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Localized in-gap state in a single-electron doped Mott insulator
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Motivated by the recent atomic-scale scanning tunneling microscope (STM) observation for a spatially localized
in-gap state in an electron doped Mott insulator, we evaluate the local electronic state of the Hubbard model on
the square lattice using the cluster perturbation theory. An in-gap state is found to exist below the upper Hubbard
band around the dopant lattice site, which is consistent with the STM measurements. The emergence of this local
in-gap state is accompanied with a rapid reduction of the double occupancy of electrons. A similar in-gap state
is also found to exist on the triangular lattice. These results suggest that the in-gap state is an inherent feature of
Mott insulators independent of the lattice structure.
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I. INTRODUCTION

The mechanism underlying high-Tc superconductivity in
cuprates remains one of the most challenging and fundamen-
tal problems in condensed matter physics [1]. All cuprate
superconductors have a layered structure made up of one or
more CuO2 planes. Their parent compounds have one unpaired
electron per Cu unit cell, which constitutes a Mott insulating
ground state with an antiferromagnetic (AF) long range order
[2]. By doping holes or electrons to CuO2 planes, the AF order
is suppressed and a superconducting phase emerges above
a critical doping concentration. The evolution from the AF
Mott insulating phase to the superconducting phase induced
by doping is highly nontrivial [1]. A thorough investigation
on the charge and spin dynamics of doped Mott insulators is
believed to be the key for the understanding of extraordinary
phenomena observed in high-Tc superconductors, such as the
pseudogap effect.

The dynamics of a single hole in an antiferromagnetic Mott
insulator has been extensively studied using the self-consistent
Born approximation [3–8], finite-size exact diagonalization
[9–11], and quantum Monte Carlo [12,13] methods, based on
the t-J -type model. It was predicted that the single-particle
spectrum consists of a sharp coherent peak, corresponding to
a quasiparticle excitation, and an incoherent background. But
this sharp coherent peak was not observed in the spectrum
of electrons measured by angle-resolved photoemission spec-
troscopy on Sr2CuO2Cl2 [14] and Ca2CuO2Cl2 [15,16]. To
reconcile the difference between theory and experiments, two
kinds of scenarios were proposed to explain why the sharp
quasiparticle peak is absent. One is to attribute this absence of
sharp peak as an extrinsic effect induced by electron-phonon
coupling [17]. The other regards this as an intrinsic effect
resulting from a self-localization of doped holes in an AF
background which smears out the coherent peak. From the
self-consistent mean-field approximation, indeed it was found
that the charge excitations are self-localized in a staggered AF
ordered state [18–20]. This kind of charge self-localization
was also predicted to exist in a single-hole Hubbard model
by considering the nonperturbative phase string effect [21] or
in the underdoped Mott insulator when the chemical potential
lies within the pseudogap [22].

Recently local electronic structures in both doped and
undoped Mott insulators were measured by STM [23,24].
In particular, the full electronic spectrum across the Mott-
Hubbard gap and the spatially uniform Hubbard bands were
observed in the recent STM study for the Mott insulator
Ca2CuO2Cl2 [24]. Moreover, a broad local in-gap state whose
energy is below the upper Hubbard band was observed around
a Cl defect on the surface of Ca2CuO2Cl2, which is effectively
a single electron doped Mott insulator [24].

To understand the STM experimental results, we calculate
the local spectral function of electron for the Hubbard model
without and with one electron doping on both square and
triangular lattices using the cluster perturbation theory (CPT)
[25,26]. We find that, apart from the Mott gap, a local in-gap
state emerges below the upper Hubbard band. The total spectral
weight of this in-gap state shows a rapid increase with the
Hubbard interaction in a regime where the double occupation
number of electrons shows a sharp reduction. Our result
demonstrates that the in-gap state is an inherent feature of
Mott insulators. For the one-band Hubbard model studied
here, the spectral weights of the in-gap states come from
both the upper and lower Hubbard bands, which shows a
discrepancy with the experiments [24]. Based on the analysis
of the three-band Hubbard model, we point out that the energy
gap measured by the STM [24] is actually the gap between the
upper Hubbard band and the charge transfer band of oxygen.
Thus, the discrepancy in the spectral transfers is reconciled.

