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Three-dimensional Dirac semimetals are stable against weak potential disorder, but not against strong disorder.
In the language of renormalization group, such stability stems from the irrelevance of weak disorder in the
vicinity of the noninteracting Gaussian fixed point. However, beyond a threshold, potential disorder can take
Dirac semimetals into a compressible diffusive metallic phase through a quantum phase transition (QPT), where
density of states at zero energy, quasiparticle lifetime, and metallic conductivity at T = 0 are finite. Universal
behavior of such unconventional QPT is described within the framework of an ε (=d − 2) expansion near
the lower critical dimension. Various exponents near this quantum critical point are obtained after performing a
two-loop perturbative expansion in the vanishing replica limit and we demonstrate that the theory is renormalizable
at least to two-loop order. We argue that such QPT is always continuous in nature and shares the same university
class with a similar transition driven by odd-parity disorder. The critical exponents are independent of flavor
number of Dirac fermions and thus our study can be germane to disordered Cd3As2 and Na3Bi. Scaling behaviors
of various measurable quantities such as specific heat and density of states across such QPT are proposed.
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Conical quasiparticle dispersion with valence and conduc-
tion bands touching each other at its apex characterizes a new
family of materials, Dirac semimetals (DSMs). Such weakly
coupled unconventional phase of matter can be realized in
both two and three spatial dimensions and graphene stands as
a prototype 2D DSM. Although the experimental realization of
3D DSMs remained illusive for a long time, very recently their
existence has been reported in Cd3As2 [1] and Na3Bi [2]. In
addition, massless Dirac fermionic excitations can be realized
at the transition point between a 3D strong Z2 topological
insulator and trivial band insulator, which, for example, can be
tuned by doping or applying external pressure [3–7].

A question of deep and fundamental importance is the
stability of DSMs against electron-electron interaction and
disorder. Vanishing density of states (DOS) in the vicinity
of the band-touching diabolic point leaves DSMs robust
against any weak electron-electron interaction in two and three
dimensions. However, application of strong external magnetic
fields can drive DSMs into fully gapped phases even for
arbitrarily weak interactions [8,9]. Stability of DSMs against
static disorder (e.g., random quenched impurities which are
unavoidable in solid state systems) is, however, a subtle and
important issue, which we address in this work combining the
powerful techniques of renormalization group (RG), scaling
analysis, and replica theory. The dimensionality of the replica-
averaged disorder coupling (�) is [�] = 2z − d, where z is the
dynamical critical exponent (DCE) and d is the dimensionality
of the system. Since [�] = −1 for z = 1 and d = 3, any
weak short-range disorder is an irrelevant perturbation in
3D DSMs. On the other hand, beyond a critical strength
(i.e., when the disorder can no longer be considered weak),
potential disorder drives DSMs into diffusive metal (DM)
[10–15], where the quasiparticle lifetime, mean-free path, and
metallic conductivity at T = 0 are finite. However, in 2D
DSMs disorder is marginally relevant and the noninteracting
system flows toward strong disorder (i.e., even in the presence
of infinitesimal disorder) [16,17]. Therefore, the disorder-
driven DSM-DM quantum phase transition (QPT) is a unique

phenomenon in 3D systems and we address its quantum critical
behavior within the framework of an ε expansion around the
lower critical dimension d = 2, where ε = d − 2. The fact
that such a disorder-driven DSM-DM transition exists in three
dimensions (but not in 2D) has been known for a long time
[10–15,18], but our focus is a deeper understanding of its
quantum critical behavior which is still lacking in spite of
considerable earlier works. Our main results are as follows:
(a) we argue that potential disorder driven QPT is always
continuous; (b) critical exponents are obtained to the order ε2,
which are the most accurate ones in literature; (c) universality
class of this QPT is independent of flavor number of Dirac
fermions and therefore our study can be germane to disordered
Cd3As2 and Na3Bi; (d) to two-loop order the continuum
description of this problem is renormalizable, which, however,
we expect to hold to all order in perturbative expansion; (e)
universality classes of the DSM-DM transitions driven by
potential and odd-parity disorders are the same, which together
constitute a global and broad picture of a disorder-driven
quantum critical point (QCP) in 3D DSMs.

