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Continuum solvation methods can provide an accurate and inexpensive embedding of quantum simulations in
liquid or complex dielectric environments. Notwithstanding a long history and manifold applications to isolated
systems in open boundary conditions, their extension to materials simulations, typically entailing periodic
boundary conditions, is very recent, and special care is needed to address correctly the electrostatic terms.
We discuss here how periodic boundary corrections developed for systems in vacuum should be modified to
take into account solvent effects, using as a general framework the self-consistent continuum solvation model
developed within plane-wave density-functional theory [O. Andreussi et al., J. Chem. Phys. 136, 064102 (2012)].
A comprehensive discussion of real- and reciprocal-space corrective approaches is presented, together with an
assessment of their ability to remove electrostatic interactions between periodic replicas. Numerical results for
zero- and two-dimensional charged systems highlight the effectiveness of the different suggestions, and underline
the importance of a proper treatment of electrostatic interactions in first-principles studies of charged systems in
solution.
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I. INTRODUCTION

Computer simulations of materials have been significantly
progressing in recent years due to the many improvements
in both computational tools and underlying algorithms. In
particular, density-functional theory (DFT) has become a very
valuable tool to model complex systems with high accuracy.
Even though a large effort in the field has been devoted to
advancing the accuracy of the algorithms beyond the level
of DFT, these improvements usually come with a substantial
increase of the computational costs, therefore imposing some
serious limitations on the system sizes that can be handled.
For this reason, hierarchical algorithms have been developed,
which allow us to treat different parts of the systems with
different degrees of accuracy, without compromising the
description of the important atomistic features that need to
be characterized.

Among hierarchical methods, a fundamental role has been
played by continuum dielectric models, which combined with
ab initio and DFT atomistic calculations have been shown to be
very effective in modeling solvents and complex environments
in an inexpensive and accurate way [1–4]. Although most
of the continuum dielectric models have been developed
in the chemistry community and applied to study isolated
systems, a large effort has been spent in recent years to extend
these models to the boundary between condensed matter
physics and chemistry [5–12]. In particular, the possibility
of reducing the computational complexity of solvated or
electrified interfaces would allow the extensive modeling
of a large range of fundamental processes, such as those
taking place in heterogeneous catalysis, electrochemistry, and
photochemistry.
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We recently proposed a self-consistent continuum solvation
(SCCS) model [5,7,13] that combines a highly flexible
definition of the dielectric, defined in terms of a minimal set of
parameters, together with an implementation in a plane-wave
pseudopotential DFT framework that is perfectly suited to
model periodic solid-state systems. The model was tested
thoroughly and showed not only an impressive agreement
with similar models in the literature, but also very good
performance in reproducing the experimental solvation free
energies of neutral compounds [13] and charged species
[14]. By taking advantage of fast Fourier transform (FFT)
techniques to compute the electrostatic potential and its
gradient in reciprocal space, the overall computational cost
of SCCS is small, and its scaling with system size makes its
impact negligible for large-scale calculations.

Nonetheless, solving for electrostatic potentials in re-
ciprocal space is straightforward only when neutral fully
periodic systems are considered. In the other cases, instead,
FFT approaches can give rise to serious errors and strong
system-size dependence, in vacuum as well as in a continuum
dielectric. In particular, periodic boundary conditions are not
compatible with charged systems, and so charged systems are
modeled as if they were immersed in a neutralizing charge
background (labeled NCB in the following). Moreover, when
periodic boundary conditions are used to model heterogeneous
or nonuniform systems, one needs to carefully monitor the
size of the periodic cell chosen to avoid spurious interactions
with the periodic replicas. For these reasons, it is well known
that simulations of charged systems in the solid state (e.g.,
charged defects in semiconductors [15–26]) or in explicit
solvents solutions (e.g., for solvation energies of charged ions
[27,28]) need to deal with serious artifacts due to the size
and periodicity of the simulation cell. This is particularly
important when modeling systems of reduced dimensionality;
nevertheless, the problem is intrinsically easier to handle than
in the three-dimensional case. A wide variety of approaches
has been proposed in the literature to remove the artifacts due
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to the presence of fictitious replicas [19,28–44]. One class
of methods (labeled here “non-self-consistent” or NSC) aims
at correcting only the electrostatic energy of the systems,
while keeping the degrees of freedom of the system frozen
in the presence of periodic boundary conditions. This is the
approach, e.g., of the Makov-Payne method [31], that is one of
the most widespread methodologies to take care of PBC errors
for zero-dimensional (0D) systems.

In order to fully remove the effects of periodic boundary
conditions on partially periodic systems, other approaches
(labeled as “self-consistent” or SC, in the following) have been
developed that correct the electrostatic potential. This correc-
tion enters directly into the electrostatic energy, Kohn-Sham
potential, and interatomic forces, such that the electrostatic
energy has no spurious contributions from the periodic replica,
but also all the degrees of freedom of the system are optimized
in the correct electrostatic environment. These fully self-
consistent correction schemes can be further divided in two
classes, depending on whether the correction to the electro-
static potential is computed in real space (R-space) [40,41] or
in reciprocal space (G-space) [33,35,36,42]. For both classes,
correction for two-dimensional (2D), one-dimensional (1D),
and 0D systems have been proposed and implemented.

In this work, some of the existing PBC correction schemes
developed for partially periodic systems in vacuum are
extended in order to take into account the presence of a
continuum dielectric medium in the system. In the following,
the three general classes of corrections, i.e., NSC, SC R-space,
and SC G-space, are analyzed and the modifications of
the algorithms needed to include a continuum dielectric are
outlined. Equations for the most important cases are derived
and the proposed approaches are implemented and tested.

The paper is organized as follows: In Sec. II A, we
introduce the notation and the main electrostatic equations
used throughout the paper; in Sec. II B, we review the
main equations describing electrostatic interactions in periodic
systems, highlighting the limitations of standard approaches;
in Sec. II C, we summarize the equations behind the SCCS
model, as derived in Ref. [13], underlining the effects of
periodic boundary conditions; in Sec. II D, we describe the
Makov-Payne approach [31] (NSC, 0D) and appropriately
modify it in order to combine it with the SCCS model; in
Sec. II E, the point-countercharge (PCC) correction scheme
[40,41] is analyzed and extended to take into account of the
complex dielectric environment, and its application to the case
of slab geometries is presented (SC, R-space, 2D); in Sec. II F,
the Martyna-Tuckerman method [33] is discussed and its
modifications are derived and implemented for the case of
isolated systems (SC, G-space, 0D); in Sec. III, we present
detailed numerical results for the 0D and 2D cases; eventually,
in Sec. IV we draw our conclusions.

II. METHODS

A. Electrostatics in periodic boundary conditions

In order to establish a consistent notation, we report here
the main electrostatic equations, as reported in many standard
textbooks but with a specific focus on their form in periodic
systems. Electrostatic interactions are governed by Maxwell’s

equations, which relate electric field E (r) and charge density
ρ (r):

∇ · E (r) = 4πρ (r) , (1)

∇ × E (r) = 0. (2)

Due to the irrotational nature of the electrostatic field, it is
often convenient to express it in terms of the gradient of a
scalar potential, i.e., the electrostatic potential, as

E (r) = −∇v (r) (3)

and Eqs. (1) and (2) are recast into a single second-order
differential equation, i.e., the Poisson equation

∇2v (r) = −4πρ (r) . (4)

Once a proper set of boundary conditions is imposed,
the above differential equation can be solved exactly. In
particular, in a closed volume of space it is sufficient to specify
the potential (Dirichlet boundary conditions) or the normal
component of the field (von Neumann boundary conditions)
at the boundary in order to have a unique solution of the
electrostatic problem. Also, it is customary to recast Eq. (4)
in an integral formulation by the use of Green’s functions,
namely,

v [ρ] (r) ≡ v (r) =
∫

B

G(r − r′)ρ(r′)dr′, (5)

where the integration is performed over the arbitrary bounded
region B. In the above equation and in the following, we
decided to make explicit the functional dependence of the
potential on the density that generates it.

