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Fine structure of the phonon in one dimension from quantum hydrodynamics
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We show that the resonant interactions between phonons in one dimension may be treated consistently
within quantum hydrodynamics by the introduction of phonon dispersion. In this way the physics of a nonlinear
Luttinger liquid may be described in terms of hydrodynamic (i.e., bosonized) variables without the introduction of
impurities at the outset, and gives a complementary view on the mobile impurity model from the hydrodynamics.
We focus on the calculation of the dynamic structure factor for a model with quadratic dispersion, which has the
Benjamin-Ono equation of fluid dynamics as its equation of motion. We find singular behavior in the vicinity
of upper and lower energetic thresholds corresponding to phonon and soliton branches of the classical theory,
which may be benchmarked against known results for the Calogero-Sutherland model.
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One-dimensional quantum fluids may be described within
a hydrodynamic description usually known as Luttinger liquid
theory [1]. This versatile framework has been applied to 1D
gases of bosons and fermions as well as to spin chains and the
chiral excitations at the edge of quantum Hall fluids [2–4]. At
the heart of the technique is the expression of all observables,
as well as the Hamiltonian, in terms of bosonic collective
variables describing the density and velocity, a procedure
usually dubbed “bosonization.”

In recent years it has become clear that this approach
suffers from serious shortcomings. Conventional bosonization
treats phonons as linear excitations, described by a harmonic
Hamiltonian, with no dispersion; i.e., ε(k) = c|k|, where c is
the speed of sound. Naively, one expects this to be a reasonable
approximation as long as the anharmonicities present in a real
system can be ignored. However, as we will make clear shortly,
interactions between dispersionless phonons are singular in
one dimension [10], and perturbation theory is inapplicable.
As a result, a quantity as basic as the correct line shape for
the phonon excitations—encoded in the dynamic structure
factor—appears beyond the reach of the usual theory.

Notwithstanding these difficulties, a “nonlinear Luttinger
liquid” phenomenology has emerged in recent years, beginning
with Ref. [5] and reviewed recently in Ref. [6]. This theory
describes the low-energy physics of the system in terms of a
conventional Luttinger liquid, together with a mobile impurity
that resolves the degeneracy of the spectrum responsible for
the singular interactions. The mobile impurity model emerges
from perturbation theory for weakly interacting fermions, and
is assumed to extend to arbitrary interactions by continuity.
Since the impurity degree of freedom is neither hydrodynamic
nor microscopic, its origin in the hydrodynamic theory of
phonons is unclear. Thus the fundamental conceptual question
of how to describe the same physics within a theory of
interacting phonons remains to be addressed [7].

In this Rapid Communication we provide a description
of nonlinear Luttinger liquid physics solely in terms of
quantum hydrodynamics [8], showing in particular how the
dynamic structure factor acquires “fine structure” due to the
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nonlinearity. Our analysis hinges in an essential way on the
inclusion of dispersive terms in the phonon Hamiltonian, in
addition to the nonlinearity, which give rise at the classical
level to two branches of excitations: small-amplitude phonons
and solitons (see Fig. 1). We show that the corresponding
quantum theory yields predictions for the structure factor
in agreement with the phenomenological nonlinear Luttinger
liquid theory.

To illustrate the difficulties inherent in theories of nondis-
persive phonons, consider the phonon Hamiltonian H =
H2 + H3 with H2 = ∑

k>0 ε(k) a
†
kak , and the leading (cubic)

nonlinearity with coupling g [9]:

H3 = g

2

1√
L

∑
k1=k2+k3
k1 ,k2 ,k3>0

√
k1k2k3

(
ak1

a
†
k2

a
†
k3

+ H.c.
)
.

Here [ap,a
†
q] = δp,q , L is the system size, and we consider only

right-moving excitations with dispersion ε(k) = ck, as it is
interactions among phonons moving in the same direction that
are resonant. The cubic terms in H3 describe the disintegration
of one phonon to two and the merging of two to one. By virtue
of momentum conservation and the linearity of the phonon
spectrum, H3 only couples states of the same energy, and is
therefore a degenerate perturbation [10]. There is therefore no
sense in which H3 can be considered small. It is clear that
this is a feature of any interaction among linearly dispersing
phonons moving in the same direction.

The same problem can be understood from a real-space
viewpoint by defining the usual chiral boson field

φ(x) = −
∑
k>0

i√
kL

(ake
ikx − a

†
ke

−ikx),

with commutation relations [φ(x),φ(y)] = i
2 sgn(x − y), in

terms of which the phonon Hamiltonian takes the form

H =
∫ ∞

−∞
dx

[
c

2
φ2

x + g

6
φ3

x

]
.