The nature of the DSM-DM transition in 3D has been
addressed in various theoretical works. A one-loop RG study
predicted the DCE z to be 3/2 and the correlation length
exponent (CLE) ν = 1 near this critical point [13]. A numerical
analysis also indicated the existence of a sharp transition from
DSM to DM at finite disorder strength, albeit with critical
exponents inconsistent with the one-loop RG theory within
error bars [14]. The existence of the DSM-DM transition
can also be established from the non-trivial self-consistent
solution of quasiparticle lifetime above [11,12] and vanishing
conductivity below a critical disorder strength [15]. Scaling
of vanishing (finite) DOS near the Dirac point in the DSM
(DM) phase allows one to extract various exponents near
the transition giving z = 1.5 ± 0.1, νDSM = 0.81 ± 0.21, and
νDM = 0.92 ± 0.13 based on a direct numerical simulation
[14]. Here νDSM and νDM are CLEs in DSM and DM
phases, respectively. Such large error bars in critical exponents
possibly stem from the large uncertainty associated with the
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location of DSM-DM QCP. The true CLE at the DSM-DM
critical point is predicted to be ν = νDSM+νDM

2 ≈ 0.9 [14].
A sigma model approach to this problem also suggested
the existence of such a transition long ago and obtained
ν−1 = d − 2 and z = 2 [10]. In addition, predictions for finite
dc conductivity in weakly disordered DSMs [18–20] appears
to be in contradistinction with recent numerical calculation
[15]. Therefore, even though various works support the
existence of a DSM-DM transition at finite disorder strength,
exponents reported in Refs. [10,13,14] are not in agreement
with each other and in this Rapid Communication we extend
the perturbative analysis up to two-loop order, and also unearth
various nonperturbative aspects associated with such peculiar
QCP. The critical exponents next to the leading order are
ν−1 = ε − ε2

8 and z = 1 + ε
2 − 3

16ε2.
The imaginary-time (τ ) action for noninteracting massless

Dirac fermions in d dimensions reads

S0 =
∫

dd �xdτ �̄(τ,�x)(γ0∂0 + v γj∂j )�(τ,�x), (1)

where a summation over repeated spatial index j = 1, . . . ,d is
assumed and �̄ = �†γ0 as usual. Fermi velocity of the Dirac
quasiparticles is v. The γ matrices satisfy the anticommuting
Clifford algebra {γμ,γν} = 2δμν for μ,ν = 0,1, . . . ,d. The
fermionic Green’s function is G(k0,�k) = (iγ0k0 + ivγj kj )−1.
Next we add a term SD = ∫

dd �xdτV (�x)(�̄γ0�) that captures
the effect of random on-site potential disorder. Performing the
disorder averaging we obtain the replicated action

S̄ =
∫

dd �xdτ �̄α(τ,�x)(γ0∂0 + vγj∂j )�α(τ,�x)

− �

2

∫
dd �xdτdτ ′[�̄αγ0�α](τ,�x) [�̄βγ0�β](τ ′,�x), (2)

where α,β are replica indices. Disorder averaging is performed
assuming a Gaussian white-noise disorder distribution with
zero mean; i.e., 〈〈V (�x)V (�x ′)〉〉 = �δd (�x − �x ′). Scale invari-
ance of S̄ dictates the dimensionality of fermionic fields [�̄] =
[�] = d

2 , Fermi velocity [v] = z − 1, and disorder coupling
[�] = 2z − d. Therefore, in 3D DSMs (z = 1,d = 3) weak
disorder is an irrelevant perturbation and the DSM-DM
transition at finite disorder coupling can be accessed using
a controlled ε expansion around d = 2. Relevant diagrams in
the vanishing replica limit up to the two loop order are shown
in Fig. 1.