II. MODEL AND METHODS

The Hubbard model is defined by the Hamiltonian

H = −t
∑
〈i,j〉σ

c
†
iσ cjσ + U

∑
i

ni↑ni↓, (1)

where c
†
iσ is a creation operator of electron with spin σ on site i

and niσ = c
†
iσ ciσ . 〈i,j 〉 represents a pair of the nearest neighbor

sites. The hopping constant t is set to 1 in the discussion below.
The CPT is based on the exact diagonalization of finite

clusters and the intercluster coupling is taken as perturbation
[25–33]. It can be used to treat a system with much larger
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FIG. 1. (Color online) Tilings of the square lattice with (a) 9-
site and (b) 13-site clusters. The triangles on the sites schematically
illustrate the antiferromagnetic spin configuration.

lattice size than the exact diagonalization. In this method, the
lattice is divided into a superlattice of decoupled clusters and
each cluster contains N sites (as shown in Fig. 1 for example).
In this superlattice, a lattice site is denoted by two indices
(α,m), where α is the index of the cluster and m is the lattice
coordinate. The Hamiltonian for the αth cluster Hα is first
diagonalized using the Lanczos algorithm to obtain its ground-
state energy Eα

0 and the corresponding wave function |�α〉.
From this, the single-particle Green’s function is calculated,

G′′α
mσ,m′σ ′(z) = 〈�α|cα

mσ

1

z − Hα + Eα
0

c
α†
m′σ ′ |�α〉

+ 〈�α|cα†
mσ

1

z − Hα − Eα
0

cα
m′σ ′ |�α〉, (2)

where z is a complex frequency.
The hopping between different clusters is taken as pertur-

bation. We evaluate the local spectrum of the electron in real
space. In this case, the Green’s function for the whole system,
which is a 2Ns × 2Ns matrix with Ns the number of the whole
lattice sites, can be expressed as

G−1
cpt (z) = G′−1(z) − V, (3)

where the matrix elements of G′(z) and the intercluster hopping
term V are defined by

G′
αmσ,βm′σ ′(z) = δαβG′′α

mσ,m′σ ′(z), (4)

Vαmσ,βm′σ ′ = −tδα �=βδ〈αm,βm′〉δσσ ′, (5)

where 〈αm,βm′〉 (α �= β) means that (α,m) and (β,m′) are two
intercluster nearest-neighbor sites. The local density of states
(LDOS) at site i = (α,m) is given by the imaginary part of the
CPT Green’s function,

Ai(ω) = − 1

π
lim

η→0+

∑
σ

Im Gcpt,iσ,iσ (ω − μ + iη), (6)

where μ is the chemical potential, and η is a broadening
parameter which is used to smear out the finite-size effects.
We determine its value by the average level spacing of the
energy band in the noninteracting limit.

In our calculation, a standard η = 0.24 is taken (calcula-
tions with η from 0.15 to 0.35 yield qualitatively the same
results). The whole system contains 6 × 6 clusters. Periodic
boundary conditions are assumed. The parent compound is at

half-filling. The single electron is doped into one of the 36
clusters, which contains one more electron than other clusters
and is denoted as the cluster γ . The results presented below
are obtained with U = 10 if not explicitly specified.

For the application of the method presented above, some
care must be taken concerning the staggered ordering. On the
square lattice, the ground state of the half-filled Hubbard model
has the antiferromagnetic Neel order [1]. In our calculations,
some cluster tilings, such as the 9-site and 13-site cluster
tilings shown in Fig. 1, are not consistent with the Neel
sublattice ordering if all clusters are treated identically. In
the antiferromagnetic ordered state, the spin alignments are
different between any two neighboring clusters in these cases.
To reconcile with the long-range antiferromagnetic Neel order,
we have swaped the spin orientation for any two nearest-
neighbor clusters and taken the following transformation for
the Green’s functions obtained by the exact diagonalization:
G′

mσ,m′σ ′ = Gmσ ′,m′σ .