(We use the notation φx = ∂φ/∂x, φt = ∂φ/∂t , etc.) Setting
� = 1, the Heisenberg equations of motion are

φt = i[H,φ] = −cφx − g

2
φ2

x .
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FIG. 1. (Color online) Dynamical structure factor S(q,ω) indi-
cated by gray scale between the phonon ε(q) and soliton (dashed)
branches E(q), with the power-law behavior of Eq. (5) as ω

approaches the threshold at given momentum p (lower inset). The
upper inset shows a snapshot of the Lorentzian profile V (x) of the
soliton Eq. (4) in real space.

Introducing v ≡ gφx gives

vt + cvx + vvx = 0.

The second term is removed by passing to the moving
coordinate x → x + ct , in terms of which v obeys the inviscid
Burgers equation

vt + vvx = 0. (1)

Classical solutions of Eq. (1) become multivalued when
regions of higher velocity v overtake slower regions. In fluid
dynamics, this pathology is remedied by the inclusion of
dispersion or dissipation, which gives rise to higher gradient
terms. At zero temperature there is of course no dissipation, so
we add dispersive terms to the phonon energy. In the moving
frame—so that the linear term is absent—this now takes the
form

ε(k) = −αk2 − βk3 + · · · . (2)

The quadratic term, while absent in a perturbative calculation
of the self-energy for particles with short-ranged interactions,
appears in the hydrodynamics of incompressible fluid surfaces.
The long-wavelength phonon Hamiltonian becomes

H =
∫ ∞

−∞
dx

[
α

2
φxHφxx − β

2
φ2

xx + g

6
φ3

x

]
. (3)

Here H denotes the Hilbert transform

Hφ(x) = 1

π

∫ ∞

−∞
P

φ(y)

y − x
dy,

where P indicates the Cauchy principal value. In the following
we restrict ourselves to β = 0, though our methods are
applicable to the general case. The resulting Hamiltonian,
which we denote HBO, appears as the bosonized description
of the Calogero-Sutherland (CS) model of particles of mass
m interacting with an inverse square potential U (x − y) =
λ(λ−1)

m(x−y)2 [11–13]. In this case the coefficients are

g =
√

2πλ

m
, α = λ − 1

2m
.

The equation of motion of the Hamiltonian Eq. (3) is

vt + vvx + αHvxx + βvxxx = 0.

For α = 0 we have the Korteweg–de Vries equation, while the
case β = 0 corresponds to the Benjamin-Ono (BO) equation
[14,15]. Both equations are completely integrable [16–18],
though the intermediate case is not.

Classically, one of the most dramatic consequences of
dispersion is the existence of solitons. For the BO equation
these have the particularly simple form v(x,t) = V (x − vSt),
parametrized by the soliton velocity vS which has the same
sign as α:

V (x) = 4α2vS

v2
Sx

2 + α2
. (4)

Evaluating the energy and momentum

P =
∑
k>0

ka
†
kak = 1

2

∫
dx φ2

x

of the soliton gives the dispersion relation E(P ) =
(g2/8πα)P 2. Thus phonons and solitons have opposite dis-
persion, and in fact correspond to the states of maximum and
minimum energy at given momentum.

The calculation we now describe shows that the dynamical
structure factor S(q,ω) of the chiral theory has support between
these two thresholds, with power-law singularities in the
vicinity of the edges, given for small g/α by (see Fig. 1)

S(q,ω) ∝
{

[ω − ε(q)]−1+g2/8πα2
for ω � ε(q),

[E(q) − ω]−1+8πα2/g2
for ω � E(q).

(5)

We note that the existence of a hard upper threshold is a
consequence of the chirality of the hydrodynamic theory, as
may be seen from the matrix elements of the Hamiltonian
Eq. (3) at a given momentum taken on a ring (so that there are
a finite number of states). In the case α > 0, one may verify that
the singular behavior is unaffected by noting that we decouple
the cross-chiral interactions with a nonsingular generator.

Equation (5) is consistent with the known exact results
for the CS model [11,19–22]. These earlier calculations rely
on the complex machinery of Jack symmetric polynomials,
which belies the simplicity of the result Eq. (5). Though
our calculations are performed in the limit where dispersion
dominates the nonlinearity, the form of the result shows that
this limit is nontrivial. This is because the nonlinearity is
a marginal perturbation with respect to the BO dispersion
in the sense of the renormalization group, and therefore a
resummation of logarithmic divergences is expected. We note
that if α = 0 in Eq. (2), corresponding to the absence of
long-range forces in 1D, the nonlinearity always dominates
the dispersion at low wave vectors, and our approach cannot
be applied in this limit. Fermionization of the dispersionless
phonon Hamiltonian then shows that both exponents in Eq. (5)
are equal to zero [6,23]. Our methods will however be
applicable as long as βq � g.
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Phonon threshold. The dynamical structure factor is the
Fourier transform of the phonon correlator 〈v(x,t)v(0,0)〉:

