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In realizing practical nontrivial topological electronic phases stable structures need to be determined first.
Tin and lead do stabilize an optimal two-dimensional high-buckled phase—a hexagonal close-packed bilayer
structure with ninefold atomic coordination—and they do not stabilize topological fullerenes, as demonstrated
by energetics, phonon dispersion curves, and structural optimization of finite-size samples. The high-buckled
phases are metallic due to their high atomic coordination. The optimal structure of fluorinated tin lacks threefold
symmetry and it stabilizes small samples too. It develops two oblate conical valleys in the first Brillouin
zone coupling valley, sublattice, and spin degrees of freedom with a novel τzσxsx term, thus making it a new
two-dimensional platform for valleytronics.
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Introduction. Carbon forms two-dimensional (2D) layers
with a hexagonal lattice [1,2], and silicon, germanium [3],
AlAs, AlSb, GaP, InP, GaAs, InAs, GaSb, InSb [4], phospho-
rus [5], and tin [6–8] are all predicted to form stable low-
buckled (LB) 2D hexagonal layers. High-buckled (HB) 2D
phases cannot occur for carbon, silicon, or germanium [3,9].
Can tin and lead stabilize the HB phase?

Proceeding by direct analogy to silicene and germanene [3],
known studies of the electronic properties of 2D tin [6–8,10]
are performed under the implicit assumption that the HB phase
is not viable. In addition, the guess structures and the electronic
gaps in Ref. [8] had been previously reported [7]. Contrary
to common assumption, the HB 2D structures of the heavy
column IV elements tin and lead are stable and lower in
energy than their LB counterparts, thus representing the true
optimal structures of these 2D systems. The structural stability
of HB tin and HB lead will have fundamental consequences for
the practical realization of substrate-free nontrivial topological
phases based on these elements.

The optimal phase of 2D fluorinated stanene is not analo-
gous to tetrahedrally coordinated graphane [11] as postulated
in Refs. [7] and [8]. Studies of 2D fluorinated tin dismiss
the existence of bulk crystalline fluorinated phases stable
at room temperature. There is no indication of tetrahedral
coordination of tin atoms in bulk fluorinated tin [12], and
tetrahedral coordination [7,8] does not yield the most stable
2D fluorinated tin either.

We uncover six metastable fluorinated phases for 2D tin, the
graphane-like phase [6–8] being one of them. Consistent with
the literature on bulk flourinated tin [12,13], we demonstrate
that two tilted F atoms mediate the interaction among two Sn
atoms in the optimal 2D structure. This stable optimal phase
displays two gapped oblate Dirac cones in the first Brillouin
zone, where valley τ , pseudospin σ , and spin s couple as
τzσxsx [14].

Unlike known 2D materials with a hexagonal lattice, in
which three valleys with momentum directions separated by
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120◦ rotations are related due to threefold symmetry [15–19],
the optimal 2D fuorinated tin leads to strictly two valleys
due to its reduced structural symmetry. This allows an
unprecedented specificity in coupling three quantum degrees
of freedom around the Fermi energy: the valley, the crystal
momentum including direction, and the electronic spin. The
results provided here invite to look closely into 2D materials
postulated for their remarkable electronic properties that may
not realize ground-state, optimal structures [7,8].

The HB phase is more favorable than the LB phase
with increasing atomic number: The energetics of column
IV 2D materials in Fig. 1(a) were obtained with the PBE
exchange-correlation potential [20] in a version of the
SIESTA code [21,22] that includes a self-consistent spin-orbit
interaction (SOI) [23]. Our basis sets are of double-ζ plus
polarization size [24]. The trends in Fig. 1 remain regardless
of the inclusion of SOI and were cross-checked with VASP

calculations [25,26].
The lattice constant at the HB energy minima aHB is

equal to 3.418 Å for tin, and aHB = 3.604 Å for lead. These
values become 3.413 and 3.575 Å, respectively, when the
SOI is included in calculations. These strikingly stable HB
structures have not been reported before; lattice parameters in
the literature [6–8,10] are ∼140% larger. The normalization of
a0 in terms of aHB in Figs. 1(a) facilitates a unified display of
energetics regardless of the atomic species. The dashed vertical
line in Figs. 1(a) and 1(b) at about a0 � 1.2aHB highlights the
lattice constant a0 for which energy barriers separating the LB
and the HB phases become largest.