We now derive the flow of various parameters in S̄ under
coarse graining. One-loop diagrams in Fig. 1 can be evaluated
straightforwardly using the Wilsonian shell-RG technique.
Nevertheless, we take this opportunity to formulate the ε-
expansion scheme for this problem and establish the back-
ground necessary for two-loop calculations. In addition, this
exercise allows us to contrast the leading order results obtained
from ε expansion with other existing studies [10,13,14,18].
Figure 1(i) gives the leading correction to fermionic self-
energy

� (ip0, �p) = � (−ip0γ0)  (1 − d/2) = 2�

ε
(ip0γ0) (3)

as d → 2 + ε and after rescaling pε�

(4π)d/2 → �. Here 1/ε

represents “log” divergence. On the other hand, the total

(i) (ii) (iii) (iv)

(v) (vi) (vii)

(viii) (ix) (x)

(xi) (xii) (xiii)

(xiv) (xv) (xvi)

(xvii) (xviii) (xix)

FIG. 1. One-loop (first row) and two-loop diagrams that con-
tribute to the renormalization of the self-energy and disorder vertex
in the vanishing replica limit. Solid (dashed) line represents fermions
(disorder).

contribution from diagrams (iii) and (iv) is

I(iii) + I(iv) = 4 × �2

4 × 2!

∫
dd �p

(2π )d
[�̄αγ0G(0, �p)γ0�α]

× [�̄βγ0G(0, �p)γ0�β + �̄βγ0G(0, − �p)γ0�β]

≡ 0, (4)

since the relativistic Green’s function is odd under the reversal
of frequency and momenta; i.e., G(−k0, − �k) = −G(k0,�k).
Therefore, renormalization of the disorder coupling (�) arises
only from diagram (ii) giving

I(ii) = 8 × �2

4 × 2!

∫
dd �q

(2π )d
qj (q + p)n
q2(q + p)2

= �2(1 − d/2), (5)

which yields the renormalization coefficient Z� = 1 − � 4
ε

as d → 2 + ε. �(p0, �p) and Z� lead respectively to the β

functions (infrared) for v and �:

βv = v (z − 1 − 2�) , β� = −ε� + 4�2. (6)
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β� = 0 has two solutions: (a) � = 0 represents stable DSM
and (b) the DSM-DM transition takes place at critical disorder
coupling � = �∗ = ε/4. The CLE is given by

ν−1 = dβ�

d�

∣∣∣
�=�∗

= ε. (7)

Substituting � = �∗ in βv and keeping v fixed under RG (i.e.,
βv = 0), we find the DCE at the transition to be z = 1 + 2�∗ =
1 + ε

2 . Setting ε = 1 one obtains ν = 1 and z = 3/2 at the
DSM-DM QCP in 3D, which is in agreement with a recent
one-loop calculation [13]. However, it should be noted that
ν = 1 is an artifact of quadratic approximation in β�. Next we
show that both ν and z receive corrections from higher order
perturbative expansion.

We now proceed to the next order in perturbation theory
and take into account two-loop diagrams, shown in Fig. 1.
The diagrams (v)–(vi) and (vii)–(xix) renormalize respectively
fermionic self-energy (�) and disorder coupling (�). Since
G(k0,�k) is an odd function of k0 and �k, contributions coming
from (vii) and (xiv), (viii) and (ix), (x) and (xiii), (xi) and (xii)
mutually cancel each other. For example, contributions from
diagrams (ix) and (viii) together go as

I(ix) + I(viii) =
∫

�k,�q
�̄βγ0[G(0,�k) + G(0, − �k)]γ0�β

× [�̄αγ0G(0,�k)γ0G(0,�k + �q)γ0G(0,�q)γ0�α]

≡ 0. (8)

Therefore, a general result is that at every order in pertur-
bative expansion each ladder diagram is accompanied by an
appropriate crossing diagram which together give zero net
contribution. This cancellation in turn ensures that if the bare
replicated model S̄ contains only the potential disorder, it does
not generate any new disorder vertex through loop corrections
and S̄ remains closed under RG to all orders in the perturbation
theory.

On the other hand, the momentum integral arising from
diagram (xix)

I(xix) ∝
∫

�k,�q
G(0,�k′)γ0G(0,�q)γ0G(0,�k′)γ0G(0,�k′)γ0,

where �k′ = �k + �p, is an odd function of q, and thus I(xix) = 0,
which holds even when we keep the external frequency finite.
Therefore, renormalization of disorder coupling (�) comes
from diagrams (xv)–(xviii), which we compute after setting
the external frequency to zero.