Given the definitions above, the electrostatic energy of a
charge distribution can then be expressed as

E [ρ] = 1

8π

∫
B

|E|2 dr. (6)

For an isolated charge density in vacuum, it is customary to
impose homogeneous Dirichlet or von Neumann conditions at
infinity, such that

E [ρ] = 1

2

∫
B

ρ (r) v [ρ] (r) dr (7)

and

G(r − r′) = 1

|r − r′| . (8)

For this class of systems, both the potential and the energy can
be easily computed by exploiting Eq. (8) and by setting the
integrand limit in Eqs. (7) and (5) to an arbitrary cell size D

large enough to contain the entire charge density of the system

v [ρ] (r) =
∫

D

G(r − r′)ρ(r′)dr′, (9)

E [ρ] = 1

2

∫
D

ρ (r) v [ρ] (r) dr. (10)

Nonetheless, the characteristic 1/r behavior of the electro-
static potential can be the source of two specular problems:
the divergence at short distances and the slow decay at large
distances make the electrostatic potential difficult to handle,
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introducing issues with the self-interaction of charges and of
conditionally convergent calculations of the field.

In periodic systems, the fundamental electrostatic equa-
tions, e.g., Eqs. (9) and (10), may be written in the same
form reported above, whereas it is intended that the integration
domain corresponds to the periodic unit cell, typically chosen
as the primitive one, and the physical quantities entering the
equations (density, potential, Green’s function, etc.) refer to
such infinitely periodic systems. In order to avoid confusion
on which kind of system is considered, in all the equations in
the following sections, we decided to use special typographic
characters (�, E, v, �, G, and D) to identify quantities referring
to infinite periodic systems, while keeping the standard labels
(ρ, E, v, E, G, and D) for localized isolated systems.

In a periodic system, the entire, infinite, charge density
� (r) will contribute to the potential v (�,r). Nonetheless,
such a potential can still be expressed univocally with an
integral confined to the unit cell D of the periodic system, by
exploiting in Eq. (5) the Green’s function G(r − r′) appropriate
for periodic boundary conditions

v[�] (r) =
∫

∞
G(r − r′)�(r′)dr′ =

∫
D

G(r − r′)�(r′)dr′.

(11)

Similarly, Eq. (7) can also be used as is in order to compute
the electrostatic energy per unit cell of a periodic system E[�],
provided that the integration is over the unit cell D of the
periodic system

E[�] = 1

2

∫
D

� (r) v[�] (r) dr. (12)

B. Periodic electrostatic potential

When dealing with periodic systems, it is natural to recast
the electrostatic equations in reciprocal space, in order to
exploit the simple form of the Fourier-transformed differential
operator

∇f (r) → ∇̃f (k) = ikf̃ (k) , (13)

∇ · F (r) → ˜∇ · F (k) = ik · F̃ (k) , (14)

where the overwritten tilde identifies Fourier-transformed
functions. By applying the above relations to Eqs. (1) and
(3), the general solution of the electrostatic field and potential
in a periodic system can be written as

� (k) = −4π
ik� (k)

|k|2 for k �= 0 (15)

and

v[�] (k) = ik · � (k)

|k|2 = 4π
� (k)

|k|2 for k �= 0. (16)

For k = 0, the electrostatic equations need to be handled
with care. Indeed, special forms of the divergence theorem
impose that a periodic solution for the electrostatic field and
potential is only possible provided that the right-hand side
of Eq. (1) and the left-hand side of (3), once transformed in
Fourier space, are zero for k = 0. In particular, in order to
obtain a periodic solution for the electrostatic field, the total

charge of the system has to be zero:

� (k = 0) ≡ 〈�〉 = 1

V

∫
D

� (r) dr = 0. (17)

Similarly, a periodic solution of the electrostatic potential will
only be possible for a zero average electrostatic field

� (k = 0) = 1

V

∫
D

� (r) dr = 0. (18)

As this latter condition univocally fixes the constant value of
the electrostatic field, the only undefined quantity for k = 0 is
the potential: given that the system is neutral, such component
has no effects on the final electrostatic energy

1

2

∫
D

v[�] (k = 0) � (k = 0) dr = 0. (19)

Even if � is defined to be non-neutral inside the unit cell,
Eqs. (15) and (16) can still be used exactly as written, together
with the choice v (k = 0) = 0, but the quantities obtained will
actually correspond to a periodic system where the original
charge density has been compensated by a homogeneous
background (NCB)

� → � − 〈�〉 . (20)

The specific choice v (k = 0) = 0 is made so that the NCB
density does not appear explicitly in the formulas since its
only contribution to the energy, i.e., the term for k = 0,

cancels out in Eq. (19). Nonetheless, for the sake of correctly
identifying the physical system under consideration, in the
following we will explicitly write the dependence of the
potential on the compensated charge density of the system,
namely, v[� − 〈�〉] (k).

It has to be noted that the above equations have been derived
for ideally infinite periodic systems, but it could be convenient
to take a different, real-space, perspective and to think of a
periodic system as generated by an increasingly larger number
of unit cells. In such a picture, while the reciprocal-space
approach can still be used to look for periodic solutions of
the electrostatic field and potential, it is physically acceptable
to have an additional nonperiodic, but linear, component for
the electrostatic potential. In other words, an additional linear
potential of the form �0 · r would still preserve the periodic
solution for the electrostatic field, and thus a physically
acceptable solution for the energy of the periodic system.
Moreover, for the same reasons, the k = 0 component of the
potential will not have any effect on the total energy of a neutral
system.

As the k = 0 components of the electrostatic field and
potential cannot be univocally determined by the electrostatic
differential equations, they can only be determined by the
boundary conditions imposed on the system. Exploiting
Eq. (11), the general solution for the electrostatic potential
of a periodic system can be written as

v[�] (r) = 4π

V

∑
k �=0

� (k)

|k|2 eik·r + �0 · r + v0, (21)

where the last two terms are usually referred in the literature
as the extrinsic potential [27,28,45] to distinguish them from
the intrinsic part, which can be solved independently of the
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boundary conditions. In most reciprocal-space approaches to
the electrostatic potential, only the intrinsic part of the potential
is computed, while the extrinsic contributions are assumed
to be equal to zero. This choice corresponds to a specific
assumption on the boundary conditions of the electrostatic
problem (spherical surface and tin-foil boundary conditions,
as discussed in the following) and it can introduce artifacts
in periodic calculations of partially periodic and nonperiodic
systems.

In order to further analyze the expression of the extrinsic
contributions, we can follow the derivation of de Leewen et al.
[46–49] and treat the infinite periodic system as a limiting
case of a spherical ensemble of unit cells embedded in a
vacuumlike dielectric. Such a choice univocally determines the
electrostatic equations and corresponds to the usual boundary
conditions from which Eq. (8) was derived. Thus, the potential
can be expressed as

v[�] (r) =
∫

∞
G(r − r′)�(r′)dr′

=
∑

R

∫
D

G(r − r′ + R)�(r′ + R)dr′

=
∫
D

[∑
R

G(r − r′ + R)

]
�(r′)dr′ (22)

from which, comparing with Eq. (5), the periodic Green’s
function can be defined as

G(r − r′) =
∑

R

G(r − r′ + R) =
∑

R

1

|r − r′ + R| , (23)

where the sum over lattice vectors R is supposed to be per-
formed over spherical shells around the origin. As thoroughly
discussed by Makov and Payne [31], the contribution of the
terms in the periodic sum that determines the electrostatic
potential vanishes as

q(n)

ln+1
, (24)

where q(n) is the nth multipole moment of � (r) and l is the
distance of the shell from the origin. Similarly, the contribution
of each shell of the periodic system to the electrostatic
field in the original cell will vanish as the inverse n + 2
power of l. For a three-dimensional system, the periodic
sum that determines the potential (field) is divergent for a
charge distribution with nonzero dipole (monopole) moment.
This behavior corresponds to the impossibility, shown above,
of obtaining a periodic solution for the potential (field) in
reciprocal space for a system with nonzero electric field
(total charge). Moreover, the periodic sum that determines
the potential (field) is conditionally convergent for a charge
distribution with nonzero quadrupole (dipole) moment, while
it is absolutely convergent for higher multipole moments.
Conditional convergence implies that the results will depend
on the order over which the sum is performed and on the
boundary conditions applied. This can be thought as the
result of the fact that a periodic ensemble of quadrupole
moments (dipoles) generates a nonzero surface distribution
of dipoles (charges), which in turn will give rise to a nonzero

average electrostatic potential (field) inside the system. The
magnitude of these quantities will depend on the geometry
of the surface of the system and on the dielectric properties
of the embedding medium. For the assumptions made above
(spherical system embedded in vacuum), the expression for
the extrinsic contributions to the potential, first derived by de
Leeuw et al. [47,48], reads as

�0 = 4π

3

1

V

∫
D

r� (r) dr ≡ 4π

3

d

V
, (25)

v0 = 2π

3

1

V

∫
D

r2� (r) dr ≡ 2π

3

Q

V
. (26)

The above expressions have been recently rederived, for the
same system shape and boundary conditions, by Hunenberger
et al. by following a different approach [27,28,45]. In partic-
ular, it is important to notice that the constant electric field
that appears in Eq. (25) is nothing but the electrostatic field
generated by a constant polarization density P = d/V.