Germanium (with atomic number Z = 32) cannot form an
HB phase, even though the energy minimum of the optimized
HB phase is already lower than the local minimum at the
optimal LB phase [Fig. 1(a)] [3]. This HB minimum becomes
markedly deeper and the energy barriers separating these
phases become shallower with increasing atomic number.
Figure 1(a) invites us to ponder whether HB tin and HB lead
are stable. In answering this question we address the atomistic
coordination of HB phases first.

The optimal HB structure is a hexagonal close-packed
(HCP) bilayer: HB phases have been represented as threefold
coordinated [3], but the relative height �z among atoms
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FIG. 1. (Color online) (a) The high-buckled phase becomes more
stable with increasing atomic number. (b) Nearest-neighbor distances
aAB ≡ |vAB | approach the lattice constant a0 (aAB � a0) at the high-
buckled energy minimum; the structure transitions to a low-buckled
phase at roughly 1.2aHB. (c) The high-buckled structure is an HCP
bilayer.

in complementary sublattices A and B increases as the
lattice constant a0 is compressed, so the distance aAB =√

a2
0/3 + �z2 among atoms belonging to complementary

sublattices increases towards a0. Indeed, aAB = a0/
√

3 for a
planar hexagonal unit cell [dashed horizontal line in Fig. 1(b)]
but an ideal HCP structure has �z = √

2a0/
√

3, yielding
aAB = a0 [solid horizontal line in Fig. 1(b)] [27]. Numerical
results yield aAB � 0.95aHB [solid vertical line in Fig. 1(b)].
Thus, six atoms are a distance aHB apart and three atoms
belonging on complementary sublattices are separated by
aAB � 0.95aHB, leading to the ninefold-coordinated HCP
bilayer structure [28,29] in Fig. 1(c). A transition among LB
and HB structures occurs around a0 � 1.2aHB in Fig. 1(b).

HB tin and HB lead are stable: We show in Figs. 2(a)
and 2(b) phonon dispersion curves for HB tin and lead [30].

The effect of SOI is small, thus justifying the trends without
SOI shown in Figs. 1(a) and 1(b) [31]. Similar dispersions
were obtained using the QUANTUM ESPRESSO code [32]. The
lack of significant negative energies indicates that HB tin and
HB lead are indeed stable: The chemistry of Si and Ge does
not translate to Sn and Pb because, with increasing atomic
number, the s orbital lowers its energy with respect to the p

orbital, thus reducing s − p hybridization.
The ultimate test of relative stability is a structural optimiza-

tion of small 2D flakes with initial HB or LB conformations
[Fig. 2(c)], where the lines joining atoms reveal their atomistic
coordination. The finite-size HB structures have 122 atoms; the
LB structures have eight additional atoms [small filled (red)
circles in the LB initial structure] so that all edge atoms are
twofold coordinated. We set a stringent force tolerance cutoff
of at least 0.01 eV/Å.

The LB Si and LB Ge samples [Fig. 2(c), subplots ii and
iv] show crumpling originating out from the boundaries yet
the hexagonal lattice remains visible around the center of mass
after the force relaxation [3]. On the other hand, the amorphous
shape and the random-looking atomistic coordination of HB
Si and HB Ge (subplots i and iii) indicate that these phases are
unstable [3].

Confirming the structural stability inferred from phonon
dispersion curves, HB Sn and HB Pb do stabilize in finite-size
samples: Starting from an ideal HB phase, the optimized
Sn structure retains the HB coordination within the area
highlighted by the large black oval [Fig. 2(c), subplot v].
The finite LB Sn sample, on the other hand, crumples
upon optimization [Fig. 2(c), subplot vi]. In fact, the region
highlighted by the small black oval in Fig. 2(c), subplot vi,
displays the local coordination expected of an HB phase
already. Similar conclusions would be reached in Ref. [10]
if periodic constraints were removed.

Haldane’s honeycomb model has been studied in closed
geometries [33] and one of the many candidates for its practical
realization is LB tin (stanene). Unfortunately, a fullerene-like
Sn60 is not stable [Fig. 2(d)] so tin and lead are no-go elements
for topological fullerenes. Based on Fig. 1(a) HB lead is
extremely stable: It stabilizes finite HB samples with no change
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FIG. 2. (Color online) (a, b) Phonon dispersions Eph(k) for HB tin and lead demonstrate their structural stability; SOI does not change
phonon dispersions dramatically. (c) The structural optimization of finite samples reflects previous findings for Si and Ge [3] and helps to
confirm the stability of HB tin and HB lead unequivocally: The stanene sample (LB tin) becomes thick and amorphous and the initial LB lead
sample turns into HB lead. (d) Two-dimensional tin and lead do not realize topological fullerenes.
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FIG. 3. (Color online) Electronic dispersion for (a) HB tin and
(b) HB lead. The ninefold atomic coordination of the HB phases is
behind the metallic electronic dispersion.

in atomic coordination [Fig. 2(c), subplot vii] and turns an LB
structure into an HB-coordinated one [Fig. 2(c), subplot viii].