S(q,ω) ∝ q

∫ ∞

−∞
〈0|aq(t)a†

q(0)|0〉 eiωtdt, (6)

where the overall normalization can be fixed by the f-sum rule
in a Galilean invariant system. If the phonons are free, i.e.,
g = 0, we have

〈0|aq(t)a†
q(0)|0〉 = e−iε(q)t , (7)

and S(q,ω) consists of a single δ function centered at
ω = ε(q). Now when g/α is nonzero but small, we can
expect that for energies and momenta close to the phonon
dispersion, the states contributing to S(q,ω) resemble those
of a single phonon. We thus seek a unitary transformation of
HBO → UHBOU † to remove the coupling between phonons at
leading order. Writing U = eA in terms of some anti-Hermitian
generator gives the condition

[A,H2] + H3 = 0,

with solution A = ∑
{ki>0} Ak1k2k3 (a†

k1
ak2

ak3
− H.c.), where

Ak1k2k3 = g

2

√
1

L

√
k1k2k3

αk2
1 − αk2

2 − αk2
3

δk1,k2+k3 . (8)

In considering the effect of the above unitary transformation on
a phonon of wave vector q, we note that the generator Eq. (8)
diverges when one of k2 or k3 approaches zero. This indicates
that the phonon has singular interactions with soft phonons
that change its momentum very little. Isolating the part of
the generator involving one phonon operator with momentum
below some small cutoff � and the others far above gives

A� ∼ g

2α

∑
q��

0<k<�

1√
kL

(a†
qaq−kak − H.c.)

∼ i
g

2α

∫
dx φ<(x)ρ>(x).

In the second line, φ<(x) indicates the part of the chiral boson
involving only k < �, and ρ>(x) = a

†
>(x)a>(x) is the density

of “hard” phonons, where

a>(x) =
∑
k��

ake
ikx .

Performing the unitary transformation generated by A� on the
hard phonons gives

a>(x) → U�a>(x)U †
� = exp [−i(g/2α)φ<(x)] a>(x). (9)

Treating the transformed variables and vacuum as free gives
the following approximation to the hard phonon correlation
function:

〈a>(x,t)a†
>(0,0)〉 ∼ 〈a>(x,t)a†

>(0,0)〉H2

≡V(x,t)︷ ︸︸ ︷
〈exp [−i(g/2α)φ<(x,t)] exp [i(g/2α)φ<(0,0)]〉H2 .

Together with Eq. (7) for the free phonon correlation function
this gives for Eq. (6)

S(q,ω) = f (q)
∑
q ′

Ṽ(q − q ′,ω − ε(q ′)), (10)

where Ṽ(q,ω) is the Fourier transform of V(x,t):

V(x,t) ∝ 〈exp[−i(g/2α)φ+
< (x,t)] exp[i(g/2α)φ−

< (0,0)]〉H2

= exp

[
g2

4α2
[φ+

< (x,t),φ−
< (0,0)]

]

= exp

[
g2

8πα2

∫ �

1/L

dk

k
eikx+iαk2t

]
∼ |x|−g2/8πα2

, x2 � αt.

In the above we have split the chiral boson into positive and
negative wave vector parts φ(x) = φ+(x) + φ−(x), analytic in
the upper and lower half planes of x, respectively. Substituting
into Eq. (10) yields the first of Eq. (5).

Let us describe the physical picture underlying this calcula-
tion. The hard phonon maintains its identity during interaction
with the soft excitations, so may be regarded as a moving
impurity. Equation (9) shows that the creation of a hard phonon
is associated with a “shake up” of the soft phonon system,
as in the orthogonality catastrophe or Fermi edge singularity
[24,25], leading to power-law behavior in the vicinity of the

phonon threshold. The mobile impurity model of [6] emerges
from perturbation theory for dispersing phonons.

Soliton threshold. To understand the behavior in the vicinity
of the soliton dispersion, we note that in the large dispersion
limit the soliton is heavy (this corresponds to the large repul-
sion limit of the CS model), which suggests a semiclassical
description. This is most conveniently implemented within a
coherent state functional integral representation of the phonon
correlator, which takes the form [26]

q 〈0|aq(t)a†
q(0)|0〉 ∝ q

∫
Dϕ exp (iS[ϕ]) αq(t)ᾱq(0). (11)

αq(t) is the analog of aq(t) for the c-number field ϕ(x,t).
The action S[ϕ] = SBO[ϕ] + SB[ϕ] consists of the BO action
SBO[ϕ], as well as a boundary term SB[ϕ] that plays a vital
role in the following:

SBO[ϕ] = −1

2

∫ t

0
dτ

∫
dx

[
ϕxϕτ + αϕxHϕxx + g

3
ϕ3

x

]

SB[ϕ] = 1

2

∫
dx[ϕ−ϕ+

x |τ=0 + ϕ−ϕ+
x |τ=t ].

