of the magnitude change on σxy/H and σ 2
xx are nearly

canceled out, while the Curie-Weiss-like T dependence of the
angle change appearing in σxy/H causes the Curie-Weiss-like
enhancement of RH.

Before comparison with experiment, I remark on main
similarities and differences between the present case and the
single-orbital case [7] and propose the realization of the similar
transport properties in other systems.

For ρab, the similarity is the T -linear dependence near the
AF QCP, and the difference is the difference between the main
orbitals for ρab and spin fluctuation. This difference arises from
the facts that σxx is inversely proportional to the QP damping
within the leading order, and that the strong spin fluctuation
enhances the QP damping. Since these facts hold in metallic
phases of other multiorbital systems, this orbital-dependent
transport is realized in other systems. It should be noted that
due to this difference in the main orbital, the criticality of ρab

(i.e., the power of its T dependence) is not always connected
with the criticality of fluctuation (i.e., the kind of the QCP)
in multiorbital systems. In the present case, these criticalities
become the same due to orbital-cooperative enhancement of
spin fluctuation at QIC−AF.

For RH, the similarity is the considerable effects of the
MT CVC on its low-T values, and the differences are the
absence of the Curie-Weiss-like T dependence and the peak
without the peak of the T dependence of the spin susceptibility.
Since the former difference is related to the k dependence of
the main term of the MT CVC, as explained, this finding
gives another ubiquitous mechanism for the T dependence
of RH near an AF QCP: the Curie-Weiss-like T -dependent
spin fluctuation, characterizing the AF QCP, does not cause
the Curie-Weiss-like T dependence of RH if the directions
of the currents connected by the MT CVC arising from
this spin fluctuation are antiparallel. This will be realized
in some single-orbital or multiorbital systems near an AF
QCP. In addition, the peak of RH will be realized in some
metallic phases satisfying four conditions (e.g., some transition
metal oxides and organic conductors): electron correlation is
strong; quasi-1D orbitals form the conducting bands; there
are opposite-sign components of σxy(k)/H of these orbitals;
there are at least two nesting vectors for these orbitals, each
of which affects each component of σxy(k)/H through the
MT CVC arising from the corresponding spin fluctuation.
These conditions are necessary for the competition between the
opposite-sign enhancement of these opposite-sign components
of σxy(k)/H of the quasi-1D orbitals due to the MT CVC
arising from spin fluctuations of these orbitals.

Finally, we compare the results with experiment. The results
with the MT CVC at U = 1.8 reproduce experimental results
[5,6] of Sr2RuO4, the T -square ρab, monotonic increase of
RH in 0.007 � T � 0.02, crossing of RH over zero, and peak
of RH at T ∼ 0.007. (Although those [5,6] are reproduced in
relaxation-time approximation [23], neglecting all the CVCs,
by choosing some parameters of the QP damping, I do not use
any such parameters.) Since the small quantitative difference
in the value of T where RH crosses over zero (which is
0.014 in an experiment [6]) is related to the difference in
the occupation numbers, an analysis by the model having
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the same occupation numbers is a future work. Then, the
results with the MT CVC at U = 2.1 can explain the T -linear
ρab [3] in Sr2Ru0.075Ti0.025O4. Since the measurement of RH

in Sr2Ru0.075Ti0.025O4 has been restricted to a low-T value
[24], the T dependence of RH obtained near the AF QCP
can be tested in further measurement if the main effect of Ti
substitution can be assumed to make the system near the AF
QCP compared with Sr2RuO4.

In summary, I have studied several electronic properties of
the ruthenates near and away from the AF QCP in the FLEX
approximation including the MT CVC. I have found, first,
that the enhancement [14] of spin fluctuation at QIC-AF arises
from the combination of the self-energy of electrons beyond
MFAs and orbital-cooperative spin fluctuation; second, that
the larger mass enhancement [11] of the dxy orbital arises
from the stronger spatial correlation of that orbital; third,
that the nonmonotonic T dependence of RH [6] arises from
the competition between the opposite-sign enhancement of
σxy(k)/H of the dxz and dyz orbitals around k = QIC-AF and
k ≈ (0.69π,0.25π ) and (0.25π,0.69π ) due to the MT CVCs
arising from spin fluctuations of these orbitals. Also, I have
explained that the T -linear ρab of Sr2Ru0.075Ti0.025O4 [3] can

be understood as the hot-spot structure of the QP damping
of the dxz/yz orbital around k = QIC-AF. I have proposed,
first, that the T dependence of RH near the AF QCP can
be experimentally tested in Sr2Ru0.075Ti0.025O4 if the main
effect of Ti substitution can be assumed to tune the system to
the vicinity of the AF QCP; second, that multiorbital systems
in a metallic phase show the inplane transport whose main
orbital differs from that for spin fluctuation; third, that some
strongly correlated electron systems having quasi-1D orbitals
show the peak of RH at low T without the peak of the T

dependence of the spin susceptibility; fourth, that the absence
of the Curie-Weiss-like enhancement of RH near an AF QCP is
realized in some single-orbital or multiorbital systems where
the angle change of the current due to the main term of the MT
CVC is absent.
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