Viable electronic materials require stable structures. Tin
and lead films have been created experimentally [38–40] and
structural aspects must be addressed diligently to realize 2D
materials with a strong SOI.

Graphene, silicene, and germanene are threefold coordi-
nated and have a conical dispersion around the K points, with
small gaps due to SOI [14,34–37]. The ninefold-coordinated
2D HB structures display no conduction gaps (Fig. 3).

HCP bilayers could be cleaved out of HCP or FCC bulk
structures. Lead forms an FCC structure with interatomic
distances of 3.614 Å, which compare favorably with aHB =
3.575 and make HB lead stable.

Tin stabilizes a tetragonal structure (β tin [41,42]) and a
diamond structure (α tin [43]). The β phase is higher in energy
than the α phase by Eβ − Eα = 0.58 eV/atom. Every atom in
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FIG. 4. (Color online) (a) Phases of 2D fluorinated tin; structures
are shown at the right. (b) Symmetries of the most stable structure,
(7), depicting triangular (dashed lines) and Wigner-Seitz (within the
dotted perimeter) unit cells, the two symmetry axes, and the two
Sn sublattices, A and B. Structural stability is demonstrated by (c)
the phonon dispersion curves and (d) the structural stabilization of a
finite-size sample.

β tin has 4 neighbors 3.11 Å apart, 2 neighbors 3.26 Å apart,
and 4 neighbors 3.87 Å apart: these 10 atoms are 3.44 Å apart
on average. In ninefold-coordinated HB tin aHB = 3.42 Å and
aAB = 3.281, having an atomistic coordination comparable to
that of bulk β tin. The α-tin phase has four neighbors 2.89 Å
apart, which compares well to the aSn-Sn = 2.85 Å for a 2D
LB structure. Importantly, in two dimensions the energetics
switch and the HB phase—compatible with bulk β tin—is
more stable than LB tin—compatible with α tin—by ELB −
EHB = 0.25 eV/atom [cf. Fig. 1(a)].

The phase space for decorated 2D tin is larger than orig-
inally anticipated [Fig. 4(a)]: The graphane-like phase [7,8]
realizes the metastable minimum labeled 6, which turns into
phase 4 upon in-plane compression. Placement of F atoms
directly on top of/under Sn atoms results in two dissociated
triangular Sn lattices bonded on opposite sides by F atoms
(structures 2/1).

In the optimal structure, 7, fourfold-coordinated Sn atoms
form a sequence of parallel zigzag 1D chains, with two
fluorine atoms mediating interactions among neighboring Sn
chains. The structure is realized on a triangular lattice with
a0 = 5.230 Å [Fig. 4(b)]. The Wigner-Seitz unit cell is within
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FIG. 5. (Color online) (a) Conduction band in the first Brillouin
zone, highlighting high-symmetry points and locations of valleys
V1 and V2 away from the K and K ′ points. (b) The two valleys
in the Brillouin zone arise from the twofold symmetry of the atomic
structure. (c, d) Band structures along high-symmetry lines, including
a two-band tight-binding fit. (e) Spin texture resolved over valley (τ ),
energy, and sublattice (σ ) degrees of freedom. (The spin projection
onto the z axis is of the order of 1% at most.)
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TABLE I. Basis vectors for the optimal fluorinated 2D tin (a0 =
5.23 Å).

Sn (0.000, 0.000, 0.000)a0, (0.583, 0.336, −0.221)a0

F (0.216, 0.124, −0.348)a0, (0.367, 0.212, 0.128)a0

the dotted area in Fig. 4(b); the symmetry axes are shown as
well. A similar “bridging” fluorine coordination is realized in
bulk tin(II) fluoride (e.g., Fig. 2 in Ref. [12]).