Diagrams (xv) and (xvi) provide log2 corrections:

I(xvi) = �3 p2ε

(4π )d
 (1 − d/2)2 (9)

and I(xv) = I(xvi)/2, whereas (xvii) and (xviii) yield

I(xvii) = �3̄j lmnI+(p),I(xviii) = 2�3̄j lmnI−(p), (10)

respectively, where ̄j lmn = γjγlγmγn. Momentum integrals
appearing in I(xviii) and I(xvii) give

I±(p) = ±̄j lmn

∫
�k,�q

kj kl(k + q ± p)mqn

k2k2(k + q ± p)2q2
= ± ̄j lmn

(4π )d/2

∫
�k

kj kl

(k2)2

[
δmn

2

 (1 − d/2)

[(k ± p)2]1−d/2
− (2 − d/2)

(k ± p)n(k ± p)m
[(k ± p)2]2−d/2

]

= ± p2ε

(4π )d
̄jlmn

[
3δmnδjl + δjmδln + δjnδlm

8ε
− δmnδjl

2

(
1

ε2
+ γE

ε

)]
= ± p2ε

(4π )d
× 1

ε
∓ p2ε

(4π )d
 (1 − d/2)2 . (11)

Therefore, the renormalization coefficient of disorder coupling to two-loop order is given by

Z�/2 = 1 − �
2

ε
+ �2

ε
+ �2 (1 − d/2)2 , (12)

from which we obtain the β function (infrared)

β� = −ε� + 4�2 − 2�3. (13)

The log2 terms in Z� drop our from the above β function. The DSM-DM critical point is now located at � = �∗ = 1
2 (2 −√

2
√

2 − ε) = ε
4 + ε2

32 + O(ε3) near which the CLE

ν−1 = ε − ε2

8
+ O(ε3) ⇒ ν = 1.1428 as ε → 1. (14)

We find yet another solution �′ � �∗ of β� = 0 (besides the trivial one at � = 0). However, the appearance of such putative
fixed point is only an artifact of solving a cubic equation β� = 0 from Eq. (13). Stability of the DSM-DM QCP against two-loop
corrections along with the fact that potential disorder does not generate any new disorder vertex at any order in perturbation
theory ensures that such QPT is always continuous in nature.

In order to find the correction to the DCE to the same order one needs the self-energy renormalization coming from diagrams
(v) and (vi) in Fig. 1. Diagram (v) gives

I(v) = (−ip0γ0)�2 p2ε
0

(4π )d

[
1

2
 (1 − d/2)2 + 1

ε

]
. (15)
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Computation of (vi) is challenging which goes as

I(vi) = �2
∫

�k,�q
γ0G(p0, �p + �q)γ0G(p0,�k + �q)γ0G(p0,�k)γ0

= �2

(4π )d

[
−1

ε
− 1

ε
(−1 + γE)

] ∫ 1

0
dx [x(1 − x)]1−d/2

∫ 1

0
dy

y−d/2(ik0γ0 − yikjγj ){
xy(1 − x)(1 − y)p2 + [y + x(1 − x)(1 − y)]p2

0

}2−d

= �2 (−ip0γ0)

[
1

2


(
1 − d

2

)2

+ 4

ε

]
+ �2

ε
(−ipjγj ), (16)

after taking �pε/(4π )d/2 → �. I(vi) can be computed analyt-
ically for zero external frequency (p0 = 0) and momentum
( �p = 0) separately that respectively give the spatial and
temporal parts of the self-energy. When p0,pj �= 0, the final
integration over the Feynman parameters (x,y) has to be
carried out numerically with the on-shell condition p0 = | �p|
for the external fermions. These two procedures, however,
lead to identical self-energy corrections. Hence, the total
self-energy is

�(ip0, �p) = (−ip0γ0)

[
�

(
1 − d

2

)
+ �2

(
1 − d

2

)2

+ �2

(
4 + 1

ε

) ]
+ (−ipjγj )v�2

(
1

ε

)
, (17)

which leads to the β function for Fermi velocity (v)

βv = v(z − 1 − 2� + 4�2). (18)

Terms proportional to log2 in �(ip0, �p) disappear from βv .
Cancellation of log2 terms in the β functions in Eqs. (13) and
(18) ensures that the theory in Eq. (2) is renormalizable at least
to two-loop order. However, we believe that theory remains
renormalizable to all order in perturbation theory. Substituting
� = �∗ in βv and setting βv = 0, we obtain the DCE (z) at
DSM-DM quantum critical point to be

z = 1 + ε

2
− 3

16
ε2 + O(ε3) ⇒ z = 1.3125 as ε → 1.