The extrinsic contributions to the electrostatic potential can
be further extended to the case of a system embedded in
a dielectric medium with arbitrary dielectric permittivity ε,
while still keeping the assumption of a spherical geometry.
In this case, the Onsager model of solvation [50] analytically
reduces the effects of the embedding medium to an additional
reaction field that, for the case of a dipolar system, is again
constant inside the system. The classical expression for the
Onsager reaction field [50] gives

ER = −4π

3

2 (ε − 1)

2ε + 1

d

V
, (27)

which summed to the constant field obtained in vacuum gives
the final result of

�ε
0 = 4π

3

d

V
− 4π

3

2 (ε − 1)

2ε + 1

d

V
= 4π

2ε + 1

d

V
. (28)

This expression reduces to the case in vacuum for ε = 1, while
vanishing when the periodic system is immersed in a perfect
conductor (tin-foil boundary conditions, i.e., ε = ∞).

To summarize, when dealing with the electrostatic equa-
tions in periodic systems, two main limitations occur. First,
the total charge of the system needs to be zero, in order
to provide a nondiverging solution for the electrostatic field
and the energy of the system. Charged unit cells can still
be treated using Eq. (21), but the potential obtained will be
the one of the charge density considered plus a neutralizing
homogeneous background charge (NCB). Second, by using the
standard reciprocal-space approach for the calculation of the
potential of a periodic system and by neglecting the extrinsic
contributions to the potential [Eq. (21)], a well-defined choice
on the boundary conditions of the problem is made, which can
introduce spurious contribution to the energy.

In addition to the issues alluded to above, the long-range
decay of the potential represents a serious drawback for
simulations where periodic boundary conditions are only used
as an approximation to model heterogeneous systems without
introducing surface effects. When studying charged defects
in crystals, or solvation energies of ions and biomolecules in
explicit solvents, the electrostatic interactions coupled with
the fictitious periodicity of the cell introduce artifacts in the
simulations that are challenging to handle.
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The problem is even more evident, although easier to solve,
when one wants to model systems of reduced periodicity,
being them slabs (2D), linear systems (1D), or isolated
compounds (0D). The problem in these cases is twofold: first,
the electrostatic potential of the ideal isolated system would not
usually show the same periodicity of the simulation unit cell,
thus, it cannot be obtained as a solution of a Poisson equation
that obeys periodic boundary conditions; second, it is usually
computationally convenient to exploit the Fourier-transform
approach of perfectly periodic systems as derived in Eq. (21),
thus automatically introducing spurious interactions with
periodic replicas of the unit cell.

The two shortcomings discussed above can be solved
independently. In particular, auxiliary-function methods are
able to screen in reciprocal space the long-range part of the
electrostatic potential. Thus, interactions with spurious peri-
odic replicas are removed, even though the computed potential
still retains the (incorrect) periodicity of the simulation cell.
On the other hand, since the system is anyway confined in a
restricted part of the simulation cell, in order to have a correct
estimate of the electrostatic energy it is not necessary to have
the electrostatic potential described accurately everywhere
in the unit cell, but it is only important to have the correct
potential in the region where the source charges are located.
For this reason, the isolated system of interest is usually treated
inside large supercells, in such a way that deformations of the
potential due to the boundary of the cell do not affect the
calculation of the electrostatic energy of the system. We note
in passing that an alternative real-space approach has been
recently proposed that is able to recover the ideal potential
of the system in a computationally effective way by using
a multigrid method to correct the 3D FFT-based potential
[40,41].

C. Electrostatics in dielectric environments and periodic
boundary conditions

We summarize here the main equations behind continuum
solvation, and in particular as embodied in the SCCS model
[13]. The quantum-mechanical system of interest is immersed
in a dielectric medium characterized by a density-dependent
dielectric constant. A dielectric function is defined in order
to ensure that the dielectric constant is equal to one in the
interior of the solute, where the electronic density is high, and
smoothly acquires the value of the bulk dielectric permittivity
of the solvent ε0, where the electronic density goes to zero.
An optimal definition of the dielectric function was provided
in Ref. [13] in terms of only two tunable thresholds. For the
sake of simplicity, in our notation in the following we will not
highlight the specific functional definition of the dielectric
function ε[ρel (r)], and only consider it as a continuous
function ε (r) defined everywhere in the simulation cell.

In the presence of a dielectric continuum, the electrostatic
potential will be the solution of the generalized Poisson
equation

∇ · ε (r) ∇vε[ρsolute] (r) = −4πρsolute (r) , (29)

where the superscript ε has been added to distinguish the
potential from the one computed in vacuum. By introducing a

polarization charge density

ρpol (r)=∇ ·
(

ε (r) − 1

4π
∇vε[ρsolute] (r)

)
= 1

4π
∇ ln ε (r) · ∇vε[ρsolute] (r) −ε (r) −1

ε (r)
ρsolute (r) ,

(30)

the generalized Poisson equation in a dielectric can be recast
into a vacuumlike Poisson equation

∇2vε[ρsolute] (r) = −4π [ρsolute (r) + ρpol (r)]

= −4πρ tot (r) , (31)

that depends self-consistently on the polarization charge
density (and thus on vε itself), where the electrostatic potential
vε can be expressed as a vacuum potential depending on both
the source and polarization charge densities

vε[ρsolute] (r) = v[ρsolute + ρpol] (r)

= v[ρ tot] (r) = v[ρsolute] (r) + v[ρpol] (r) .

(32)

From the knowledge of the electrostatic field, one can
derive in a straightforward way the Kohn-Sham potential, the
electrostatic energy, and the forces acting on the nuclei, as
shown in Ref. [13]. In particular, the total electrostatic energy
of the system can be separated into two contributions

Eε[ρsolute] = 1

2

∫
D

ρsolute (r) vε[ρsolute] (r) dr

= 1

2

∫
D

ρsolute (r) v[ρsolute] (r) dr

+ 1

2

∫
D

ρsolute (r) v[ρpol] (r) dr

= E[ρsolute] + Epol[ρsolute,ρpol], (33)

where we decided to indicate explicitly the dependence of the
second contribution on the polarization charge density

Epol[ρsolute,ρpol] = 1

2

∫
D

ρsolute (r) v[ρpol] (r) dr

= 1

2

∫
D

ρpol (r) v[ρsolute] (r) dr. (34)

For isolated systems, the Poisson equation should be solved
together with boundary conditions of vanishing potential at
long distances. Nonetheless, most of the approaches proposed
in the literature in order to solve Eq. (29) or (31) introduce
some approximations on the boundary conditions, in order
to simplify or speed up the calculation. In particular, in the
original formulation of Fattebert and Gygi [5,6] and in some of
its following implementations [7–9], a multigrid method was
used to solve for the electrostatic potential, together with an
arbitrary homogeneous zeroing of the potential at the boundary
of the simulation cell (Dirichlet boundary conditions). In
the recently developed SCCS method, instead, an iterative
approach has been proposed, coupled with standard FFTs and
which relies on periodic boundary conditions.

In particular, one can approximate the isolated potential
v[ρ tot] (r) by the periodic potential v[�tot] (r), which can be
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computed in reciprocal space by exploiting Eq. (11) as

v[�tot] (r) =
∑
g�=0

4π

g2
�̃tot (g) eig·r, (35)

where the total charge density �tot (r) is also different from
the ideal isolated one ρ tot (r), due to its periodicity and
of being optimized in the presence of periodic boundary
conditions. While the effect of periodicity on the optimization
of the nuclear and ionic degrees of freedom of a system
can be considered to be negligible [31], periodic boundary
conditions enter directly in the definition of the polarization
charge density, due to its dependence on the gradient of the
electrostatic field

∇v[�tot] (r) =
∑

g

4πig
g2

�̃tot (g) eig·r. (36)

Moreover, when charged solutes are treated, i.e., when∫
D

�solute (r) dr = qsolute �= 0, (37)

the presence of the compensating NCB background should be
explicitly accounted for in using the approximation in Eq. (35).
The polarization charge in the most general case of a charged
system in its periodic approximation is thus given by

�pol (r) = 1

4π
∇ ln ε (r) · ∇v[�tot − 〈�tot〉](r)

− ε (r) − 1

ε (r)
�solute (r) + ε (r) − 1

ε (r)
〈�solute〉. (38)

Similarly to the case of a polarization charge density in
vacuum, the first two terms of �pol are localized in the narrow
transition region at the boundary of the solute, as explained in
Ref. [13]. On the contrary, the last contribution appearing in
Eq. (38) is defined everywhere in the simulation cell, except
for the vacuum region inside the solute, where ε (r) = 1.