III. RESULTS AND DISCUSSIONS

Figure 2 shows the results with the 12-site cross cluster
tiling. By considering the symmetry of the cluster, we find that
the sites with the same color shown in Fig. 2(a) are equivalent
to each other and have identical spectra. Figure 2(b) shows the
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FIG. 2. (Color online) (a) A 12-site cluster, as enclosed by the red
dashed lines, on the square lattice. The black and gray lines denote the
intra- and intercluster hoppings, respectively. (b) and (c) The LDOS
within the clusters without electron doping (i.e., at half-filling) and
with one electron doping, respectively. The color lines indicate the
results on the sites with the same colors in (a). The LDOS on the
red sites in the undoped system is also shown with a gray line in (c)
for comparison. (d) The difference � between the LDOS with and
without electron doping on the corresponding color sites. (e) � on
sites indicated by color dots in the inset with an on-site attractive
potential v = −0.08 on the red site. The gray arrows in (d) and (e)
indicate the peak positions of the LDOS for the lower and upper
Hubbard bands on the red site at half-filling.
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LDOS on the red and blue sites at half-filling. The LDOS does
not distribute uniformly among the lattice sites within a cluster.
This is an artifact of the approximation used in the CPT since
the intra- and intercluster hoppings are treated differently in
this theory. But the gap values between the lower and upper
Hubbard bands, and the peak positions indicated by the gray
arrows in Figs. 2(d) and 2(e) are the same on all sites within
a cluster. This is because the on-site Hubbard interaction is
treated rigorously in the CPT.

Now let us consider the case of one electron doping.
Figure 2(c) shows the LDOS for the one-electron doped
Hubbard model on the red and blue sites within the doped
cluster [for comparison with the result shown in Fig. 2(b),
the zero point of energy is rescaled to the middle of the Mott
gap]. A broad in-gap state emerges below the upper Hubbard
band on the central lattice sites within this doped cluster. The
emergence of the in-gap state is accompanied by a reduction
in the spectral weights of both the upper and lower Hubbard
bands. Figure 2(d) shows the difference in the LDOS on the
same lattice sites between the γ cluster and a cluster α which
is far away from the γ cluster,

�(ω) = Aγm(ω) − Aαm(ω). (7)

It shows clearly that the in-gap state results mainly from the
spectral transfer from the lower Hubbard band. The weight of
this broad in-gap state drops quickly on the site moving away
from the center of the cluster, indicating that this in-gap state
is highly localized around the doping center.

Because of the lattice symmetry, the four red sites have the
same LDOS. To simulate the recent STM experimental result
for Ca2CuO2Cl2 with one Cl vacancy [24], we introduce a
small attractive potential v = −0.08 to one of the four central
sites in the γ cluster [i.e., the site in red in the inset of Fig. 2(e)].
As expected, the four central sites in this cluster are no longer
equivalent to each other. The in-gap state is well localized
around the site with an attractive potential. This is consistent
with the experimental observation [24].

This localized feature of the in-gap state has also been found
when several different cluster sizes and tilings are used on the
square lattice. Figure 3 shows different cluster tilings, which
consist of 8, 9, 12 (with rectangle shape other than cross shape),
and 13 sites on each cluster (left panel), and the difference
in the LDOS � on the corresponding sites (right panel). In
all cases, the in-gap states emerge below the upper Hubbard
band and are localized around the electron doping centers.
Figure 4(a) shows the maximal height of the difference in the
LDOS � for the in-gap states on different sites as a function
of the distance R from the center of the doped cluster. We find
that the in-gap states are basically localized and the results
obtained on different cluster tilings show qualitatively similar
behavior.

The result can be understood from the Hubbard model in the
localized limit U/t → ∞. In a N -site system at half-filling,
the total spectral weights for both the lower and upper Hubbard
bands are equal to N . Upon one-electron doping, the doped site
is doubly occupied. This eliminates simultaneously one singly
occupied state and one channel for adding an electron to a
site which is already occupied. Thus the total spectral weights
for both the lower and upper Hubbard bands are reduced by 1
and the missing spectral weight is transferred to the bottom of
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FIG. 3. (Color online) Left panel: Tilings of clusters with differ-
ent sizes and shapes. (a), (c), (e), and (g) have respectively 8, 9, 12,
and 13 sites in each cluster, as enclosed by the red dashed lines,
on the square lattice. Right panel: Difference in the LDOS � on
the corresponding colored sites in the left panel. The gray arrows
indicate the peak positions in the LDOS for the lower and upper
Hubbard bands without doping.

the upper Hubbard band just below the Fermi level [34–36],
consistent with our calculation. In the STM measurement [24]
on Ca2CuO2Cl2, the spectral weight of the in-gap state seems
to come mainly from the upper Hubbard band. To reconcile
this discrepancy between our calculation and the experimental
observation, we point out that the energy gap measured by
the STM [24] is actually the gap between the upper Hubbard
band and the charge transfer band of oxygen whose energy
lies between the lower and upper bands, as illustrated by
the green spectral weight in Fig. 4(b). Thus the transferred
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FIG. 4. (Color online) (a) Maximal height of the in-gap LDOS
as a function of the distance R from the center of the doped cluster.
The symbols with different colors represent the results obtained from
different cluster tilings (the symbols denoted by 12c represent the
results obtained with the 12-site cross cluster). The solid lines are
the Gaussian fittings to the results. (b) Schematic diagram illustrating
the spectral weight transfer in the localized limit in a single-electron
doped three-band model. The green part between the lower (LHB)
and upper (UHB) Hubbard bands represents the spectrum from the
oxygen charge transfer band.

spectral weight in the lower Hubbard band, which lies well
below the oxygen charge transfer band, is not observed by
the STM.