(19)
Therefore, both CLE and DCE receive significant correc-

tions from higher loops and are noticeably different from
their values predicted from theories based on one-loop RG
[13], sigma model [10], and numerical simulation [14]. The
smallness of the coefficient of ε2 in �∗, ν, and z justifies
the inclusion of corrections to these quantities coming from
two-loop diagrams. It is worth pointing out that critical
exponents at the DSM-DM critical point is insensitive to
the flavor number of Dirac fermions (N ). Any diagram
that contains a fermionic loop, which gives a contribution
proportional to N , vanishes in the vanishing replica limit.
Therefore, our study is pertinent for DSMs with arbitrary
number of Dirac cones as well as disordered Cd3As2 and
Na3Bi which host tow copies of massless 3D DSM [1,2].
However, it should be noted that β functions in Eqs. (13)
and (18) manifest oscillatory dependence in powers of �.
Therefore, the actual critical exponents near the DSM-DM
quantum critical point can only be pinned after performing an
infinite order resummation of such series, which may require

the notion of a few additional higher order terms in β� and
βv . Nevertheless, exact numerical solutions and experiments
can provide valuable insights into the nature of such transition.
Our work clearly establishes this problem as an interesting and
open quantum critical problem of fundamental importance,
and hopefully will stimulate numerical as well as experimental
works in this direction in the near future.

DSMs can also suffer from the presence of various
other time-reversal symmetric, such as random mass, spin-
orbit, and odd-parity, disorders. DSMs in the presence of
the mass disorder of arbitrary strength remain stable, but
display a QCP at finite strength of odd-parity disorder [13].
The odd-parity disorder coupling is represented by a term
SOP = ∫

d3 �xdτV (�x)�̄γ0γ5� where {γ5,γμ} = 0. Otherwise,
contributions from all diagrams shown in Fig. 1 remain un-
changed after taking γ0 → γ0γ5. Therefore, quantum critical
behaviors near the DSM-DM QCP driven by potential and
odd-parity disorders are characterized by identical set of
critical exponents (ν,z).

The exponents ν and z govern the scaling behavior of
various physical quantities near the critical point [21]. For
temperatures much smaller than the bandwidth, specific heat
assumes the scaling form

Cv = T d/zv−3H

(
T

δνz

)
, (20)

where the parameter δ = (�∗ − �)/�∗ measures the de-
viation from the critical point (�∗). For small arguments
the universal scaling function H (x) ∼ xd(z−1)/z, so that we
recover the T 3 dependence of specific heat in 3D DSMs.
Identifying the proportionality constant in Cv as [v(δ)]−3

we also obtain the scaling function for the Fermi velocity
v(δ) = v δν(z−1). In the DM phase H (x) ∼ x1−d/z which in
turn gives T-linear specific heat. In the quantum critical regime
H (x) is a universal function, and Cv ∼ T d/z. Similarly, the
universal scaling function for DOS (ρ) is given by [14]

ρ(E) = δ(d−z)νF

( |E|
δνz

)
, (21)

when the energy E is much smaller than bandwidth. On
the DSM side the universal function F (x) ∼ xd−1 for small
argument, yielding ρ(E) ∼ Ed/z−1. In the DM phase, on the
other hand, F (x) ∼ x0, giving a finite DOS at the Dirac
point. Therefore, the DOS may serve the purpose of an order
parameter across the DSM-DM transition [14,22]. Residue of
the quasiparticle pole remains finite in the entire DSM phase,
which, however, vanishes smoothly as δ → 0 [21] and may
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as well serve as an order parameter in the DSM side of the
transition.

To summarize, we address the quantum critical behavior
of the on-site potential disorder driven DSM-DM transition
in three dimensions within the framework of an ε expansion
around the lower critical dimension d = 2. We show that the
critical exponents ν and z receive significant corrections from
higher loops and together they determine the scaling of various
measurable quantities such as specific heat (Cv) and DOS (ρ).
However, we have neglected the effects [22–26] of puddles,
density inhomogeneities, the Lifshitz tail, and Griffiths physics
in this work, focusing instead on the quantum critical aspects
of the DSM-DM QPT which are directly accessible to RG

analyses. We strongly believe that these additional subtle
effects do not fundamentally affect our quantum critical theory
in 3D DSMs.
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