It is important to notice that, even though for an isolated
charged solute Gauss’s law would require the total polarization
charge to fulfill the following sum rule:∫

D

ρpol (r) dr = −ε0 − 1

ε0
qsolute, (39)

the total polarization charge of a system in periodic boundary
conditions will sum up to zero∫

D

�pol (r) dr = 0, (40)

due to the PBC-imposed neutrality of the source charge
density.

Provided that the full Eq. (38) is used to compute the
polarization density, all the equations derived in Ref. [13] apply
straightforwardly. For neutral solutes immersed in solvents
with high dielectric permittivity and reasonably large cell sizes,
the effect of PBC was already shown to be negligible (see
Fig. 17 of Ref. [13]). Nonetheless, charged systems immersed
in solvents with low dielectric permittivities may present a
substantial dependence on the size of the simulation cells.

D. Makov-Payne correction in dielectric environments

To summarize the previous discussion, when approximat-
ing an isolated system with its periodic counterpart in a
quantum-mechanical calculation, one is actually performing
two different approximations:

(i) First,

� (r) �= ρ (r) , (41)

i.e., the charge density that one is optimizing with PBC will
in general converge to a different final state from the ideal
isolated case, due to the interaction with the periodic images
and the neutralizing charge backgound (NCB).

(ii) Second,

v [ρ] (r) �= v [ρ] (r) , (42)

i.e., even assuming that we are dealing with a neutral system
and that the effects of periodicity on its optimized charge
density are negligible, the periodic potential will be different
from the isolated case due to the contributions arising from the
periodic images and, possibly, due to the different boundary
conditions used to solve the problem.

Both approximations will contribute to an error in the
calculation of the total energy, i.e.,

E[�] �= E [ρ] �= E [ρ] . (43)

Nonetheless, a simple analytical expression for the leading
contributions to the difference between the above energies can
be derived in the special case of a cubic simulation cell. The
first derivation of such an expression is due to Makov and
Payne [31] and provides an approximation of E [ρ] whose
system-size dependence is at worst of the order of L−5, where
L is the size of the cubic cell. Namely, the exact electrostatic
energy of the isolated system can be written in terms of its
periodic approximation as

Esolute[ρsolute]

= Esolute[�solute − 〈�solute〉] + (qsolute)2α0

2L

− 2π

3L3
[qsoluteQsolute − (dsolute)2] + O(L−5), (44)

where, with respect to Eq. (15) of Ref. [31], the second
contribution has the correct sign and is expressed explicitly
in terms of the isolated solute multipole moments. Moreover,
the Makov-Payne derivation correctly assumes that charge
relaxation due to the artificial periodicity of the system only
contributes to the correction of the energy at higher orders.
Thus, the multipole moments that enter Eq. (44) are computed
from the periodic density in the unit cell without including the
eventual NCB density

qsolute ≈
∫
D

�solute (r) dr ≡ qsolute−NCB, (45)

dsolute ≈
∫
D

�solute (r) r dr ≡ dsolute−NCB, (46)

Qsolute ≈
∫
D

�solute (r) r2dr ≡ Qsolute−NCB. (47)
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The first contribution in Eq. (44) is due to the interaction
energy of the NCB-neutralized monopole moment in the
periodic system interacting with its replicas and is easily
expressed in terms of the Madelung constant of a cubic lattice
α0. Dipole-dipole and quadrupole-monopole interactions with
periodic replicas are canceled in the periodic energy due to
the cubic symmetry of the lattice, while the contributions due
to quadrupole-quadrupole and higher multipoles interactions
decay at worst as L−5. The origin of the second contribution
in Eq. (44) is due to the tin-foil boundary conditions that
are implicitly assumed in a periodic boundary calculation.
These boundary conditions artificially impose that the average
electrostatic field and potential in the cell are zero. As
a consequence, the interaction energies of the multipole
moments of the system with themselves (specifically the
dipole-dipole and the monopole-quadrupole interactions) are
modified with respect to the isolated case due to these arbitrary
shifts. In particular, the energy due to the dipole moment

E[dsolute] = − 1
2 dsolute · � (0) (48)

lacks the contribution

�E = E[dsolute] − E[dsolute]

= −1

2
dsolute · 〈E〉 = −1

2
dsolute · 4π

3

dsolute

L3
. (49)

Similarly, the energy due to the monopole-quadrupole inter-
action

E = qsolutevQsolute
(0) (50)

has to be corrected due to the shift of the potential with respect
to the ideal isolated system in vacuum, namely,

Emq,corr = qsolute
〈
vQsolute 〉 = qsolute 2π

3

Qsolute

L3
. (51)

In the above equations, we used the fact that, as shown in
Ref. [28] and reported in Eqs. (25) and (26), only the dipole
and quadrupole moments contribute to the average values of
the electrostatic field and potential, respectively, i.e.,〈

�ρsolute 〉 = 〈
�dsolute 〉 = �0, (52)〈

vρsolute 〉 = 〈
vQsolute 〉 = v0. (53)

Makov and Payne also derived a simplified expression for
a system in a condensed phase by adopting the approach of
Leslie and Gillan and rescaling the potential by the dielectric
constant ε0 of the system. The result

Esolute[ρsolute] = Esolute[�solute] + (qsolute)2α0

2Lε0

− 2π

3L3ε0
[qsoluteQsolute − (dsolute)2]

+O(L−5) (54)

assumes a uniform homogeneous dielectric everywhere in
space. Such an assumption does not take into account the
variations of the dielectric constant in the different regions of
the system and, in particular, is not correct for the SCCS model,
where a solute is immersed in a medium whose dielectric
constant varies from one (vacuum) to the bulk dielectric

constant of the solvent. Nonetheless, an approach similar to the
one of Makov and Payne can be used to derive the correction
to the electrostatic energy in the SCCS framework up to terms
of the order of L−3.

Contrary to what is generally assumed for the energy
contribution due to the polarization of the solute charge density
due to periodic images, the periodic solution of the polarization
charge density has a significant effect on the polarization
contribution to the electrostatic energy of a solvated system.
The problem is twofold, and is partly related to the fact that the
neutralizing background induces a small polarization which
is diffused all over the unit cell, and partly due to the fact
that periodic images can induce a non-negligible polarization
charge density in the region of space close to the solute
charge density. These spurious polarization charges affect the
multipole moments of the polarization charge

qpol �= qpol, (55)

dpol �= dpol, (56)

Qpol �= Qpol (57)

and need to be taken care of explicitly, before a scheme
analogous to the one of Makov and Payne can be adopted.

In particular, the difference �ρ (r) between the periodic
[Eq. (38)] and the isolated [Eq. (30)] polarization charges can
be written as

�ρpol (r) ≡ �pol (r) − ρpol (r)

= 1

4π
∇ ln ε (r) · [∇v[�tot − 〈�tot〉] (r)

−∇v[ρ tot] (r)] + ε (r) − 1

ε (r)
〈�solute〉

≈ 1

4π
∇ ln ε (r) · ∇v[�ρpol] (r) + ε (r) − 1

ε (r)
〈�solute〉

+ 1

4π
∇ ln ε (r) · ∇�v[�tot] (r) . (58)

The corrective potential �v[�] (r) is defined following Dabo
et al. [40,41], i.e., as the difference between the ideal isolated
potential in vacuum and its periodic counterpart computed
using tin-foil boundary conditions

�v[�] (r) = v[� − 〈�〉] (r) − v[�] (r)

≈ v[ρ − 〈ρ〉] (r) − v[ρ] (r) . (59)

The correction to the polarization charge can be computed
iteratively with the same approach used for the periodic
polarization charge, provided that an expression for the
corrective potential is available. The last two contributions
to the polarization in Eq. (58) do not change during the
iteration cycles, thus they can be considered as two separate
sources and the corrective polarization can be separated into
two contributions, one due to the NCB density and the other
due to the corrective potential. Namely,

�ρpol,NCB (r) = 1

4π
∇ ln ε (r) · ∇v[�ρpol,NCB] (r)

+ ε (r) − 1

ε (r)
〈�solute〉 (60)
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and

�ρpol,periodic (r) = 1

4π
∇ ln ε (r) · ∇v[�ρpol,periodic] (r)

+ 1

4π
∇ ln ε (r) · ∇�v[�tot] (r) . (61)