Figure 5(a) shows the evolution of the difference in the
LDOS � for the in-gap state on one of the red colored sites
in Fig. 2(a) with U . From the result, we calculate the total
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FIG. 5. (Color online) (a) Difference in the LDOS � on one of
the red sites shown in Fig. 2(a) for different U . The peak positions
of the LDOS for the lower and upper Hubbard bands at half-filling
are indicated by the gray triangles. (b) U dependence of the double
occupation number D (red line with squares) and the local spectral
weight of the in-gap state Wloc (blue line with triangles). (c) and (d)
Wloc and D as a function of U for several different cluster sizes and
tilings (the symbols denoted by 12c represent the results obtained
with the 12-site cross cluster).

spectral weight for the in-gap state defined by

Wloc =
∫ ω2

ω1

�(ω) dω, (8)

where ω1 and ω2 are the low and high energy boundary of
LDOS within which �(ω) is positive and �(ω1) = �(ω2) = 0.
As shown in Fig. 5(b), Wloc increases rapidly with U , especially
in the regime 2 < U < 6, and then becomes nearly saturated
above U ∼ 6.

At half-filling, an important quantity characterizing the
Mott physics is the double occupation of electrons. In order
to quantify the correlation between the formation of the local
in-gap state and the Mott physics, we calculate the double
occupation number D defined by

D = 1

Ns

∑
i

〈ni↑ni↓〉 (9)

at half filling. Figure 5(b) shows the double occupation number
as a function of U . As expected, D is equal to 0.25 in the
noninteracting limit U → 0 and drops with increasing U .
Although it approaches zero only in the limit U → ∞, a rapid
decrease occurs in the regime of 2 < U < 6, it coincides with
the regime in which Wloc increases rapidly. This suggests that
the local in-gap state is an inherent feature of Mott insulators.

To further testify the above picture, we evaluate the total
spectral weight for the in-gap state Wloc and the double
occupation number D as a function of U for several different
cluster sizes and tilings, and show the results in Figs. 5(c) and
5(d), respectively. The magnitude of Wloc varies with different
clusters for large U , but it follows the same trend, especially in
the regime U < 6. The double occupation numbers, obtained
on three different clusters shown in Fig. 5(d), agree well with
each other. These results suggest that the correlation between
Wloc and D as depicted in Fig. 5(b) is indeed an intrinsic feature
of the Hubbard model.

To explore the effect of lattice frustration on the in-gap
state, we have also studied the single-electron doped Hubbard
model on triangular lattices. A 13-site hexagram cluster tiling
in a system containing 36 clusters with periodic boundary
conditions is considered [Fig. 6(a)]. Figure 6(b) shows the
difference in the LDOS on different sites. An in-gap state
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FIG. 6. (Color online) (a) A 13-site cluster, as enclosed by the red
dash lines, on the triangular lattice. (b) The difference in the LDOS
� on the sites with the same colors shown in (a). The peak positions
in the LDOS for the lower and upper Hubbard bands at half-filling
are indicated by the gray arrows.
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below the upper Hubbard band (indicated by the right gray
arrow) appears in the doped cluster and fades away from the
doping center. This is similar to the result found on the square
lattice and suggests that the local in-gap state is indeed a result
of Coulomb repulsion.

IV. CONCLUSION

In summary, we calculate the local density of states for the
Hubbard model at half-filling or with one electron doping on
both square and triangular lattices using CPT. It is found that
an in-gap state below the upper Hubbard band exists at and
near the doping center irrespective of the lattice structure. The
spectral weight of this in-gap state is inherently anticorrelated

with the double occupation number of electrons, which is a
key variable characterizing a Mott insulator, in the relevant
physical parameter range. It indicates that the in-gap state is
an inherent feature of Mott insulators. Our result gives a natural
account for the STM experimental observation [24].
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