To implement the semiclassical approximation we con-
sider field configurations close to the soliton: ϕ(x,τ ) =
�(x; X(τ ),X̄(τ )) + ϕ̃(x,τ ), where [cf. Eq. (4)]

�(x; X(τ ),X̄(τ )) = −2iα

g
ln

(
x − X(τ )

x − X̄(τ )

)
,
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with the collective coordinates X(τ ), X̄(τ ) assumed to be close
to a soliton trajectory vSτ ± iα/vS .

The semiclassical approximation to the correlator then has
the form (up to constant factors)∫

DXDX̄eiq[X(0)−X̄(t)]+iS[�]
∫

Dϕ̃ eiδSB[ϕ̃]+ i
2 δ2S[ϕ̃], (12)

where the factor eiq[X(0)−X̄(t)] originates from the Fourier
components of the soliton, and δSB[ϕ̃] arises from the variation
of the end points

δSB =
∫

dx[�+
x ϕ̃−|τ=0 − �−

x ϕ̃+|τ=t ]

= 4πα

g
[ϕ̃+(X(t),t) − ϕ̃−(X̄(0),0)]. (13)

The simple poles of the Benjamin soliton lead to the second
line of Eq. (13), which is completely determined by the soliton
“charge.” Even for models without this luxury, at long times
any soliton will behave like a delta function in the integrand.

The computation of the Gaussian integral in Eq. (12) is
facilitated by the use of a basis diagonalizing the quadratic
action δ2S[ϕ̃] [27], in terms of which we may write

ϕ̃(x,τ ) =
∫ ∞

0

dk

2π
[η(k,τ )ψ+(k,y) + η̄(k,τ )ψ−(k,y)],

(14)

where y = x − vSt , and

ψ+(k,y) = y − X

y − X̄

[
1

i(k + vS/2α)(y − X)
− 1

]
eiky. (15)

Together with functions corresponding to variation of X(τ ) and
X̄(τ ), this basis is complete and orthonormal [27]. Substitution
into the Gaussian action in Eq. (12) gives

δSB = 2α

g

∫ ∞

0
dk

e−kα/vS

1 + 2αk/vS

[η(k,t) − η̄(k,0)] ,

(16)

δ2S =
∫ t

0
dτ

∫
kdk

π
η̄(k,τ ) [i∂τ − ω(k)] η(k,τ )

+ i

∫
dk

2π
k [η̄(k,0)η(k,0) + η̄(k,t)η(k,t)] ,

where ω(k) = −vSk − αk2. Integrating over {η(k,τ ),η̄(k,τ )}
is now straightforward and yields a factor in the semiclassical
correlator equal to (vSt/ lS)−8πα2/g2

at long times, where lS ≡
α/vS is the size of the soliton.

It remains to perform the integral over the collective coor-
dinates {X(τ ),X̄(τ }. The exponent q[X(0) − X̄(t)] + S[�] in
Eq. (12) is stationary when the collective coordinates follow
a soliton trajectory, and the variation at the end points fixes
vS = (g2/4πα)q and ES = (g2/8πα)q2. The Gaussian path
integral coincides with that representing the expectation of a
free particle propagator in an eigenstate of momentum q, and
so simply yields a factor e−iES t .

Combining these elements yields the final expression for
the semiclassical structure factor at long times:

q 〈0|aq(t)a†
q(0)|0〉 ∝

(
lS

vSt

)8πα2/g2

exp(−iESt). (17)

Fourier transformation with respect to time then yields the
second of Eq. (5).

In this calculation the soliton edge singularity arises
from the linear coupling in δSB between the soliton and
the “phonon” modes parametrized by the η variables. The
mechanism is then nearly identical to that giving rise to
the phonon singularity in our earlier calculation, albeit with
inverse coupling, and illustrates the duality between the
phonon and soliton pictures. Following the derivation in Ref.
[22] of the singularities in the CS structure factor, the author
showed that the mobile impurity phenomenology reproduces
the exact result, which agrees with our expression in the limit
of strong dispersion. A similar but more heuristic calculation
of the absorption threshold due to the creation of dark solitons
in a repulsive 1D Bose gas appeared in Ref. [28].

In summary, we have shown that, contrary to the prevailing
wisdom, nonlinear quantum hydrodynamics in one dimension
is a tractable quantum field theory. The addition of phonon
dispersion allows us to describe the physics of a nonlinear
Luttinger liquid. Although our calculation made no explicit
use of integrability—the existence of solitons is a much weaker
property—the Benjamin-Ono Hamiltonian is integrable at the
quantum as well as the classical level [29]. It would be
interesting to understand the quantum analogs of the classical
solitons in more detail.
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