By exploiting the derivation of Refs. [40,41] for the point-
charge approximation of the corrective potential (see following
section), the gradient in the second term of the difference be-
tween periodic and isolated polarization can be approximated
as

∇�v[�] (r) ≈ 4π

3L3
(d − r) . (62)

It is important to note that the above approximation is correct
only close to the origin of the system charge distribution and
it becomes more and more accurate as the cell size increases.
Both the periodic and the NCB contribution to the corrective
polarization charge are proportional to L−3. While the periodic
polarization is defined only in the small region around the
solute, where the dielectric is allowed to vary, the NCB
polarization is defined everywhere in space. Nonetheless, its
value in the bulk of the solvent is constant and given by

�ρpol,NCB,bulk = (ε0 − 1)

ε0
〈�solute〉. (63)

The bulk constant charge can be removed from the corrective
polarization so that

�ρpol,NCB,confined = 1

4π
∇ ln ε (r) · ∇v[�ρpol,NCB] (r)

+
(

1

ε0
− 1

ε (r)

)
qsolute

L3
(64)

is a quantity confined in a well-defined region of space, which
does not depend on cell size. With this choice, the energy
contributions due to the corrective polarizations are∫
D

�ρpol (r) v[ρsolute − 〈ρsolute〉] (r) dr

=
∫
D

�ρpol,periodic (r) v[ρsolute − 〈ρsolute〉] (r) dr

+
∫
D

�ρpol,NCB,confined (r) v[ρsolute − 〈ρsolute〉] (r) dr

+
∫
D

�ρpol,NCB,bulk (r) v[ρsolute − 〈ρsolute〉] (r) dr

=
∫
D

�ρpol,periodic (r) v[ρsolute − 〈ρsolute〉] (r) dr

+
∫
D

�ρpol,NCB,confined (r) v[ρsolute − 〈ρsolute〉] (r) dr, (65)

where the NCB bulk contribution vanished, as a constant
charge density does not contribute to the periodic energy. Both
corrective contributions in Eq. (65) will scale as L−3 since the
charge densities are confined in a region of space which is
not dependent on the cell size. Thus, when trying to remove
the system’s size dependence from the calculation, both terms
should be subtracted from the periodic polarization energy

computed in the SCCS framework

E[�solute,ρpol] = E[�solute,�pol] − Epol[�solute,�ρpol].

(66)

Eventually, we are left with the periodic energy of the solute
in vacuum Esolute[�solute] (whose ideally isolated counterpart
Esolute[ρsolute] can be recovered through the Makov-Payne
expression) plus the periodic energy of interaction between
the solute charge density and a polarization optimized as if the
system were isolated:

Epol[�solute,ρpol] = 1

2

∫
ρpol (r) v[�solute] (r) dr

= 1

2

∫
�solute (r) v[ρpol] (r) dr. (67)

A Makov-Payne–type expression for this latter term can be
derived by assuming, as in Ref. [31], that �solute (r) = ρsolute (r)
inside the unit cell and by considering the Makov-Payne
corrections for the electrostatic energy of the system composed
by the total charge density

ρ tot (r) = ρsol (r) + ρpol (r) (68)

and the one of a system composed solely by the polarization
charge. Namely, by rewriting Eq. (44) for the total charge
distribution and by performing some simple algebraic manip-
ulation, one obtains

Epol[ρsolute,ρpol]

= 1

2
(Esolute[ρ tot] − Esolute[ρsolute] − Esolute[ρpol])

= Epol[�solute,ρpol] + (qsolute)2α0

2L

(
−1 + 1

ε0

)
− πqsolute

3L3

(
−ε0 − 1

ε0
Qsolute + Qpol

)
+ 2π

3L3
(dsolute · dpol) + O(L−5), (69)

where the relation

qpol = −ε0 − 1

ε0
qsolute (70)

has been exploited between the total polarization charge in
the isolated system and the solute charge. When summing
the correction to the polarization energy to the one of the
electrostatic energy of the system in vacuum [Eq. (44)], the
final expression for the energy of the solvated system becomes

E[ρsolute,ρpol] = E[�solute,�pol] − Epol[�solute,�ρpol]

+
(

1

ε0

)
(qsolute)2α0

2L

− 2πqsolute

3L3

(
Qsolute

2ε0
+ Qsolute + Qpol

2

)
+ 2π

3L3
[(dsolute)2 + dsolute · dpol] + O(L−5).

(71)

Compared to the result derived by Makov and Payne for
aperiodic systems in a condensed phase, we see that the
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monopole contribution is identical, reflecting the fact that it
is an interaction energy between systems in neighboring cells
and is thus exactly rescaled by the presence of the dielectric
continuum. On the other hand, a more complex expression for
the other terms has now been obtained in Eq. (71), and this is
one of the main results of this paper.

If we consider the simple case of a uniform dielectric
extending over the whole space, the polarization charge would
be simply given by

ρpol (r) = −ε0 − 1

ε0
ρsolute (r) , (72)

which translates into dipole and quadrupole moments

dpol = −ε0 − 1

ε0
dsolute, (73)

Qpol = −ε0 − 1

ε0
Qsolute, (74)

which, inserted in Eq. (71), give back the result proposed by
Makov and Payne [Eq. (54)]. In the case of a dipolar solute
in a spherical cavity, the polarization dipole is analytically
obtained from the Onsager model as

dpol,Onsager = −2 (ε0 − 1)

2ε0 + 1
dsolute, (75)

which gives a term proportional to

2π

(2ε0 + 1) L3
(dsolute)2, (76)

consistent with the expression of the extrinsic field of a periodic
system immersed in a dielectric Eε

0 in Eq. (28). In general, for
arbitrary, molecular-shaped cavities, the dipole and quadrupole
contributions are not analytic functions of the solute multipole
moments and need to be computed explicitly from the integral
of the polarization charge density.

E. Countercharge corrections in dielectric environments

Several schemes have been proposed along the lines of the
Makov-Payne correction, but which self-consistently correct
the electrostatic potential rather than just the final electrostatic
energy. The general framework is to recover the electrostatic
potential of the isolated system by adding to the periodic
boundary potential a corrective term. The correction can
then be analytically computed for specific approximations on
the charge distribution of the system, or the exact problem
can be solved numerically via multigrid techniques. The
different schemes have been recently classified into three
categories, depending on the different level of approximations
used to tread the charge density of the system: following
Refs. [40,41], they are labeled as point-countercharge (PCC),
Gaussian-countercharge (GCC), and density-countercharge
(DCC) methods. Here, we will discuss the PCC correction
scheme. For a pointlike unit charge in a cubic cell, the
corrective potential

�v [ρ] (r) = α0

L
− 2π

3L3
r2 + O(|r4|) (77)

can be recovered by exploiting symmetry and the Poisson Eq.
(4), as shown in Refs. [40,41]. The resulting parabolic potential

is accurate only close to where the charge is located. For an
arbitrary charge distribution, the corrective potential can be
expressed in terms of the corrective potential of a collection of
point charges that matches the system’s multipole moments.
Due to the quadratic nature of the correction, only the potential
generated by multipoles up to the quadrupole can be corrected.
The final PCC expression for the corrective potential reads as

�v [ρ] (r) = α0

L
q − 2πq

3L3
r2 + 4π

3L3
d · r − 2π

3L3
Q. (78)

The correction to the energy

�E = Epol [ρ] − E [ρ]

= 1

2

∫
D

ρ�v [ρ] (r)

= α0

2L
q2 − 2π

3L3
(qQ − d2) (79)

reduces correctly to the Makov-Payne expression, with the
only difference that the molecular charge distribution is now
optimized in the presence of the corrected potential, i.e., the
approximations in Eqs. (45), (46), and (47) are not needed.