Bulk tin(II) fluoride is highly stable at room temperature
and can be found in household products. The structural
stability of optimal 2D tin is probed with phonon dispersion
calculations [Fig. 4(c)] along the high-symmetry lines shown
in Fig. 5(a). The phonon frequency range is comparable with
that of graphene, and it is one order of magnitude larger than
those in Figs. 2(a) and 2(b). As an additional successful check,
small-size flakes were subjected to a successful structural
optimization [Fig. 4(d)]. The peculiar coupling of quantum
degrees of freedom in this system may encourage experimental
routes towards the synthesis of 2D fluorinated tin. The stability
of its parent 3D compound at room temperature [12,13]
invites experimental investigations of potential viability in two
dimensions.

The first Brillouin zone in Fig. 5(a) shows a top view of the
conduction band and the high-symmetry points in momentum
space. As shown in Fig. 5(b), the arrangement of parallel 1D
Sn wires gives rise to an electronic structure with only two
anisotropic Dirac cones in the first Brillouin zone, located
away from the K points at positions V1 and V2 = ±0.85K1,
respectively. Henceforth we identify the x axis with the line
joining tin atoms across fluorine bridges. The Fermi velocity is
close in magnitude to that of graphene and it is anisotropic—
vFy = 5.4 × 105 m/s [Fig. 5(c)], and vFx = 2.1 × 105 m/s
[Fig. 4(d)]—and a gap of 2� = 0.02 eV opens due to SOI, five
times larger than the intrinsic gap due to SOI in graphene [35].
Phase 6 transitions from a topological insulator to a trivial
insulator [8], but the electronic structure of the optimal phase
remains robust under even larger isotropic strain.

The electronic dispersion in Figs. 5(b)–5(d) can be under-
stood in terms of a 2 × 2 π -electron tight-binding Hamilto-
nian [44] in which an effective coupling t ′ is set among the
tin atoms originally linked by fluorine bridges [thin bonds in
Fig. 4(b)], and t is the coupling among actual Sn-Sn atoms
[thick bonds in Fig. 4(b)]. Using interatomic distances among
Sn atoms from Table I, t = 0.8 eV and t ′ = vFxt/vFy , we
obtain the (blue) dashed lines in Figs. 5(c) and 5(d), which
reproduce first-principles results.

To account for SOI, we realize an oblate low-energy Dirac-
Hamiltonian at the vicinity of the V1,2 points. The relevant

TABLE II. Eigenvectors of τzσxsx . |sx ; ±〉 are eigenstates of sx ,
and |A〉, |B〉 are eigenstates of the pseudospin (sublattice projection)
operator.

State V1 V2

|φ−�,1〉 1√
2
(−|A〉 + |B〉)|sx ; +〉 1√

2
(|A〉 − |B〉)|sx ; −〉

|φ−�,2〉 1√
2
(|A〉 + |B〉)|sx ; −〉 − 1√

2
(|A〉 + |B〉)|sx ; +〉

|φ+�,1〉 1√
2
(|A〉 − |B〉)|sx ; −〉 1√

2
(−|A〉 + |B〉)|sx ; +〉

|φ+�,2〉 1√
2
(|A〉 + |B〉)|sx ; +〉 − 1√

2
(|A〉 + |B〉)|sx ; −〉

subspace is four-dimensional at any given valley, and the task
is to reproduce the spin texture displayed in Fig. 5(e), where
spin projects onto the +x or the −x direction while leaving
the sublattice (pseudospin) degree of freedom unpolarized.
The numerical results in Fig. 5(e) are consistent with the
coupling τzσxsx . Indeed, eigenvectors of τzσxsx in Table II
project spins onto the −x, +x, +x, −x axis parallel to the Sn-F
bonds, inverting the signs at each valley and lacking sublattice
polarization, consistent with ab initio data [Fig. 5(e)]. Thus,
the low-energy dynamics is given by

H = −i�
†(vFxτzσx∂x + vFyσy∂y)
 + 
†(�τzσxsx)
.

An unprecedented specific coupling of momentum—including
direction—with spin oriented along x̂ and valley degrees
of freedom is thus realized by the second term in previous
equation. The valley degree of freedom can be addressed by a
bias along the V1 − V2 axis that breaks inversion symmetry.
Similarly, a magnetic field along the x̂ axis will break time-
reversal symmetry, locking the valley and crystal momentum
direction at the V1, V2 points. The dynamics invites the use of
2D fluorinated tin for valleytronic applications.

Summary. We have demonstrated the structural stability of
HB tin and HB lead and discussed their electronic properties,
showed that tin and lead are not viable routes towards
topological fullerenes, and discovered the structural, valley,
sublattice, and spin properties of optimal fluorinated two-
dimensional tin.
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