When a continuum dielectric is present in the system, the
electrostatic energy is that of Eq. (33), and the potential that
needs to be corrected is the one arising from the total charge
distribution

vε[ρsolute] (r) = v[ρsolute + ρpol] (r) = v[ρ tot] (r) , (80)

including the polarization charge. This means that Eq. (78) can
be simply modified as

�v[ρ tot] (r) = α0

L
q tot − 2πq tot

3L3
r2

+ 4π

3L3
dtot · r − 2π

3L3
Qtot, (81)

where

q tot = qsol + qpol = qsol

ε0
, (82)

dtot = dsol + dpol, (83)

Qtot = Qsol + Qpol. (84)

Again, when computing the correction to the electrostatic
energy of the system, the PCC approach gives the same result
obtained with the Makov-Payne scheme:

�E = 1

2

∫
ρsolute�v[ρ tot] (r) dr

= α0

2L

qsolute

ε0
− 2π

3L3

[
qsolute

(
Qtot

2
+ Qsolute

2ε0

)
− (dtot) · dsolute

]
(85)

apart from the fact that the solute charge density is now
optimized in the presence of the correct boundary conditions.
From the above expressions, it is straightforward to derive the
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correction to the interatomic forces, namely,

�fa = −d�E

dRa

= za∇�v[ρ tot] (r) |r=Ra

= za

4π

3L3
(−q totRa + dtot), (86)

where we have used the Hellmann-Feynman theorem, follow-
ing the derivation reported in Sec. III C of Ref. [13], and for
the solute charge density we have used

ρsolute = ρelec +
∑

a

zaδ (r − Ra) , (87)

where the nuclei are represented as pointlike charges.
As we are now using the correct potential in the derivation of

the polarization charges, no NCB polarization and no periodic
polarization appear in the polarization charge. Similarly,
provided that the potential is correct up to the region where
the dielectric medium becomes uniform, the total polarization
charge will sum up to the correct value for an isolated system.
As summarized in Appendix, special care needs to be taken
in the way nuclear charges are treated when computing the
polarization charge and PCC periodic boundary corrections.

A similar approach can be derived for systems of dif-
ferent periodicity, where in particular the exact expression
of the corrective potential can be obtained analytically via
partial Fourier transforms. A particularly important case is
the one of two-dimensional systems, for which a solution
involving two-dimensional Fourier transform was derived in
Refs. [35,42]. Analogously to what was done with PCC, a
simple approximated analytical solution can be devised for
the case where the cell size is large enough compared to
the size of the system. In this case, only the component
for g = 0 contributes significantly to the corrective potential,
that acquires a quadratic form analogous to the PCC results
reported for the isolated system in cubic cells. Namely, the
expression for the corrective potential of a 2D system is

�v2D[ρ tot] (r) = �v2D[ρ tot] (rz)

= α1D

Lz

q tot − 2πq tot

ALz

r2
z + 4π

ALz

d tot
z · rz

− 2π

ALz

Qtot
zz , (88)

where α1D = π/3 is the Madelung constant of a one-
dimensional periodic array of charges, A is the area of the slab,
while Lz is the size of the cell axis perpendicular to the plane
of the slab. The correction to the energy is readily obtained
by integration with the system charge density; namely, for a
system in vacuum

�E2D = α1D

2Lz

(qsolute)2 − 2π

ALz

[
qsoluteQsolute

zz − (
dsolute

z

)2]
.

(89)

Similarly to what was derived for isolated systems, also for
slabs the effects of the solvent can be immediately included by
defining the corrective potentials in terms of the total dipole
moment of the system, thus including the contribution of the

polarization density

�E2D = α1D

2Lz

(qsolute)

ε0

2

− 2π

ALz

[
qsolute

(
Qsolute

zz + Q
pol
zz

2
+ Qsolute

zz

2ε0

)
− (

dsolute
z + dpol

z

)
dsolute

z

]
. (90)

For the periodic boundary correction contribution to inter-
atomic forces, an expression similar to the one derived for the
0D case applies, namely,

�fa,z = −d�E2D

dRa,z

= za

d

drz

�v[ρ tot] (rz) |rz=Ra,z

= za

4π

ALz

(−qRa,z + dz). (91)

F. Martyna-Tuckerman corrections in a dielectric environment

While the approaches derived above aim at correcting
the periodic potential by introducing a real-space potential
computed a posteriori, a different approach has been de-
veloped in the literature, which aims to correct directly the
periodic potential as computed in reciprocal space. Such an
approach, which has its foundation in the screening function
formalisms and was pioneered for PBC correction by Martyna
and Tuckerman [33,35,36], has received a lot of attention in
recent years due to its simple implementation and very reduced
computational cost.

The main idea behind the approach of Martyna and Tuck-
erman (MT) [33] and similar approaches [42] is the following:
When the electrostatic problem is solved in reciprocal space,
the use of the Fourier transform of the differential operator
[Eq. (13)] implies that the potential is obtained from the
periodic sum of the real-space potentials. In other words, the
analytic Fourier transform of the aperiodic Green’s function
G

(
r − r′) corresponds to the reciprocal-space coefficients of

the periodic Green’s function G (g), namely,

G̃ (g) =
∫

∞
G (r) e−ig·rdr =

∫
D

∑
R

G (r + R) e−ig·rdr

=
∫
D

G (r) e−ig·rdr = G (g) . (92)

In particular, for the case of an isolated system in vacuum
[Eq. (8)] we have

G̃ (g) = G (g) = 1

g2
. (93)

If one, instead, were to use the Fourier series coefficients of
the potential kernel

G (g) =
∫
D

e−ig·r

|r| dr, (94)

one could build the first-image form of the potential

Ĝ (r) =
∑

g

G (g) e−ig·r, (95)
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i.e., a periodically repeated approximation of the isolated
Green’s function G (r). The periodicity which is introduced by
using the Fourier series and the first-image form only affects
the potential at the boundary of the simulation cell. For this
reason, in short-ranged functions which decay well within
the boundaries of the unit cell, the first-image form, the true
potential, and the periodic sum are identical in the region of
interest, i.e.,

Ĝshort (r) = Gshort (r) = Gshort (r) for r ∈ D. (96)

For long-ranged functions, as is the case for the Coulomb
potential, it is generally accepted that if a cell twice as large as
the system studied is used, the first-image form is a good
approximation of the correct potential in all the relevant
domain, where the quantum charge density is different from
zero.

In order to make the algorithm more stable and readily
compatible with PBC, the Fourier series coefficients of the
potential can be written in an auxiliary-function formalism,
i.e., as g-dependent coefficients which correct the analytical
Fourier-transform coefficients:

G (g) = G̃ (g) + G (g) − G̃ (g) = G̃ (g) + �G (g) . (97)

For short-ranged potentials, for the reasons discussed
above, one has that �Gshort (g) = 0. On the other hand, for
the Coulomb potential one needs to compute the long-range
correction in reciprocal space numerically using fast Fourier
transforms. Once the values of �G (g) are known, the first-
image form of the electrostatic potential of the system can be
easily obtained as

v̂ [ρ] (r) =
∑

g

4π

V
ρ (g)

(
1 − δg0

g2
+ �G (g)

)
eig·r

= v [ρ] (r) + �v̂ [ρ] (r) , (98)

where the Kronecker δg0 is 1 for g = 0 and 0 otherwise, where

�G (0) = lim
g→0

(
G̃ (g) − 1

g2

)
, (99)

and where the corrective potential is now computed in
reciprocal space as

�v̂ [ρ] (r) =
∑

g

4π

V
ρ (g) �G (g) eig·r. (100)

The coefficients entering the calculation of the potential are
only dependent on the geometry of the cell and on the type of
potential that is computed (depending, e.g., whether the whole
Coulomb potential is computed or just its long-range part).
Thus, these coefficients can be computed once and for all at
the beginning of a calculation and the overall computational
cost of the procedure becomes negligible. This is not the case
for real-space approaches, where a new potential needs to be
computed during the SCF cycle following the change in the
multipole moments of the charge distribution, even though it
is usually not necessary to update it at each SCF step [40,41].
On the other hand, real-space approaches are in principle able
to provide a good approximation of the exact potential profile
over the entire cell and can usually adopt smaller cell sizes

compared to MT approaches, where the imposed periodicity
can significantly alter the potential at the cell boundaries.

Reciprocal-space approaches are particularly suited for
calculations in the presence of a continuum dielectric medium.
In particular, by extending the use of the auxiliary-function
coefficients computed for the potential also to the calculation
of the gradient of the potential

∇v̂ [ρ] (r) =
∑

g

4π

V
ρ (g) ig

(
1 − δg0

g2
+ �G (g)

)
eig·r,

(101)

it is straightforward to compute the ideal polarization charge
by using Eq. (30). All the standard SCCS equations can then
be used straightforwardly, but particular care has to be given
to the calculation of the forces. Indeed, the interatomic forces
can be computed from the Hellman-Feynman theorem as

fa = −dE[ρsolute]

dRa

= −
∫

ρsolute ∂v[ρ ions] (r)

∂Ra

dr, (102)

while the Martyna-Tuckerman correction to the potential
introduces the following contribution:

�fa = −
∫

ρsolute ∂�v̂[ρ ions] (r)

∂Ra

dr

= −
∑

g

ρsolute (g)
∂

∂Ra

[
4π

V

(
N ions∑

b

zbe
ig·Rb

)
�G (g)

]

= −4πza

V

∑
g

igρsolute (g) eig·Ra�G (g) . (103)

Similarly, since the forces in the SCCS framework require an
additional term due to the solvent polarization density

f
pol
a,i = −∂Epol[ρsolute,ρpol]

∂Ra,i

= −
∫

ρpol ∂�v̂[ρ ions] (r)

∂Ra,i

dr,

(104)

the proper MT correction needs to be included:

�fpol
a = −4πza

V

∑
g

igρpol (g) eig·Ra�G (g) . (105)

III. RESULTS

A. Numerical details

The methods reported in the previous section have been
implemented in a development version of the open-source
QUANTUM ESPRESSO distribution [51].

Calculations of 0D systems are performed on a pyridine
molecule, using the local-density approximation (LDA) of
DFT with a wave-function cutoff of 50 Ry. The Brillouin
zone is sampled only at the gamma point. Norm-conserving
pseudopotentials from the 0.2.2 version of the library of Dal
Corso et al. [52] are adopted.

The analysis of 2D systems is performed for a CO molecule
adsorbed in the atop geometry on a fcc Pt (111) surface. In
order to speed up the computational cost for the calculation, a
simplified structure is adopted for the slab, composed by only
two layers of metal atoms in a

√
3 × 2 supercell, with a lattice
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constant of 2.828 Å. Marzari-Vanderbilt [53] cold smearing
with a smearing width of 0.03 Ry is used, the Brillouin zone is
sampled with a shifted 4 × 4 × 1 reciprocal-space integration
grid, ultrasoft pseudopotentials and the LDA are adopted,
with wave-function and density cutoffs of 35 and 280 Ry,
respectively.

For both 0D and 2D systems, the accuracy of the methods
is tested by comparing the Hellmann-Feynman forces against
the ones obtained by finite differences of the energy (a
displacement step of 0.01 a.u. is adequate for all the systems
studied).

B. Isolated (0D) systems

In Figs. 1 and 2, we report the behavior of the energy of
a pyridine cation as a function of the cell size, for a system
in periodic boundary conditions and for the different correc-
tion schemes presented in the sections above, both without
(Fig. 1) and with (Fig. 2) a continuum solvent as described
by the SCCS method. As expected, both for the molecule in
vacuum and for the solvated one, the periodic energy decays
as the inverse power of the cell size, with a much less marked
dependence for the solvated cases, due to the dielectric which
screens the total charge and dipole moment of the system.
Corrected results from the different methods are converged
for cell sizes of 23 (27) a.u. for the vacuum (solvent) case,
reflecting the larger size of the solvated system. The MP and
PCC energies are found to converge as fast as L−5 (as seen
in the log-log plot of the residual error, see Fig. 4), while the
Martyna-Tuckerman energies become constant and exact for
cell sizes larger than 30 a.u. On the other hand, while for small
cells the energies computed with the real-space approaches
and the Makov-Payne are still less than 1 mRy away from the
converged results, the Martyna-Tuckerman approach shows
significant errors, even exceeding the uncorrected periodic
energy. The same trend is reflected in the calculation of the
electrostatic contribution to solvation free energies.

FIG. 1. (Color online) Total energy of a pyridine cation in vac-
uum as a function of cell size, for PBC calculations and for the
three correction schemes analyzed: Makov-Payne (MP, in blue),
Martyna-Tuckerman (MT, in green), and point-countercharge (PCC
in red).

FIG. 2. (Color online) Total energy of a pyridine cation in a
dielectric medium as a function of cell size, for PBC calculations
and for the three correction schemes analyzed: Makov-Payne (MP, in
blue), Martyna-Tuckerman (MT, in green), and point-countercharge
(PCC in red). For the dielectric medium, the SCCS parameters
optimized to reproduce aqueous solvation of organic compounds,
as derived in Ref. [13], have been used, but only the electrostatic
contribution has been explicitly considered.

It is important to note that Makov-Payne energies are almost
identical to the ones obtained with the self-consistent real-
space approach. This validates the hypothesis, assumed by
Makov and Payne, that the polarization of the charge density
of the system due to periodic images affects only marginally
its energy. The same behavior is true for solvated systems, with

FIG. 3. (Color online) Solvation energies of a pyridine cation
in continuum dielectric medium as a function of cell size, for
PBC calculations and for the three correction schemes analyzed:
Makov-Payne (MP, in blue), Martyna-Tuckerman (MT, in green),
and point-countercharge (PCC in red). For the dielectric medium,
the SCCS parameters optimized to reproduce aqueous solvation of
organic compounds, as derived in Ref. [13], have been used, but only
the electrostatic contribution has been explicitly considered.
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FIG. 4. (Color online) Cell-size dependence of Makov-Payne
(monopole and dipole+quadrupole) and polarization-specific (NCB
and periodic) contributions to the energy. Reported decay exponents
are estimated from fitting the large cell-size part of the figure. The
residual error, after the different contributions have been subtracted
from the total energy of the system, is shown to decay faster than L−3

for cell sizes up to 40 a.u., while being negligible for larger cell sizes.

the Makov-Payne and the PCC methods almost exactly on top
of each other.

Electrostatic solvation free energies, computed as the
difference in total energy between the solvated and the vacuum
case, are reported in Fig. 3 and substantially reflect what was
found above: MP and PCC calculations give well-converged
results (errors smaller than 0.5 kcal/mol) for all the system
sizes considered, while the MT scheme gives large errors up
to cell sizes of 26 a.u.

When looking at the different contributions to the Makov-
Payne correction for a solvated system (Fig. 4), it appears
that all contribute significantly. In particular, the effects of the

FIG. 5. (Color online) Hellmann-Feynman force (left panel) and
error on forces (right panel) computed via finite differences for the
nitrogen atom of the pyridine cation, in vacuum and in a continuum
dielectric medium, with PBC or with MT and PCC correction
schemes.

periodic images on polarizing the dielectric close to the solute
are important, especially considering that, although small, such
polarization is not charge neutral in the case of charged solutes.

In order to validate the formulas derived and the imple-
mentation of the different methods, the errors on the analytic
forces have been reported in Fig. 5 for the different approaches
considered as well as for the fully periodic case, with and
without a continuum solvent. All the different methods show
a very similar behavior, with errors almost three orders of
magnitude smaller than the absolute value of the computed
force. It is important to stress that, even though the reported
errors are not negligible, all the methods are in agreement to
what is found for the periodic calculations without the solvent,

FIG. 6. (Color online) Electrostatic potential along the axis pass-
ing through the C-O bond for a neutral (top) and charged (bottom) slab
in vacuum, as represented in the middle panel (Pt atoms in yellow,
carbon atom in light blue, oxygen atom in red). The PBC potential
(vPBC, in black), PCC correction (�v, in blue), and corrected potential
(vfree, in red) are reported and compared in the main panels and in the
insets.
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which represents the internal benchmark of this work. Lower
values for these errors can be obtained by fine tuning the setup
of the calculations.

C. Slab (2D) geometries

When considering neutral two-dimensional systems, the
presence of a component of the dipole moment along the axis
normal to the plane of the slab will create a step in the electro-
static potential. Due to periodic boundary conditions requiring
the potential to be continuous at the boundary of the simulation
cell, a deformation of the potential in the entire cell will take

FIG. 7. (Color online) Electrostatic potential along the axis pass-
ing through the C-O bond for a neutral (top) and charged (bottom)
slab in a continuum dielectric, as represented in the middle panel
(Pt atoms in yellow, carbon atom in light blue, oxygen atom in red,
positive and negative polarization charges are visualized as red and
blue solid isosurfaces). The PBC potential (vPBC, in black), PCC
correction (�v, in blue), and corrected potential (vfree, in red) are
reported and compared in the main panels and in the insets.

FIG. 8. (Color online) Total energy in vacuum (top left) and in
solution (bottom left), and solvation energy (right) of a neutral slab
as a function of cell thickness. For the dielectric medium, the SCCS
parameters optimized to reproduce aqueous solvation of organic
compounds, as derived in Ref. [13], have been used, but only the
electrostatic contribution has been explicitly considered.

place (see top panels of Figs. 6 and 7). When looking at the
energy of the neutral system as a function of cell size, Fig. 8, it
looks that periodic boundary conditions have very different ef-
fects in vacuum and in solution. While the correction amounts
to only a fraction of mRy for the system in vacuum, the
effects of periodicity are more than 10 times larger in solvated
systems. The same trends are clearly reflected in the behavior
of the solvation energy of the system, which shows PBC errors
of ∼ 0.3 kcal/mol even for the largest cells considered. In fact,
the overall error seems to decay very slowly with cell thickness.
This behavior is due to the spurious finite electric field in
the interfacial region where the dielectric properties of the
environment change: given the expression of the polarization
charge [Eq. (30)], the presence of the artificial linear electro-
static potential induces a substantial amount of polarization in
the continuum environment. Thus, even though the dielectric
medium should compensate the intrinsic dipole of the slab, the
interaction with the finite field due to periodic boundary con-
ditions overstabilizes larger polarization charges and increases
the PBC artifacts on the energy of solvated 2D systems. The
simple 2D PCC correction proposed in this paper is enough to
remove this artifact and to provide energies in solutions which
are well behaved with respect to the size of the simulation cell,
as clearly shown in Fig. 8. The corrected form of the potential
(red lines in Figs. 6 and 7) is almost constant in the regions
of space above and below the slab, thus providing the right
contribution to the polarization of the surrounding medium.

In the case of a charged two-dimensional system, a
converged reference value for the energy of the system is not
accessible since the field, and thus the electrostatic energy
density, of a planar distribution of charge is constant in space.
Thus, the electrostatic potential and the total energy will
linearly increase with the size of the cell axis perpendicular to
the plane of the slab.

Such a behavior is correctly recovered in the trends of the
potential in Figs. 6 and 7 for the system in vacuum and in
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FIG. 9. (Color online) Hellmann-Feynman force (left panel) and
error on forces (right panel) computed via finite differences for the
carbon atom in the charged slab calculation, in vacuum and in a
continuum dielectric medium, with and without PBC.

solution, respectively. The presence of the dielectric medium
significantly screens the electrostatic potential, which shows
much smaller variations with respect to the case in vacuum.

As in the case of the isolated 0D system, the analytical
forces computed with the PBC correction, both with and with-
out the continuum solvent, show errors of similar magnitude
to the ones obtained from calculations without the correction
(see Fig. 9). Self-consistent convergence of the polarization
charge for the calculation of the charged slab in periodic
boundary conditions appears to be hindered by the presence
of the NCB density. In particular, a very large number of
iterations are required in order to achieve the same accuracy
on the polarization charge as in other calculations (i.e., with
mean-squared variation of the polarization density of the order
of 10−12 a.u.). Even though the polarization density due to the
neutralizing charge background has been shown to add a spu-
rious cell-size-dependent term to the energy, it is important to
note that in order to properly describe forces in a charged slab,
the NCB polarization needs to be taken into account explicitly.

IV. CONCLUSIONS

To conclude, an extension to three current methods (Makov-
Payne [31], Martyna-Tuckerman [33], and PCC [40]) to
correct for periodic boundary conditions in systems of reduced
dimensionality is presented, that allows us to treat quantum
systems immersed in a continuum dielectric. Two different
geometries have been explicitly addressed, namely, isolated
(0D) and slab (2D) configurations. The modified Makov-Payne
correction is summarized by Eq. (71), where the energy of an
isolated system solvated in a continuum dielectric is expressed
in terms of its artificially periodic counterpart plus a post-
processing, computationally inexpensive, correction term. The
main results for the PCC scheme are, instead, summarized by
Eqs. (81) and (88) for the 0D and 2D cases, respectively, where
the real-space corrections to the electrostatic potential of the
solvated system are reported. While the Martyna-Tuckerman
scheme is shown to be intrinsically more easy to adapt to
the electrostatic equations defined by the SCCS approach, we

underline the derivation of the correction’s contributions to
interatomic forces in the presence of a continuum dielectric,
as summarized in Eq. (105).

The analytical modifications introduced due to the presence
of the solvent have been shown to be accurate in all the different
methods. The derivation of the modifications proposed here
can be easily extended to more complex methods, such as the
density countercharge, or to linear (1D) systems. Results are
shown to converge reasonably fast with system size. A com-
parison of the different approaches indicates that the Martyna-
Tuckerman is the technique that converges faster with cell size,
but can produce erratic results for cell sizes that are too small.
The behavior of Makov-Payne and PCC correction schemes is
very similar and is much smoother with system size, so that
smaller cells with respect to MT can be used at the price of a
small loss in accuracy. The very good agreement of the forces,
computed analytically and via finite differences of the energy,
is a further test on all derivations and their implementation.
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APPENDIX: IONIC CHARGE DISTRIBUTION IN SCCS
AND REAL-SPACE PERIODIC BOUNDARY

CORRECTIONS

As discussed in Ref. [13], the way the ionic charge density is
described in the SCCS model has no effect on the computed po-
larization density or on the polarization energy, provided that
the ionic charge is well within the range where the dielectric
constant is exactly one. Since Gaussian charges of fixed spread
are used to model nuclei through the SCCS calculation, solva-
tion energies were shown to be independent of their spread for a
large range of values (Fig. 18 of Ref. [13]). Nonetheless, when
computing the correction for periodic boundary conditions
in real space, either in the self-consistent (PCC) or in the
non-self-consistent (Makov-Payne) case, it is important that
the ionic cores are treated on the same footing as the calculation
of the ionic electrostatic energy. If Ewald summations are used
to model the ionic contribution to the total energy, ions need
to be considered as pointlike in the calculation of the system’s
multipole moments dsolute and Qsolute that enter in Eq. (44).
On the other hand, in order for the polarization energy to be
independent of the shape of the ionic density, a consistent
description needs to be used in Eqs. (34) and (71).

Different choices of ionic shapes will in general give rise
to different multipole moments. Nonetheless, if we chose
to work in a coordinate frame originating from the center
of ionic charges, the nuclei’s contribution to the system’s
dipole vanishes regardless of the fact that they be described
as pointlike or Gaussian charges. Thus, with such a choice of
origin, only the quadrupole moment of the system depends
on the shape of the ionic charge distribution. In order to
correctly remove all the terms depending on the quadrupole,
Gaussian-shaped ions have to be used when correcting the
solvation energy, while pointlike nuclei have to be used for the
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remaining part. Thus, an extra term of the form

�E0D,Gaussian = π

3L3
qpol(Qsolute,Gaussian − Qsolute,pointlike)

(A1)

for 0D systems, or

�E2D,Gaussian = π

ALz

qpol(Qsolute,Gaussian
zz − Qsolute,pointlike

zz )

(A2)

for 2D systems has to be added to the correction of the energy.
An extra correction on the forces is also needed in the case
of 0D systems (while it vanishes due to symmetry in the 2D
case), namely,

�f 0D,Gaussian
a = − 2π

3L3
qpol

(
zaσa√

π

)
, (A3)

where za and σa are the atomic charge and spread of atom a.

[1] J. Tomasi and M. Persico, Chem. Rev. 94, 2027 (1994).
[2] J. Tomasi, B. Mennucci, and R. Cammi, Chem. Rev. 105, 2999

(2005).
[3] C. J. Cramer and D. G. Truhlar, Chem. Rev. 99, 2161 (1999).
[4] M. Orozco, Chem. Rev. 100, 4187 (2000).
[5] J. L. Fattebert and F. Gygi, J. Comput. Chem. 23, 662

(2002).
[6] J. L. Fattebert and F. Gygi, Int. J. Quantum Chem. 93, 139

(2003).
[7] D. A. Scherlis, J. L. Fattebert, F. Gygi, M. Cococcioni, and

N. Marzari, J. Chem. Phys. 124, 074103 (2006).
[8] V. M. Sanchez, M. Sued, and D. A. Scherlis, J. Chem. Phys.

131, 174108 (2009).
[9] J. Dziedzic, H. H. Helal, C. K. Skylaris, A. A. Mostofi, and

M. C. Payne, Europhys. Lett. 95, 43001 (2011).
[10] S. A. Petrosyan, A. A. Rigos, and T. A. Arias, J. Phys. Chem. B

109, 15436 (2005).
[11] K. Letchworth-Weaver and T. A. Arias, Phys. Rev. B 86, 075140

(2012).
[12] D. Gunceler, K. Letchworth-Weaver, R. Sundararaman, K. A.

Schwarz, and T. A. Arias, Modell. Simul. Mater. Sci. Eng. 21,
074005 (2013).

[13] O. Andreussi, I. Dabo, and N. Marzari, J. Chem. Phys. 136,
064102 (2012).

[14] C. Dupont, O. Andreussi, and N. Marzari, J. Chem. Phys. 139,
214110 (2013).

[15] J. Shim, E.-K. Lee, Y. J. Lee, and R. M. Nieminen, Phys. Rev.
B 71, 035206 (2005).

[16] P. A. Schultz, Phys. Rev. Lett. 96, 246401 (2006).
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